mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-23 12:29:19 +07:00
cf9cb35ff7
Implements the Waitqueue is created to wait for CP_IRQ Signaling the CP_IRQ arrival through atomic variable. For applicable DP HDCP2.2 msgs read wait for CP_IRQ. As per HDCP2.2 spec "HDCP Transmitters must process CP_IRQ interrupts when they are received from HDCP Receivers" Without CP_IRQ processing, DP HDCP2.2 H_Prime msg was getting corrupted while reading it based on corresponding status bit. This creates the random failures in reading the DP HDCP2.2 msgs. v2: CP_IRQ arrival is tracked based on the atomic val inc [daniel] Recording the reviewed-by Daniel from IRC. Signed-off-by: Ramalingam C <ramalingam.c@intel.com> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: https://patchwork.freedesktop.org/patch/msgid/1550338640-17470-16-git-send-email-ramalingam.c@intel.com
7458 lines
208 KiB
C
7458 lines
208 KiB
C
/*
|
|
* Copyright © 2008 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Keith Packard <keithp@keithp.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/i2c.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/export.h>
|
|
#include <linux/types.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/reboot.h>
|
|
#include <asm/byteorder.h>
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_crtc.h>
|
|
#include <drm/drm_dp_helper.h>
|
|
#include <drm/drm_edid.h>
|
|
#include <drm/drm_hdcp.h>
|
|
#include <drm/drm_probe_helper.h>
|
|
#include "intel_drv.h"
|
|
#include <drm/i915_drm.h>
|
|
#include "i915_drv.h"
|
|
|
|
#define DP_DPRX_ESI_LEN 14
|
|
|
|
/* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
|
|
#define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER 61440
|
|
#define DP_DSC_MIN_SUPPORTED_BPC 8
|
|
#define DP_DSC_MAX_SUPPORTED_BPC 10
|
|
|
|
/* DP DSC throughput values used for slice count calculations KPixels/s */
|
|
#define DP_DSC_PEAK_PIXEL_RATE 2720000
|
|
#define DP_DSC_MAX_ENC_THROUGHPUT_0 340000
|
|
#define DP_DSC_MAX_ENC_THROUGHPUT_1 400000
|
|
|
|
/* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
|
|
#define DP_DSC_FEC_OVERHEAD_FACTOR 976
|
|
|
|
/* Compliance test status bits */
|
|
#define INTEL_DP_RESOLUTION_SHIFT_MASK 0
|
|
#define INTEL_DP_RESOLUTION_PREFERRED (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
|
|
#define INTEL_DP_RESOLUTION_STANDARD (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
|
|
#define INTEL_DP_RESOLUTION_FAILSAFE (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
|
|
|
|
struct dp_link_dpll {
|
|
int clock;
|
|
struct dpll dpll;
|
|
};
|
|
|
|
static const struct dp_link_dpll g4x_dpll[] = {
|
|
{ 162000,
|
|
{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
|
|
{ 270000,
|
|
{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
|
|
};
|
|
|
|
static const struct dp_link_dpll pch_dpll[] = {
|
|
{ 162000,
|
|
{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
|
|
{ 270000,
|
|
{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
|
|
};
|
|
|
|
static const struct dp_link_dpll vlv_dpll[] = {
|
|
{ 162000,
|
|
{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
|
|
{ 270000,
|
|
{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
|
|
};
|
|
|
|
/*
|
|
* CHV supports eDP 1.4 that have more link rates.
|
|
* Below only provides the fixed rate but exclude variable rate.
|
|
*/
|
|
static const struct dp_link_dpll chv_dpll[] = {
|
|
/*
|
|
* CHV requires to program fractional division for m2.
|
|
* m2 is stored in fixed point format using formula below
|
|
* (m2_int << 22) | m2_fraction
|
|
*/
|
|
{ 162000, /* m2_int = 32, m2_fraction = 1677722 */
|
|
{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
|
|
{ 270000, /* m2_int = 27, m2_fraction = 0 */
|
|
{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
|
|
};
|
|
|
|
/* Constants for DP DSC configurations */
|
|
static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
|
|
|
|
/* With Single pipe configuration, HW is capable of supporting maximum
|
|
* of 4 slices per line.
|
|
*/
|
|
static const u8 valid_dsc_slicecount[] = {1, 2, 4};
|
|
|
|
/**
|
|
* intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
|
|
* @intel_dp: DP struct
|
|
*
|
|
* If a CPU or PCH DP output is attached to an eDP panel, this function
|
|
* will return true, and false otherwise.
|
|
*/
|
|
bool intel_dp_is_edp(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
|
|
return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
|
|
}
|
|
|
|
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
|
|
{
|
|
return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
|
|
}
|
|
|
|
static void intel_dp_link_down(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *old_crtc_state);
|
|
static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
|
|
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
|
|
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state);
|
|
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe);
|
|
static void intel_dp_unset_edid(struct intel_dp *intel_dp);
|
|
|
|
/* update sink rates from dpcd */
|
|
static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
|
|
{
|
|
static const int dp_rates[] = {
|
|
162000, 270000, 540000, 810000
|
|
};
|
|
int i, max_rate;
|
|
|
|
max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
|
|
if (dp_rates[i] > max_rate)
|
|
break;
|
|
intel_dp->sink_rates[i] = dp_rates[i];
|
|
}
|
|
|
|
intel_dp->num_sink_rates = i;
|
|
}
|
|
|
|
/* Get length of rates array potentially limited by max_rate. */
|
|
static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
|
|
{
|
|
int i;
|
|
|
|
/* Limit results by potentially reduced max rate */
|
|
for (i = 0; i < len; i++) {
|
|
if (rates[len - i - 1] <= max_rate)
|
|
return len - i;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Get length of common rates array potentially limited by max_rate. */
|
|
static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
|
|
int max_rate)
|
|
{
|
|
return intel_dp_rate_limit_len(intel_dp->common_rates,
|
|
intel_dp->num_common_rates, max_rate);
|
|
}
|
|
|
|
/* Theoretical max between source and sink */
|
|
static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
|
|
{
|
|
return intel_dp->common_rates[intel_dp->num_common_rates - 1];
|
|
}
|
|
|
|
static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
|
|
u32 lane_info;
|
|
|
|
if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
|
|
return 4;
|
|
|
|
lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
|
|
DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
|
|
DP_LANE_ASSIGNMENT_SHIFT(tc_port);
|
|
|
|
switch (lane_info) {
|
|
default:
|
|
MISSING_CASE(lane_info);
|
|
case 1:
|
|
case 2:
|
|
case 4:
|
|
case 8:
|
|
return 1;
|
|
case 3:
|
|
case 12:
|
|
return 2;
|
|
case 15:
|
|
return 4;
|
|
}
|
|
}
|
|
|
|
/* Theoretical max between source and sink */
|
|
static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
int source_max = intel_dig_port->max_lanes;
|
|
int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
|
|
int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
|
|
|
|
return min3(source_max, sink_max, fia_max);
|
|
}
|
|
|
|
int intel_dp_max_lane_count(struct intel_dp *intel_dp)
|
|
{
|
|
return intel_dp->max_link_lane_count;
|
|
}
|
|
|
|
int
|
|
intel_dp_link_required(int pixel_clock, int bpp)
|
|
{
|
|
/* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
|
|
return DIV_ROUND_UP(pixel_clock * bpp, 8);
|
|
}
|
|
|
|
int
|
|
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
|
|
{
|
|
/* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
|
|
* link rate that is generally expressed in Gbps. Since, 8 bits of data
|
|
* is transmitted every LS_Clk per lane, there is no need to account for
|
|
* the channel encoding that is done in the PHY layer here.
|
|
*/
|
|
|
|
return max_link_clock * max_lanes;
|
|
}
|
|
|
|
static int
|
|
intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *encoder = &intel_dig_port->base;
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
int max_dotclk = dev_priv->max_dotclk_freq;
|
|
int ds_max_dotclk;
|
|
|
|
int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
|
|
|
|
if (type != DP_DS_PORT_TYPE_VGA)
|
|
return max_dotclk;
|
|
|
|
ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
|
|
intel_dp->downstream_ports);
|
|
|
|
if (ds_max_dotclk != 0)
|
|
max_dotclk = min(max_dotclk, ds_max_dotclk);
|
|
|
|
return max_dotclk;
|
|
}
|
|
|
|
static int cnl_max_source_rate(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
enum port port = dig_port->base.port;
|
|
|
|
u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
|
|
|
|
/* Low voltage SKUs are limited to max of 5.4G */
|
|
if (voltage == VOLTAGE_INFO_0_85V)
|
|
return 540000;
|
|
|
|
/* For this SKU 8.1G is supported in all ports */
|
|
if (IS_CNL_WITH_PORT_F(dev_priv))
|
|
return 810000;
|
|
|
|
/* For other SKUs, max rate on ports A and D is 5.4G */
|
|
if (port == PORT_A || port == PORT_D)
|
|
return 540000;
|
|
|
|
return 810000;
|
|
}
|
|
|
|
static int icl_max_source_rate(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
enum port port = dig_port->base.port;
|
|
|
|
if (intel_port_is_combophy(dev_priv, port) &&
|
|
!intel_dp_is_edp(intel_dp))
|
|
return 540000;
|
|
|
|
return 810000;
|
|
}
|
|
|
|
static void
|
|
intel_dp_set_source_rates(struct intel_dp *intel_dp)
|
|
{
|
|
/* The values must be in increasing order */
|
|
static const int cnl_rates[] = {
|
|
162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
|
|
};
|
|
static const int bxt_rates[] = {
|
|
162000, 216000, 243000, 270000, 324000, 432000, 540000
|
|
};
|
|
static const int skl_rates[] = {
|
|
162000, 216000, 270000, 324000, 432000, 540000
|
|
};
|
|
static const int hsw_rates[] = {
|
|
162000, 270000, 540000
|
|
};
|
|
static const int g4x_rates[] = {
|
|
162000, 270000
|
|
};
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
const struct ddi_vbt_port_info *info =
|
|
&dev_priv->vbt.ddi_port_info[dig_port->base.port];
|
|
const int *source_rates;
|
|
int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
|
|
|
|
/* This should only be done once */
|
|
WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 10) {
|
|
source_rates = cnl_rates;
|
|
size = ARRAY_SIZE(cnl_rates);
|
|
if (IS_GEN(dev_priv, 10))
|
|
max_rate = cnl_max_source_rate(intel_dp);
|
|
else
|
|
max_rate = icl_max_source_rate(intel_dp);
|
|
} else if (IS_GEN9_LP(dev_priv)) {
|
|
source_rates = bxt_rates;
|
|
size = ARRAY_SIZE(bxt_rates);
|
|
} else if (IS_GEN9_BC(dev_priv)) {
|
|
source_rates = skl_rates;
|
|
size = ARRAY_SIZE(skl_rates);
|
|
} else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
|
|
IS_BROADWELL(dev_priv)) {
|
|
source_rates = hsw_rates;
|
|
size = ARRAY_SIZE(hsw_rates);
|
|
} else {
|
|
source_rates = g4x_rates;
|
|
size = ARRAY_SIZE(g4x_rates);
|
|
}
|
|
|
|
if (max_rate && vbt_max_rate)
|
|
max_rate = min(max_rate, vbt_max_rate);
|
|
else if (vbt_max_rate)
|
|
max_rate = vbt_max_rate;
|
|
|
|
if (max_rate)
|
|
size = intel_dp_rate_limit_len(source_rates, size, max_rate);
|
|
|
|
intel_dp->source_rates = source_rates;
|
|
intel_dp->num_source_rates = size;
|
|
}
|
|
|
|
static int intersect_rates(const int *source_rates, int source_len,
|
|
const int *sink_rates, int sink_len,
|
|
int *common_rates)
|
|
{
|
|
int i = 0, j = 0, k = 0;
|
|
|
|
while (i < source_len && j < sink_len) {
|
|
if (source_rates[i] == sink_rates[j]) {
|
|
if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
|
|
return k;
|
|
common_rates[k] = source_rates[i];
|
|
++k;
|
|
++i;
|
|
++j;
|
|
} else if (source_rates[i] < sink_rates[j]) {
|
|
++i;
|
|
} else {
|
|
++j;
|
|
}
|
|
}
|
|
return k;
|
|
}
|
|
|
|
/* return index of rate in rates array, or -1 if not found */
|
|
static int intel_dp_rate_index(const int *rates, int len, int rate)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
if (rate == rates[i])
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
|
|
{
|
|
WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
|
|
|
|
intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
|
|
intel_dp->num_source_rates,
|
|
intel_dp->sink_rates,
|
|
intel_dp->num_sink_rates,
|
|
intel_dp->common_rates);
|
|
|
|
/* Paranoia, there should always be something in common. */
|
|
if (WARN_ON(intel_dp->num_common_rates == 0)) {
|
|
intel_dp->common_rates[0] = 162000;
|
|
intel_dp->num_common_rates = 1;
|
|
}
|
|
}
|
|
|
|
static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
|
|
u8 lane_count)
|
|
{
|
|
/*
|
|
* FIXME: we need to synchronize the current link parameters with
|
|
* hardware readout. Currently fast link training doesn't work on
|
|
* boot-up.
|
|
*/
|
|
if (link_rate == 0 ||
|
|
link_rate > intel_dp->max_link_rate)
|
|
return false;
|
|
|
|
if (lane_count == 0 ||
|
|
lane_count > intel_dp_max_lane_count(intel_dp))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
|
|
int link_rate,
|
|
u8 lane_count)
|
|
{
|
|
const struct drm_display_mode *fixed_mode =
|
|
intel_dp->attached_connector->panel.fixed_mode;
|
|
int mode_rate, max_rate;
|
|
|
|
mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
|
|
max_rate = intel_dp_max_data_rate(link_rate, lane_count);
|
|
if (mode_rate > max_rate)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
|
|
int link_rate, u8 lane_count)
|
|
{
|
|
int index;
|
|
|
|
index = intel_dp_rate_index(intel_dp->common_rates,
|
|
intel_dp->num_common_rates,
|
|
link_rate);
|
|
if (index > 0) {
|
|
if (intel_dp_is_edp(intel_dp) &&
|
|
!intel_dp_can_link_train_fallback_for_edp(intel_dp,
|
|
intel_dp->common_rates[index - 1],
|
|
lane_count)) {
|
|
DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
|
|
return 0;
|
|
}
|
|
intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
|
|
intel_dp->max_link_lane_count = lane_count;
|
|
} else if (lane_count > 1) {
|
|
if (intel_dp_is_edp(intel_dp) &&
|
|
!intel_dp_can_link_train_fallback_for_edp(intel_dp,
|
|
intel_dp_max_common_rate(intel_dp),
|
|
lane_count >> 1)) {
|
|
DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
|
|
return 0;
|
|
}
|
|
intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
|
|
intel_dp->max_link_lane_count = lane_count >> 1;
|
|
} else {
|
|
DRM_ERROR("Link Training Unsuccessful\n");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum drm_mode_status
|
|
intel_dp_mode_valid(struct drm_connector *connector,
|
|
struct drm_display_mode *mode)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
|
|
struct drm_i915_private *dev_priv = to_i915(connector->dev);
|
|
int target_clock = mode->clock;
|
|
int max_rate, mode_rate, max_lanes, max_link_clock;
|
|
int max_dotclk;
|
|
u16 dsc_max_output_bpp = 0;
|
|
u8 dsc_slice_count = 0;
|
|
|
|
if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
|
|
return MODE_NO_DBLESCAN;
|
|
|
|
max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
|
|
|
|
if (intel_dp_is_edp(intel_dp) && fixed_mode) {
|
|
if (mode->hdisplay > fixed_mode->hdisplay)
|
|
return MODE_PANEL;
|
|
|
|
if (mode->vdisplay > fixed_mode->vdisplay)
|
|
return MODE_PANEL;
|
|
|
|
target_clock = fixed_mode->clock;
|
|
}
|
|
|
|
max_link_clock = intel_dp_max_link_rate(intel_dp);
|
|
max_lanes = intel_dp_max_lane_count(intel_dp);
|
|
|
|
max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
|
|
mode_rate = intel_dp_link_required(target_clock, 18);
|
|
|
|
/*
|
|
* Output bpp is stored in 6.4 format so right shift by 4 to get the
|
|
* integer value since we support only integer values of bpp.
|
|
*/
|
|
if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
|
|
drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
|
|
if (intel_dp_is_edp(intel_dp)) {
|
|
dsc_max_output_bpp =
|
|
drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
|
|
dsc_slice_count =
|
|
drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
|
|
true);
|
|
} else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
|
|
dsc_max_output_bpp =
|
|
intel_dp_dsc_get_output_bpp(max_link_clock,
|
|
max_lanes,
|
|
target_clock,
|
|
mode->hdisplay) >> 4;
|
|
dsc_slice_count =
|
|
intel_dp_dsc_get_slice_count(intel_dp,
|
|
target_clock,
|
|
mode->hdisplay);
|
|
}
|
|
}
|
|
|
|
if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
|
|
target_clock > max_dotclk)
|
|
return MODE_CLOCK_HIGH;
|
|
|
|
if (mode->clock < 10000)
|
|
return MODE_CLOCK_LOW;
|
|
|
|
if (mode->flags & DRM_MODE_FLAG_DBLCLK)
|
|
return MODE_H_ILLEGAL;
|
|
|
|
return MODE_OK;
|
|
}
|
|
|
|
u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
|
|
{
|
|
int i;
|
|
u32 v = 0;
|
|
|
|
if (src_bytes > 4)
|
|
src_bytes = 4;
|
|
for (i = 0; i < src_bytes; i++)
|
|
v |= ((u32)src[i]) << ((3 - i) * 8);
|
|
return v;
|
|
}
|
|
|
|
static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
|
|
{
|
|
int i;
|
|
if (dst_bytes > 4)
|
|
dst_bytes = 4;
|
|
for (i = 0; i < dst_bytes; i++)
|
|
dst[i] = src >> ((3-i) * 8);
|
|
}
|
|
|
|
static void
|
|
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
|
|
static void
|
|
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
|
|
bool force_disable_vdd);
|
|
static void
|
|
intel_dp_pps_init(struct intel_dp *intel_dp);
|
|
|
|
static intel_wakeref_t
|
|
pps_lock(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
intel_wakeref_t wakeref;
|
|
|
|
/*
|
|
* See intel_power_sequencer_reset() why we need
|
|
* a power domain reference here.
|
|
*/
|
|
wakeref = intel_display_power_get(dev_priv,
|
|
intel_aux_power_domain(dp_to_dig_port(intel_dp)));
|
|
|
|
mutex_lock(&dev_priv->pps_mutex);
|
|
|
|
return wakeref;
|
|
}
|
|
|
|
static intel_wakeref_t
|
|
pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
mutex_unlock(&dev_priv->pps_mutex);
|
|
intel_display_power_put(dev_priv,
|
|
intel_aux_power_domain(dp_to_dig_port(intel_dp)),
|
|
wakeref);
|
|
return 0;
|
|
}
|
|
|
|
#define with_pps_lock(dp, wf) \
|
|
for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
|
|
|
|
static void
|
|
vlv_power_sequencer_kick(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
enum pipe pipe = intel_dp->pps_pipe;
|
|
bool pll_enabled, release_cl_override = false;
|
|
enum dpio_phy phy = DPIO_PHY(pipe);
|
|
enum dpio_channel ch = vlv_pipe_to_channel(pipe);
|
|
u32 DP;
|
|
|
|
if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
|
|
"skipping pipe %c power sequencer kick due to port %c being active\n",
|
|
pipe_name(pipe), port_name(intel_dig_port->base.port)))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
|
|
pipe_name(pipe), port_name(intel_dig_port->base.port));
|
|
|
|
/* Preserve the BIOS-computed detected bit. This is
|
|
* supposed to be read-only.
|
|
*/
|
|
DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
|
|
DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
|
|
DP |= DP_PORT_WIDTH(1);
|
|
DP |= DP_LINK_TRAIN_PAT_1;
|
|
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
DP |= DP_PIPE_SEL_CHV(pipe);
|
|
else
|
|
DP |= DP_PIPE_SEL(pipe);
|
|
|
|
pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
|
|
|
|
/*
|
|
* The DPLL for the pipe must be enabled for this to work.
|
|
* So enable temporarily it if it's not already enabled.
|
|
*/
|
|
if (!pll_enabled) {
|
|
release_cl_override = IS_CHERRYVIEW(dev_priv) &&
|
|
!chv_phy_powergate_ch(dev_priv, phy, ch, true);
|
|
|
|
if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
|
|
&chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
|
|
DRM_ERROR("Failed to force on pll for pipe %c!\n",
|
|
pipe_name(pipe));
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Similar magic as in intel_dp_enable_port().
|
|
* We _must_ do this port enable + disable trick
|
|
* to make this power sequencer lock onto the port.
|
|
* Otherwise even VDD force bit won't work.
|
|
*/
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
if (!pll_enabled) {
|
|
vlv_force_pll_off(dev_priv, pipe);
|
|
|
|
if (release_cl_override)
|
|
chv_phy_powergate_ch(dev_priv, phy, ch, false);
|
|
}
|
|
}
|
|
|
|
static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
|
|
|
|
/*
|
|
* We don't have power sequencer currently.
|
|
* Pick one that's not used by other ports.
|
|
*/
|
|
for_each_intel_dp(&dev_priv->drm, encoder) {
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
|
|
if (encoder->type == INTEL_OUTPUT_EDP) {
|
|
WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
|
|
intel_dp->active_pipe != intel_dp->pps_pipe);
|
|
|
|
if (intel_dp->pps_pipe != INVALID_PIPE)
|
|
pipes &= ~(1 << intel_dp->pps_pipe);
|
|
} else {
|
|
WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
|
|
|
|
if (intel_dp->active_pipe != INVALID_PIPE)
|
|
pipes &= ~(1 << intel_dp->active_pipe);
|
|
}
|
|
}
|
|
|
|
if (pipes == 0)
|
|
return INVALID_PIPE;
|
|
|
|
return ffs(pipes) - 1;
|
|
}
|
|
|
|
static enum pipe
|
|
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
enum pipe pipe;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
/* We should never land here with regular DP ports */
|
|
WARN_ON(!intel_dp_is_edp(intel_dp));
|
|
|
|
WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
|
|
intel_dp->active_pipe != intel_dp->pps_pipe);
|
|
|
|
if (intel_dp->pps_pipe != INVALID_PIPE)
|
|
return intel_dp->pps_pipe;
|
|
|
|
pipe = vlv_find_free_pps(dev_priv);
|
|
|
|
/*
|
|
* Didn't find one. This should not happen since there
|
|
* are two power sequencers and up to two eDP ports.
|
|
*/
|
|
if (WARN_ON(pipe == INVALID_PIPE))
|
|
pipe = PIPE_A;
|
|
|
|
vlv_steal_power_sequencer(dev_priv, pipe);
|
|
intel_dp->pps_pipe = pipe;
|
|
|
|
DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
|
|
pipe_name(intel_dp->pps_pipe),
|
|
port_name(intel_dig_port->base.port));
|
|
|
|
/* init power sequencer on this pipe and port */
|
|
intel_dp_init_panel_power_sequencer(intel_dp);
|
|
intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
|
|
|
|
/*
|
|
* Even vdd force doesn't work until we've made
|
|
* the power sequencer lock in on the port.
|
|
*/
|
|
vlv_power_sequencer_kick(intel_dp);
|
|
|
|
return intel_dp->pps_pipe;
|
|
}
|
|
|
|
static int
|
|
bxt_power_sequencer_idx(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
int backlight_controller = dev_priv->vbt.backlight.controller;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
/* We should never land here with regular DP ports */
|
|
WARN_ON(!intel_dp_is_edp(intel_dp));
|
|
|
|
if (!intel_dp->pps_reset)
|
|
return backlight_controller;
|
|
|
|
intel_dp->pps_reset = false;
|
|
|
|
/*
|
|
* Only the HW needs to be reprogrammed, the SW state is fixed and
|
|
* has been setup during connector init.
|
|
*/
|
|
intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
|
|
|
|
return backlight_controller;
|
|
}
|
|
|
|
typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe);
|
|
|
|
static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
return I915_READ(PP_STATUS(pipe)) & PP_ON;
|
|
}
|
|
|
|
static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
|
|
}
|
|
|
|
static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static enum pipe
|
|
vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
|
|
enum port port,
|
|
vlv_pipe_check pipe_check)
|
|
{
|
|
enum pipe pipe;
|
|
|
|
for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
|
|
u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
|
|
PANEL_PORT_SELECT_MASK;
|
|
|
|
if (port_sel != PANEL_PORT_SELECT_VLV(port))
|
|
continue;
|
|
|
|
if (!pipe_check(dev_priv, pipe))
|
|
continue;
|
|
|
|
return pipe;
|
|
}
|
|
|
|
return INVALID_PIPE;
|
|
}
|
|
|
|
static void
|
|
vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
enum port port = intel_dig_port->base.port;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
/* try to find a pipe with this port selected */
|
|
/* first pick one where the panel is on */
|
|
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
|
|
vlv_pipe_has_pp_on);
|
|
/* didn't find one? pick one where vdd is on */
|
|
if (intel_dp->pps_pipe == INVALID_PIPE)
|
|
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
|
|
vlv_pipe_has_vdd_on);
|
|
/* didn't find one? pick one with just the correct port */
|
|
if (intel_dp->pps_pipe == INVALID_PIPE)
|
|
intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
|
|
vlv_pipe_any);
|
|
|
|
/* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
|
|
if (intel_dp->pps_pipe == INVALID_PIPE) {
|
|
DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
|
|
port_name(port));
|
|
return;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
|
|
port_name(port), pipe_name(intel_dp->pps_pipe));
|
|
|
|
intel_dp_init_panel_power_sequencer(intel_dp);
|
|
intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
|
|
}
|
|
|
|
void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
|
|
if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
|
|
!IS_GEN9_LP(dev_priv)))
|
|
return;
|
|
|
|
/*
|
|
* We can't grab pps_mutex here due to deadlock with power_domain
|
|
* mutex when power_domain functions are called while holding pps_mutex.
|
|
* That also means that in order to use pps_pipe the code needs to
|
|
* hold both a power domain reference and pps_mutex, and the power domain
|
|
* reference get/put must be done while _not_ holding pps_mutex.
|
|
* pps_{lock,unlock}() do these steps in the correct order, so one
|
|
* should use them always.
|
|
*/
|
|
|
|
for_each_intel_dp(&dev_priv->drm, encoder) {
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
|
|
WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
|
|
|
|
if (encoder->type != INTEL_OUTPUT_EDP)
|
|
continue;
|
|
|
|
if (IS_GEN9_LP(dev_priv))
|
|
intel_dp->pps_reset = true;
|
|
else
|
|
intel_dp->pps_pipe = INVALID_PIPE;
|
|
}
|
|
}
|
|
|
|
struct pps_registers {
|
|
i915_reg_t pp_ctrl;
|
|
i915_reg_t pp_stat;
|
|
i915_reg_t pp_on;
|
|
i915_reg_t pp_off;
|
|
i915_reg_t pp_div;
|
|
};
|
|
|
|
static void intel_pps_get_registers(struct intel_dp *intel_dp,
|
|
struct pps_registers *regs)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
int pps_idx = 0;
|
|
|
|
memset(regs, 0, sizeof(*regs));
|
|
|
|
if (IS_GEN9_LP(dev_priv))
|
|
pps_idx = bxt_power_sequencer_idx(intel_dp);
|
|
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
pps_idx = vlv_power_sequencer_pipe(intel_dp);
|
|
|
|
regs->pp_ctrl = PP_CONTROL(pps_idx);
|
|
regs->pp_stat = PP_STATUS(pps_idx);
|
|
regs->pp_on = PP_ON_DELAYS(pps_idx);
|
|
regs->pp_off = PP_OFF_DELAYS(pps_idx);
|
|
if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
|
|
!HAS_PCH_ICP(dev_priv))
|
|
regs->pp_div = PP_DIVISOR(pps_idx);
|
|
}
|
|
|
|
static i915_reg_t
|
|
_pp_ctrl_reg(struct intel_dp *intel_dp)
|
|
{
|
|
struct pps_registers regs;
|
|
|
|
intel_pps_get_registers(intel_dp, ®s);
|
|
|
|
return regs.pp_ctrl;
|
|
}
|
|
|
|
static i915_reg_t
|
|
_pp_stat_reg(struct intel_dp *intel_dp)
|
|
{
|
|
struct pps_registers regs;
|
|
|
|
intel_pps_get_registers(intel_dp, ®s);
|
|
|
|
return regs.pp_stat;
|
|
}
|
|
|
|
/* Reboot notifier handler to shutdown panel power to guarantee T12 timing
|
|
This function only applicable when panel PM state is not to be tracked */
|
|
static int edp_notify_handler(struct notifier_block *this, unsigned long code,
|
|
void *unused)
|
|
{
|
|
struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
|
|
edp_notifier);
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
|
|
return 0;
|
|
|
|
with_pps_lock(intel_dp, wakeref) {
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
|
|
i915_reg_t pp_ctrl_reg, pp_div_reg;
|
|
u32 pp_div;
|
|
|
|
pp_ctrl_reg = PP_CONTROL(pipe);
|
|
pp_div_reg = PP_DIVISOR(pipe);
|
|
pp_div = I915_READ(pp_div_reg);
|
|
pp_div &= PP_REFERENCE_DIVIDER_MASK;
|
|
|
|
/* 0x1F write to PP_DIV_REG sets max cycle delay */
|
|
I915_WRITE(pp_div_reg, pp_div | 0x1F);
|
|
I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
|
|
msleep(intel_dp->panel_power_cycle_delay);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool edp_have_panel_power(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
|
|
intel_dp->pps_pipe == INVALID_PIPE)
|
|
return false;
|
|
|
|
return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
|
|
}
|
|
|
|
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
|
|
intel_dp->pps_pipe == INVALID_PIPE)
|
|
return false;
|
|
|
|
return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
|
|
}
|
|
|
|
static void
|
|
intel_dp_check_edp(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
|
|
WARN(1, "eDP powered off while attempting aux channel communication.\n");
|
|
DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
|
|
I915_READ(_pp_stat_reg(intel_dp)),
|
|
I915_READ(_pp_ctrl_reg(intel_dp)));
|
|
}
|
|
}
|
|
|
|
static u32
|
|
intel_dp_aux_wait_done(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
|
|
u32 status;
|
|
bool done;
|
|
|
|
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
|
|
done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
|
|
msecs_to_jiffies_timeout(10));
|
|
|
|
/* just trace the final value */
|
|
trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
|
|
|
|
if (!done)
|
|
DRM_ERROR("dp aux hw did not signal timeout!\n");
|
|
#undef C
|
|
|
|
return status;
|
|
}
|
|
|
|
static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
if (index)
|
|
return 0;
|
|
|
|
/*
|
|
* The clock divider is based off the hrawclk, and would like to run at
|
|
* 2MHz. So, take the hrawclk value and divide by 2000 and use that
|
|
*/
|
|
return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
|
|
}
|
|
|
|
static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
|
|
if (index)
|
|
return 0;
|
|
|
|
/*
|
|
* The clock divider is based off the cdclk or PCH rawclk, and would
|
|
* like to run at 2MHz. So, take the cdclk or PCH rawclk value and
|
|
* divide by 2000 and use that
|
|
*/
|
|
if (dig_port->aux_ch == AUX_CH_A)
|
|
return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
|
|
else
|
|
return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
|
|
}
|
|
|
|
static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
|
|
if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
|
|
/* Workaround for non-ULT HSW */
|
|
switch (index) {
|
|
case 0: return 63;
|
|
case 1: return 72;
|
|
default: return 0;
|
|
}
|
|
}
|
|
|
|
return ilk_get_aux_clock_divider(intel_dp, index);
|
|
}
|
|
|
|
static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
|
|
{
|
|
/*
|
|
* SKL doesn't need us to program the AUX clock divider (Hardware will
|
|
* derive the clock from CDCLK automatically). We still implement the
|
|
* get_aux_clock_divider vfunc to plug-in into the existing code.
|
|
*/
|
|
return index ? 0 : 1;
|
|
}
|
|
|
|
static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
|
|
int send_bytes,
|
|
u32 aux_clock_divider)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv =
|
|
to_i915(intel_dig_port->base.base.dev);
|
|
u32 precharge, timeout;
|
|
|
|
if (IS_GEN(dev_priv, 6))
|
|
precharge = 3;
|
|
else
|
|
precharge = 5;
|
|
|
|
if (IS_BROADWELL(dev_priv))
|
|
timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
|
|
else
|
|
timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
|
|
|
|
return DP_AUX_CH_CTL_SEND_BUSY |
|
|
DP_AUX_CH_CTL_DONE |
|
|
DP_AUX_CH_CTL_INTERRUPT |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
timeout |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR |
|
|
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
|
|
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
|
|
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
|
|
}
|
|
|
|
static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
|
|
int send_bytes,
|
|
u32 unused)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
u32 ret;
|
|
|
|
ret = DP_AUX_CH_CTL_SEND_BUSY |
|
|
DP_AUX_CH_CTL_DONE |
|
|
DP_AUX_CH_CTL_INTERRUPT |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_TIME_OUT_MAX |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR |
|
|
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
|
|
DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
|
|
DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
|
|
|
|
if (intel_dig_port->tc_type == TC_PORT_TBT)
|
|
ret |= DP_AUX_CH_CTL_TBT_IO;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
intel_dp_aux_xfer(struct intel_dp *intel_dp,
|
|
const u8 *send, int send_bytes,
|
|
u8 *recv, int recv_size,
|
|
u32 aux_send_ctl_flags)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv =
|
|
to_i915(intel_dig_port->base.base.dev);
|
|
i915_reg_t ch_ctl, ch_data[5];
|
|
u32 aux_clock_divider;
|
|
intel_wakeref_t wakeref;
|
|
int i, ret, recv_bytes;
|
|
int try, clock = 0;
|
|
u32 status;
|
|
bool vdd;
|
|
|
|
ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
|
|
for (i = 0; i < ARRAY_SIZE(ch_data); i++)
|
|
ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
|
|
|
|
wakeref = pps_lock(intel_dp);
|
|
|
|
/*
|
|
* We will be called with VDD already enabled for dpcd/edid/oui reads.
|
|
* In such cases we want to leave VDD enabled and it's up to upper layers
|
|
* to turn it off. But for eg. i2c-dev access we need to turn it on/off
|
|
* ourselves.
|
|
*/
|
|
vdd = edp_panel_vdd_on(intel_dp);
|
|
|
|
/* dp aux is extremely sensitive to irq latency, hence request the
|
|
* lowest possible wakeup latency and so prevent the cpu from going into
|
|
* deep sleep states.
|
|
*/
|
|
pm_qos_update_request(&dev_priv->pm_qos, 0);
|
|
|
|
intel_dp_check_edp(intel_dp);
|
|
|
|
/* Try to wait for any previous AUX channel activity */
|
|
for (try = 0; try < 3; try++) {
|
|
status = I915_READ_NOTRACE(ch_ctl);
|
|
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
/* just trace the final value */
|
|
trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
|
|
|
|
if (try == 3) {
|
|
static u32 last_status = -1;
|
|
const u32 status = I915_READ(ch_ctl);
|
|
|
|
if (status != last_status) {
|
|
WARN(1, "dp_aux_ch not started status 0x%08x\n",
|
|
status);
|
|
last_status = status;
|
|
}
|
|
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
/* Only 5 data registers! */
|
|
if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
|
|
ret = -E2BIG;
|
|
goto out;
|
|
}
|
|
|
|
while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
|
|
u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
|
|
send_bytes,
|
|
aux_clock_divider);
|
|
|
|
send_ctl |= aux_send_ctl_flags;
|
|
|
|
/* Must try at least 3 times according to DP spec */
|
|
for (try = 0; try < 5; try++) {
|
|
/* Load the send data into the aux channel data registers */
|
|
for (i = 0; i < send_bytes; i += 4)
|
|
I915_WRITE(ch_data[i >> 2],
|
|
intel_dp_pack_aux(send + i,
|
|
send_bytes - i));
|
|
|
|
/* Send the command and wait for it to complete */
|
|
I915_WRITE(ch_ctl, send_ctl);
|
|
|
|
status = intel_dp_aux_wait_done(intel_dp);
|
|
|
|
/* Clear done status and any errors */
|
|
I915_WRITE(ch_ctl,
|
|
status |
|
|
DP_AUX_CH_CTL_DONE |
|
|
DP_AUX_CH_CTL_TIME_OUT_ERROR |
|
|
DP_AUX_CH_CTL_RECEIVE_ERROR);
|
|
|
|
/* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
|
|
* 400us delay required for errors and timeouts
|
|
* Timeout errors from the HW already meet this
|
|
* requirement so skip to next iteration
|
|
*/
|
|
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
|
|
continue;
|
|
|
|
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
|
|
usleep_range(400, 500);
|
|
continue;
|
|
}
|
|
if (status & DP_AUX_CH_CTL_DONE)
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
|
|
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
done:
|
|
/* Check for timeout or receive error.
|
|
* Timeouts occur when the sink is not connected
|
|
*/
|
|
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
|
|
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
|
|
ret = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
/* Timeouts occur when the device isn't connected, so they're
|
|
* "normal" -- don't fill the kernel log with these */
|
|
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
|
|
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
|
|
ret = -ETIMEDOUT;
|
|
goto out;
|
|
}
|
|
|
|
/* Unload any bytes sent back from the other side */
|
|
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
|
|
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
|
|
|
|
/*
|
|
* By BSpec: "Message sizes of 0 or >20 are not allowed."
|
|
* We have no idea of what happened so we return -EBUSY so
|
|
* drm layer takes care for the necessary retries.
|
|
*/
|
|
if (recv_bytes == 0 || recv_bytes > 20) {
|
|
DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
|
|
recv_bytes);
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
if (recv_bytes > recv_size)
|
|
recv_bytes = recv_size;
|
|
|
|
for (i = 0; i < recv_bytes; i += 4)
|
|
intel_dp_unpack_aux(I915_READ(ch_data[i >> 2]),
|
|
recv + i, recv_bytes - i);
|
|
|
|
ret = recv_bytes;
|
|
out:
|
|
pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
|
|
|
|
if (vdd)
|
|
edp_panel_vdd_off(intel_dp, false);
|
|
|
|
pps_unlock(intel_dp, wakeref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define BARE_ADDRESS_SIZE 3
|
|
#define HEADER_SIZE (BARE_ADDRESS_SIZE + 1)
|
|
|
|
static void
|
|
intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
|
|
const struct drm_dp_aux_msg *msg)
|
|
{
|
|
txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
|
|
txbuf[1] = (msg->address >> 8) & 0xff;
|
|
txbuf[2] = msg->address & 0xff;
|
|
txbuf[3] = msg->size - 1;
|
|
}
|
|
|
|
static ssize_t
|
|
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
|
|
{
|
|
struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
|
|
u8 txbuf[20], rxbuf[20];
|
|
size_t txsize, rxsize;
|
|
int ret;
|
|
|
|
intel_dp_aux_header(txbuf, msg);
|
|
|
|
switch (msg->request & ~DP_AUX_I2C_MOT) {
|
|
case DP_AUX_NATIVE_WRITE:
|
|
case DP_AUX_I2C_WRITE:
|
|
case DP_AUX_I2C_WRITE_STATUS_UPDATE:
|
|
txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
|
|
rxsize = 2; /* 0 or 1 data bytes */
|
|
|
|
if (WARN_ON(txsize > 20))
|
|
return -E2BIG;
|
|
|
|
WARN_ON(!msg->buffer != !msg->size);
|
|
|
|
if (msg->buffer)
|
|
memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
|
|
|
|
ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
|
|
rxbuf, rxsize, 0);
|
|
if (ret > 0) {
|
|
msg->reply = rxbuf[0] >> 4;
|
|
|
|
if (ret > 1) {
|
|
/* Number of bytes written in a short write. */
|
|
ret = clamp_t(int, rxbuf[1], 0, msg->size);
|
|
} else {
|
|
/* Return payload size. */
|
|
ret = msg->size;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case DP_AUX_NATIVE_READ:
|
|
case DP_AUX_I2C_READ:
|
|
txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
|
|
rxsize = msg->size + 1;
|
|
|
|
if (WARN_ON(rxsize > 20))
|
|
return -E2BIG;
|
|
|
|
ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
|
|
rxbuf, rxsize, 0);
|
|
if (ret > 0) {
|
|
msg->reply = rxbuf[0] >> 4;
|
|
/*
|
|
* Assume happy day, and copy the data. The caller is
|
|
* expected to check msg->reply before touching it.
|
|
*
|
|
* Return payload size.
|
|
*/
|
|
ret--;
|
|
memcpy(msg->buffer, rxbuf + 1, ret);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
enum aux_ch aux_ch = dig_port->aux_ch;
|
|
|
|
switch (aux_ch) {
|
|
case AUX_CH_B:
|
|
case AUX_CH_C:
|
|
case AUX_CH_D:
|
|
return DP_AUX_CH_CTL(aux_ch);
|
|
default:
|
|
MISSING_CASE(aux_ch);
|
|
return DP_AUX_CH_CTL(AUX_CH_B);
|
|
}
|
|
}
|
|
|
|
static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
enum aux_ch aux_ch = dig_port->aux_ch;
|
|
|
|
switch (aux_ch) {
|
|
case AUX_CH_B:
|
|
case AUX_CH_C:
|
|
case AUX_CH_D:
|
|
return DP_AUX_CH_DATA(aux_ch, index);
|
|
default:
|
|
MISSING_CASE(aux_ch);
|
|
return DP_AUX_CH_DATA(AUX_CH_B, index);
|
|
}
|
|
}
|
|
|
|
static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
enum aux_ch aux_ch = dig_port->aux_ch;
|
|
|
|
switch (aux_ch) {
|
|
case AUX_CH_A:
|
|
return DP_AUX_CH_CTL(aux_ch);
|
|
case AUX_CH_B:
|
|
case AUX_CH_C:
|
|
case AUX_CH_D:
|
|
return PCH_DP_AUX_CH_CTL(aux_ch);
|
|
default:
|
|
MISSING_CASE(aux_ch);
|
|
return DP_AUX_CH_CTL(AUX_CH_A);
|
|
}
|
|
}
|
|
|
|
static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
enum aux_ch aux_ch = dig_port->aux_ch;
|
|
|
|
switch (aux_ch) {
|
|
case AUX_CH_A:
|
|
return DP_AUX_CH_DATA(aux_ch, index);
|
|
case AUX_CH_B:
|
|
case AUX_CH_C:
|
|
case AUX_CH_D:
|
|
return PCH_DP_AUX_CH_DATA(aux_ch, index);
|
|
default:
|
|
MISSING_CASE(aux_ch);
|
|
return DP_AUX_CH_DATA(AUX_CH_A, index);
|
|
}
|
|
}
|
|
|
|
static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
enum aux_ch aux_ch = dig_port->aux_ch;
|
|
|
|
switch (aux_ch) {
|
|
case AUX_CH_A:
|
|
case AUX_CH_B:
|
|
case AUX_CH_C:
|
|
case AUX_CH_D:
|
|
case AUX_CH_E:
|
|
case AUX_CH_F:
|
|
return DP_AUX_CH_CTL(aux_ch);
|
|
default:
|
|
MISSING_CASE(aux_ch);
|
|
return DP_AUX_CH_CTL(AUX_CH_A);
|
|
}
|
|
}
|
|
|
|
static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
enum aux_ch aux_ch = dig_port->aux_ch;
|
|
|
|
switch (aux_ch) {
|
|
case AUX_CH_A:
|
|
case AUX_CH_B:
|
|
case AUX_CH_C:
|
|
case AUX_CH_D:
|
|
case AUX_CH_E:
|
|
case AUX_CH_F:
|
|
return DP_AUX_CH_DATA(aux_ch, index);
|
|
default:
|
|
MISSING_CASE(aux_ch);
|
|
return DP_AUX_CH_DATA(AUX_CH_A, index);
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_dp_aux_fini(struct intel_dp *intel_dp)
|
|
{
|
|
kfree(intel_dp->aux.name);
|
|
}
|
|
|
|
static void
|
|
intel_dp_aux_init(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *encoder = &dig_port->base;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9) {
|
|
intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
|
|
intel_dp->aux_ch_data_reg = skl_aux_data_reg;
|
|
} else if (HAS_PCH_SPLIT(dev_priv)) {
|
|
intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
|
|
intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
|
|
} else {
|
|
intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
|
|
intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
|
|
}
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
|
|
else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
|
|
intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
|
|
else if (HAS_PCH_SPLIT(dev_priv))
|
|
intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
|
|
else
|
|
intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9)
|
|
intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
|
|
else
|
|
intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
|
|
|
|
drm_dp_aux_init(&intel_dp->aux);
|
|
|
|
/* Failure to allocate our preferred name is not critical */
|
|
intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
|
|
port_name(encoder->port));
|
|
intel_dp->aux.transfer = intel_dp_aux_transfer;
|
|
}
|
|
|
|
bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
|
|
{
|
|
int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
|
|
|
|
return max_rate >= 540000;
|
|
}
|
|
|
|
bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
|
|
{
|
|
int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
|
|
|
|
return max_rate >= 810000;
|
|
}
|
|
|
|
static void
|
|
intel_dp_set_clock(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
const struct dp_link_dpll *divisor = NULL;
|
|
int i, count = 0;
|
|
|
|
if (IS_G4X(dev_priv)) {
|
|
divisor = g4x_dpll;
|
|
count = ARRAY_SIZE(g4x_dpll);
|
|
} else if (HAS_PCH_SPLIT(dev_priv)) {
|
|
divisor = pch_dpll;
|
|
count = ARRAY_SIZE(pch_dpll);
|
|
} else if (IS_CHERRYVIEW(dev_priv)) {
|
|
divisor = chv_dpll;
|
|
count = ARRAY_SIZE(chv_dpll);
|
|
} else if (IS_VALLEYVIEW(dev_priv)) {
|
|
divisor = vlv_dpll;
|
|
count = ARRAY_SIZE(vlv_dpll);
|
|
}
|
|
|
|
if (divisor && count) {
|
|
for (i = 0; i < count; i++) {
|
|
if (pipe_config->port_clock == divisor[i].clock) {
|
|
pipe_config->dpll = divisor[i].dpll;
|
|
pipe_config->clock_set = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void snprintf_int_array(char *str, size_t len,
|
|
const int *array, int nelem)
|
|
{
|
|
int i;
|
|
|
|
str[0] = '\0';
|
|
|
|
for (i = 0; i < nelem; i++) {
|
|
int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
|
|
if (r >= len)
|
|
return;
|
|
str += r;
|
|
len -= r;
|
|
}
|
|
}
|
|
|
|
static void intel_dp_print_rates(struct intel_dp *intel_dp)
|
|
{
|
|
char str[128]; /* FIXME: too big for stack? */
|
|
|
|
if ((drm_debug & DRM_UT_KMS) == 0)
|
|
return;
|
|
|
|
snprintf_int_array(str, sizeof(str),
|
|
intel_dp->source_rates, intel_dp->num_source_rates);
|
|
DRM_DEBUG_KMS("source rates: %s\n", str);
|
|
|
|
snprintf_int_array(str, sizeof(str),
|
|
intel_dp->sink_rates, intel_dp->num_sink_rates);
|
|
DRM_DEBUG_KMS("sink rates: %s\n", str);
|
|
|
|
snprintf_int_array(str, sizeof(str),
|
|
intel_dp->common_rates, intel_dp->num_common_rates);
|
|
DRM_DEBUG_KMS("common rates: %s\n", str);
|
|
}
|
|
|
|
int
|
|
intel_dp_max_link_rate(struct intel_dp *intel_dp)
|
|
{
|
|
int len;
|
|
|
|
len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
|
|
if (WARN_ON(len <= 0))
|
|
return 162000;
|
|
|
|
return intel_dp->common_rates[len - 1];
|
|
}
|
|
|
|
int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
|
|
{
|
|
int i = intel_dp_rate_index(intel_dp->sink_rates,
|
|
intel_dp->num_sink_rates, rate);
|
|
|
|
if (WARN_ON(i < 0))
|
|
i = 0;
|
|
|
|
return i;
|
|
}
|
|
|
|
void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
|
|
u8 *link_bw, u8 *rate_select)
|
|
{
|
|
/* eDP 1.4 rate select method. */
|
|
if (intel_dp->use_rate_select) {
|
|
*link_bw = 0;
|
|
*rate_select =
|
|
intel_dp_rate_select(intel_dp, port_clock);
|
|
} else {
|
|
*link_bw = drm_dp_link_rate_to_bw_code(port_clock);
|
|
*rate_select = 0;
|
|
}
|
|
}
|
|
|
|
struct link_config_limits {
|
|
int min_clock, max_clock;
|
|
int min_lane_count, max_lane_count;
|
|
int min_bpp, max_bpp;
|
|
};
|
|
|
|
static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
return INTEL_GEN(dev_priv) >= 11 &&
|
|
pipe_config->cpu_transcoder != TRANSCODER_A;
|
|
}
|
|
|
|
static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
|
|
drm_dp_sink_supports_fec(intel_dp->fec_capable);
|
|
}
|
|
|
|
static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
return INTEL_GEN(dev_priv) >= 10 &&
|
|
pipe_config->cpu_transcoder != TRANSCODER_A;
|
|
}
|
|
|
|
static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
|
|
return false;
|
|
|
|
return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
|
|
drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
|
|
}
|
|
|
|
static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
int bpp, bpc;
|
|
|
|
bpp = pipe_config->pipe_bpp;
|
|
bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
|
|
|
|
if (bpc > 0)
|
|
bpp = min(bpp, 3*bpc);
|
|
|
|
if (intel_dp_is_edp(intel_dp)) {
|
|
/* Get bpp from vbt only for panels that dont have bpp in edid */
|
|
if (intel_connector->base.display_info.bpc == 0 &&
|
|
dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
|
|
DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
|
|
dev_priv->vbt.edp.bpp);
|
|
bpp = dev_priv->vbt.edp.bpp;
|
|
}
|
|
}
|
|
|
|
return bpp;
|
|
}
|
|
|
|
/* Adjust link config limits based on compliance test requests. */
|
|
static void
|
|
intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct link_config_limits *limits)
|
|
{
|
|
/* For DP Compliance we override the computed bpp for the pipe */
|
|
if (intel_dp->compliance.test_data.bpc != 0) {
|
|
int bpp = 3 * intel_dp->compliance.test_data.bpc;
|
|
|
|
limits->min_bpp = limits->max_bpp = bpp;
|
|
pipe_config->dither_force_disable = bpp == 6 * 3;
|
|
|
|
DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
|
|
}
|
|
|
|
/* Use values requested by Compliance Test Request */
|
|
if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
|
|
int index;
|
|
|
|
/* Validate the compliance test data since max values
|
|
* might have changed due to link train fallback.
|
|
*/
|
|
if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
|
|
intel_dp->compliance.test_lane_count)) {
|
|
index = intel_dp_rate_index(intel_dp->common_rates,
|
|
intel_dp->num_common_rates,
|
|
intel_dp->compliance.test_link_rate);
|
|
if (index >= 0)
|
|
limits->min_clock = limits->max_clock = index;
|
|
limits->min_lane_count = limits->max_lane_count =
|
|
intel_dp->compliance.test_lane_count;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Optimize link config in order: max bpp, min clock, min lanes */
|
|
static int
|
|
intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *pipe_config,
|
|
const struct link_config_limits *limits)
|
|
{
|
|
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
|
|
int bpp, clock, lane_count;
|
|
int mode_rate, link_clock, link_avail;
|
|
|
|
for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
|
|
mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
|
|
bpp);
|
|
|
|
for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
|
|
for (lane_count = limits->min_lane_count;
|
|
lane_count <= limits->max_lane_count;
|
|
lane_count <<= 1) {
|
|
link_clock = intel_dp->common_rates[clock];
|
|
link_avail = intel_dp_max_data_rate(link_clock,
|
|
lane_count);
|
|
|
|
if (mode_rate <= link_avail) {
|
|
pipe_config->lane_count = lane_count;
|
|
pipe_config->pipe_bpp = bpp;
|
|
pipe_config->port_clock = link_clock;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Optimize link config in order: max bpp, min lanes, min clock */
|
|
static int
|
|
intel_dp_compute_link_config_fast(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *pipe_config,
|
|
const struct link_config_limits *limits)
|
|
{
|
|
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
|
|
int bpp, clock, lane_count;
|
|
int mode_rate, link_clock, link_avail;
|
|
|
|
for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
|
|
mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
|
|
bpp);
|
|
|
|
for (lane_count = limits->min_lane_count;
|
|
lane_count <= limits->max_lane_count;
|
|
lane_count <<= 1) {
|
|
for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
|
|
link_clock = intel_dp->common_rates[clock];
|
|
link_avail = intel_dp_max_data_rate(link_clock,
|
|
lane_count);
|
|
|
|
if (mode_rate <= link_avail) {
|
|
pipe_config->lane_count = lane_count;
|
|
pipe_config->pipe_bpp = bpp;
|
|
pipe_config->port_clock = link_clock;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
|
|
{
|
|
int i, num_bpc;
|
|
u8 dsc_bpc[3] = {0};
|
|
|
|
num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
|
|
dsc_bpc);
|
|
for (i = 0; i < num_bpc; i++) {
|
|
if (dsc_max_bpc >= dsc_bpc[i])
|
|
return dsc_bpc[i] * 3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state,
|
|
struct link_config_limits *limits)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
|
|
u8 dsc_max_bpc;
|
|
int pipe_bpp;
|
|
int ret;
|
|
|
|
if (!intel_dp_supports_dsc(intel_dp, pipe_config))
|
|
return -EINVAL;
|
|
|
|
dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
|
|
conn_state->max_requested_bpc);
|
|
|
|
pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
|
|
if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
|
|
DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* For now enable DSC for max bpp, max link rate, max lane count.
|
|
* Optimize this later for the minimum possible link rate/lane count
|
|
* with DSC enabled for the requested mode.
|
|
*/
|
|
pipe_config->pipe_bpp = pipe_bpp;
|
|
pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
|
|
pipe_config->lane_count = limits->max_lane_count;
|
|
|
|
if (intel_dp_is_edp(intel_dp)) {
|
|
pipe_config->dsc_params.compressed_bpp =
|
|
min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
|
|
pipe_config->pipe_bpp);
|
|
pipe_config->dsc_params.slice_count =
|
|
drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
|
|
true);
|
|
} else {
|
|
u16 dsc_max_output_bpp;
|
|
u8 dsc_dp_slice_count;
|
|
|
|
dsc_max_output_bpp =
|
|
intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
|
|
pipe_config->lane_count,
|
|
adjusted_mode->crtc_clock,
|
|
adjusted_mode->crtc_hdisplay);
|
|
dsc_dp_slice_count =
|
|
intel_dp_dsc_get_slice_count(intel_dp,
|
|
adjusted_mode->crtc_clock,
|
|
adjusted_mode->crtc_hdisplay);
|
|
if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
|
|
DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
|
|
return -EINVAL;
|
|
}
|
|
pipe_config->dsc_params.compressed_bpp = min_t(u16,
|
|
dsc_max_output_bpp >> 4,
|
|
pipe_config->pipe_bpp);
|
|
pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
|
|
}
|
|
/*
|
|
* VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
|
|
* is greater than the maximum Cdclock and if slice count is even
|
|
* then we need to use 2 VDSC instances.
|
|
*/
|
|
if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
|
|
if (pipe_config->dsc_params.slice_count > 1) {
|
|
pipe_config->dsc_params.dsc_split = true;
|
|
} else {
|
|
DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
|
|
if (ret < 0) {
|
|
DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
|
|
"Compressed BPP = %d\n",
|
|
pipe_config->pipe_bpp,
|
|
pipe_config->dsc_params.compressed_bpp);
|
|
return ret;
|
|
}
|
|
|
|
pipe_config->dsc_params.compression_enable = true;
|
|
DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
|
|
"Compressed Bpp = %d Slice Count = %d\n",
|
|
pipe_config->pipe_bpp,
|
|
pipe_config->dsc_params.compressed_bpp,
|
|
pipe_config->dsc_params.slice_count);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
intel_dp_compute_link_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct link_config_limits limits;
|
|
int common_len;
|
|
int ret;
|
|
|
|
common_len = intel_dp_common_len_rate_limit(intel_dp,
|
|
intel_dp->max_link_rate);
|
|
|
|
/* No common link rates between source and sink */
|
|
WARN_ON(common_len <= 0);
|
|
|
|
limits.min_clock = 0;
|
|
limits.max_clock = common_len - 1;
|
|
|
|
limits.min_lane_count = 1;
|
|
limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
|
|
|
|
limits.min_bpp = 6 * 3;
|
|
limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
|
|
|
|
if (intel_dp_is_edp(intel_dp) && intel_dp->edp_dpcd[0] < DP_EDP_14) {
|
|
/*
|
|
* Use the maximum clock and number of lanes the eDP panel
|
|
* advertizes being capable of. The eDP 1.3 and earlier panels
|
|
* are generally designed to support only a single clock and
|
|
* lane configuration, and typically these values correspond to
|
|
* the native resolution of the panel. With eDP 1.4 rate select
|
|
* and DSC, this is decreasingly the case, and we need to be
|
|
* able to select less than maximum link config.
|
|
*/
|
|
limits.min_lane_count = limits.max_lane_count;
|
|
limits.min_clock = limits.max_clock;
|
|
}
|
|
|
|
intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
|
|
|
|
DRM_DEBUG_KMS("DP link computation with max lane count %i "
|
|
"max rate %d max bpp %d pixel clock %iKHz\n",
|
|
limits.max_lane_count,
|
|
intel_dp->common_rates[limits.max_clock],
|
|
limits.max_bpp, adjusted_mode->crtc_clock);
|
|
|
|
if (intel_dp_is_edp(intel_dp))
|
|
/*
|
|
* Optimize for fast and narrow. eDP 1.3 section 3.3 and eDP 1.4
|
|
* section A.1: "It is recommended that the minimum number of
|
|
* lanes be used, using the minimum link rate allowed for that
|
|
* lane configuration."
|
|
*
|
|
* Note that we use the max clock and lane count for eDP 1.3 and
|
|
* earlier, and fast vs. wide is irrelevant.
|
|
*/
|
|
ret = intel_dp_compute_link_config_fast(intel_dp, pipe_config,
|
|
&limits);
|
|
else
|
|
/* Optimize for slow and wide. */
|
|
ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config,
|
|
&limits);
|
|
|
|
/* enable compression if the mode doesn't fit available BW */
|
|
DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
|
|
if (ret || intel_dp->force_dsc_en) {
|
|
ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
|
|
conn_state, &limits);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
if (pipe_config->dsc_params.compression_enable) {
|
|
DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
|
|
pipe_config->lane_count, pipe_config->port_clock,
|
|
pipe_config->pipe_bpp,
|
|
pipe_config->dsc_params.compressed_bpp);
|
|
|
|
DRM_DEBUG_KMS("DP link rate required %i available %i\n",
|
|
intel_dp_link_required(adjusted_mode->crtc_clock,
|
|
pipe_config->dsc_params.compressed_bpp),
|
|
intel_dp_max_data_rate(pipe_config->port_clock,
|
|
pipe_config->lane_count));
|
|
} else {
|
|
DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
|
|
pipe_config->lane_count, pipe_config->port_clock,
|
|
pipe_config->pipe_bpp);
|
|
|
|
DRM_DEBUG_KMS("DP link rate required %i available %i\n",
|
|
intel_dp_link_required(adjusted_mode->crtc_clock,
|
|
pipe_config->pipe_bpp),
|
|
intel_dp_max_data_rate(pipe_config->port_clock,
|
|
pipe_config->lane_count));
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
intel_dp_compute_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config,
|
|
struct drm_connector_state *conn_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
|
|
enum port port = encoder->port;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
struct intel_digital_connector_state *intel_conn_state =
|
|
to_intel_digital_connector_state(conn_state);
|
|
bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
|
|
DP_DPCD_QUIRK_CONSTANT_N);
|
|
int ret;
|
|
|
|
if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
|
|
pipe_config->has_pch_encoder = true;
|
|
|
|
pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
|
|
if (lspcon->active)
|
|
lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
|
|
|
|
pipe_config->has_drrs = false;
|
|
if (IS_G4X(dev_priv) || port == PORT_A)
|
|
pipe_config->has_audio = false;
|
|
else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
|
|
pipe_config->has_audio = intel_dp->has_audio;
|
|
else
|
|
pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
|
|
|
|
if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
|
|
intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
|
|
adjusted_mode);
|
|
|
|
if (INTEL_GEN(dev_priv) >= 9) {
|
|
ret = skl_update_scaler_crtc(pipe_config);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (HAS_GMCH(dev_priv))
|
|
intel_gmch_panel_fitting(intel_crtc, pipe_config,
|
|
conn_state->scaling_mode);
|
|
else
|
|
intel_pch_panel_fitting(intel_crtc, pipe_config,
|
|
conn_state->scaling_mode);
|
|
}
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
|
|
return -EINVAL;
|
|
|
|
if (HAS_GMCH(dev_priv) &&
|
|
adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
|
|
return -EINVAL;
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
|
|
return -EINVAL;
|
|
|
|
pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
|
|
intel_dp_supports_fec(intel_dp, pipe_config);
|
|
|
|
ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
|
|
/*
|
|
* See:
|
|
* CEA-861-E - 5.1 Default Encoding Parameters
|
|
* VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
|
|
*/
|
|
pipe_config->limited_color_range =
|
|
pipe_config->pipe_bpp != 18 &&
|
|
drm_default_rgb_quant_range(adjusted_mode) ==
|
|
HDMI_QUANTIZATION_RANGE_LIMITED;
|
|
} else {
|
|
pipe_config->limited_color_range =
|
|
intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
|
|
}
|
|
|
|
if (!pipe_config->dsc_params.compression_enable)
|
|
intel_link_compute_m_n(pipe_config->pipe_bpp,
|
|
pipe_config->lane_count,
|
|
adjusted_mode->crtc_clock,
|
|
pipe_config->port_clock,
|
|
&pipe_config->dp_m_n,
|
|
constant_n);
|
|
else
|
|
intel_link_compute_m_n(pipe_config->dsc_params.compressed_bpp,
|
|
pipe_config->lane_count,
|
|
adjusted_mode->crtc_clock,
|
|
pipe_config->port_clock,
|
|
&pipe_config->dp_m_n,
|
|
constant_n);
|
|
|
|
if (intel_connector->panel.downclock_mode != NULL &&
|
|
dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
|
|
pipe_config->has_drrs = true;
|
|
intel_link_compute_m_n(pipe_config->pipe_bpp,
|
|
pipe_config->lane_count,
|
|
intel_connector->panel.downclock_mode->clock,
|
|
pipe_config->port_clock,
|
|
&pipe_config->dp_m2_n2,
|
|
constant_n);
|
|
}
|
|
|
|
if (!HAS_DDI(dev_priv))
|
|
intel_dp_set_clock(encoder, pipe_config);
|
|
|
|
intel_psr_compute_config(intel_dp, pipe_config);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_dp_set_link_params(struct intel_dp *intel_dp,
|
|
int link_rate, u8 lane_count,
|
|
bool link_mst)
|
|
{
|
|
intel_dp->link_trained = false;
|
|
intel_dp->link_rate = link_rate;
|
|
intel_dp->lane_count = lane_count;
|
|
intel_dp->link_mst = link_mst;
|
|
}
|
|
|
|
static void intel_dp_prepare(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = encoder->port;
|
|
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
|
|
const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
|
|
|
|
intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
|
|
pipe_config->lane_count,
|
|
intel_crtc_has_type(pipe_config,
|
|
INTEL_OUTPUT_DP_MST));
|
|
|
|
/*
|
|
* There are four kinds of DP registers:
|
|
*
|
|
* IBX PCH
|
|
* SNB CPU
|
|
* IVB CPU
|
|
* CPT PCH
|
|
*
|
|
* IBX PCH and CPU are the same for almost everything,
|
|
* except that the CPU DP PLL is configured in this
|
|
* register
|
|
*
|
|
* CPT PCH is quite different, having many bits moved
|
|
* to the TRANS_DP_CTL register instead. That
|
|
* configuration happens (oddly) in ironlake_pch_enable
|
|
*/
|
|
|
|
/* Preserve the BIOS-computed detected bit. This is
|
|
* supposed to be read-only.
|
|
*/
|
|
intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
|
|
|
|
/* Handle DP bits in common between all three register formats */
|
|
intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
|
|
intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
|
|
|
|
/* Split out the IBX/CPU vs CPT settings */
|
|
|
|
if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
|
|
intel_dp->DP |= DP_SYNC_HS_HIGH;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
|
|
intel_dp->DP |= DP_SYNC_VS_HIGH;
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
|
|
|
|
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
|
|
intel_dp->DP |= DP_ENHANCED_FRAMING;
|
|
|
|
intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
|
|
} else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
|
|
u32 trans_dp;
|
|
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
|
|
|
|
trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
|
|
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
|
|
trans_dp |= TRANS_DP_ENH_FRAMING;
|
|
else
|
|
trans_dp &= ~TRANS_DP_ENH_FRAMING;
|
|
I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
|
|
} else {
|
|
if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
|
|
intel_dp->DP |= DP_COLOR_RANGE_16_235;
|
|
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
|
|
intel_dp->DP |= DP_SYNC_HS_HIGH;
|
|
if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
|
|
intel_dp->DP |= DP_SYNC_VS_HIGH;
|
|
intel_dp->DP |= DP_LINK_TRAIN_OFF;
|
|
|
|
if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
|
|
intel_dp->DP |= DP_ENHANCED_FRAMING;
|
|
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
|
|
else
|
|
intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
|
|
}
|
|
}
|
|
|
|
#define IDLE_ON_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | PP_SEQUENCE_STATE_MASK)
|
|
#define IDLE_ON_VALUE (PP_ON | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_ON_IDLE)
|
|
|
|
#define IDLE_OFF_MASK (PP_ON | PP_SEQUENCE_MASK | 0 | 0)
|
|
#define IDLE_OFF_VALUE (0 | PP_SEQUENCE_NONE | 0 | 0)
|
|
|
|
#define IDLE_CYCLE_MASK (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
|
|
#define IDLE_CYCLE_VALUE (0 | PP_SEQUENCE_NONE | 0 | PP_SEQUENCE_STATE_OFF_IDLE)
|
|
|
|
static void intel_pps_verify_state(struct intel_dp *intel_dp);
|
|
|
|
static void wait_panel_status(struct intel_dp *intel_dp,
|
|
u32 mask,
|
|
u32 value)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
i915_reg_t pp_stat_reg, pp_ctrl_reg;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
intel_pps_verify_state(intel_dp);
|
|
|
|
pp_stat_reg = _pp_stat_reg(intel_dp);
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
|
|
DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
|
|
mask, value,
|
|
I915_READ(pp_stat_reg),
|
|
I915_READ(pp_ctrl_reg));
|
|
|
|
if (intel_wait_for_register(dev_priv,
|
|
pp_stat_reg, mask, value,
|
|
5000))
|
|
DRM_ERROR("Panel status timeout: status %08x control %08x\n",
|
|
I915_READ(pp_stat_reg),
|
|
I915_READ(pp_ctrl_reg));
|
|
|
|
DRM_DEBUG_KMS("Wait complete\n");
|
|
}
|
|
|
|
static void wait_panel_on(struct intel_dp *intel_dp)
|
|
{
|
|
DRM_DEBUG_KMS("Wait for panel power on\n");
|
|
wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
|
|
}
|
|
|
|
static void wait_panel_off(struct intel_dp *intel_dp)
|
|
{
|
|
DRM_DEBUG_KMS("Wait for panel power off time\n");
|
|
wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
|
|
}
|
|
|
|
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
|
|
{
|
|
ktime_t panel_power_on_time;
|
|
s64 panel_power_off_duration;
|
|
|
|
DRM_DEBUG_KMS("Wait for panel power cycle\n");
|
|
|
|
/* take the difference of currrent time and panel power off time
|
|
* and then make panel wait for t11_t12 if needed. */
|
|
panel_power_on_time = ktime_get_boottime();
|
|
panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
|
|
|
|
/* When we disable the VDD override bit last we have to do the manual
|
|
* wait. */
|
|
if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
|
|
wait_remaining_ms_from_jiffies(jiffies,
|
|
intel_dp->panel_power_cycle_delay - panel_power_off_duration);
|
|
|
|
wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
|
|
}
|
|
|
|
static void wait_backlight_on(struct intel_dp *intel_dp)
|
|
{
|
|
wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
|
|
intel_dp->backlight_on_delay);
|
|
}
|
|
|
|
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
|
|
{
|
|
wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
|
|
intel_dp->backlight_off_delay);
|
|
}
|
|
|
|
/* Read the current pp_control value, unlocking the register if it
|
|
* is locked
|
|
*/
|
|
|
|
static u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
u32 control;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
control = I915_READ(_pp_ctrl_reg(intel_dp));
|
|
if (WARN_ON(!HAS_DDI(dev_priv) &&
|
|
(control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
|
|
control &= ~PANEL_UNLOCK_MASK;
|
|
control |= PANEL_UNLOCK_REGS;
|
|
}
|
|
return control;
|
|
}
|
|
|
|
/*
|
|
* Must be paired with edp_panel_vdd_off().
|
|
* Must hold pps_mutex around the whole on/off sequence.
|
|
* Can be nested with intel_edp_panel_vdd_{on,off}() calls.
|
|
*/
|
|
static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
u32 pp;
|
|
i915_reg_t pp_stat_reg, pp_ctrl_reg;
|
|
bool need_to_disable = !intel_dp->want_panel_vdd;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return false;
|
|
|
|
cancel_delayed_work(&intel_dp->panel_vdd_work);
|
|
intel_dp->want_panel_vdd = true;
|
|
|
|
if (edp_have_panel_vdd(intel_dp))
|
|
return need_to_disable;
|
|
|
|
intel_display_power_get(dev_priv,
|
|
intel_aux_power_domain(intel_dig_port));
|
|
|
|
DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
|
|
port_name(intel_dig_port->base.port));
|
|
|
|
if (!edp_have_panel_power(intel_dp))
|
|
wait_panel_power_cycle(intel_dp);
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp |= EDP_FORCE_VDD;
|
|
|
|
pp_stat_reg = _pp_stat_reg(intel_dp);
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
|
|
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
|
|
/*
|
|
* If the panel wasn't on, delay before accessing aux channel
|
|
*/
|
|
if (!edp_have_panel_power(intel_dp)) {
|
|
DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
|
|
port_name(intel_dig_port->base.port));
|
|
msleep(intel_dp->panel_power_up_delay);
|
|
}
|
|
|
|
return need_to_disable;
|
|
}
|
|
|
|
/*
|
|
* Must be paired with intel_edp_panel_vdd_off() or
|
|
* intel_edp_panel_off().
|
|
* Nested calls to these functions are not allowed since
|
|
* we drop the lock. Caller must use some higher level
|
|
* locking to prevent nested calls from other threads.
|
|
*/
|
|
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
|
|
{
|
|
intel_wakeref_t wakeref;
|
|
bool vdd;
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
vdd = false;
|
|
with_pps_lock(intel_dp, wakeref)
|
|
vdd = edp_panel_vdd_on(intel_dp);
|
|
I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
|
|
port_name(dp_to_dig_port(intel_dp)->base.port));
|
|
}
|
|
|
|
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *intel_dig_port =
|
|
dp_to_dig_port(intel_dp);
|
|
u32 pp;
|
|
i915_reg_t pp_stat_reg, pp_ctrl_reg;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
WARN_ON(intel_dp->want_panel_vdd);
|
|
|
|
if (!edp_have_panel_vdd(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
|
|
port_name(intel_dig_port->base.port));
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp &= ~EDP_FORCE_VDD;
|
|
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
pp_stat_reg = _pp_stat_reg(intel_dp);
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
/* Make sure sequencer is idle before allowing subsequent activity */
|
|
DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
|
|
I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
|
|
|
|
if ((pp & PANEL_POWER_ON) == 0)
|
|
intel_dp->panel_power_off_time = ktime_get_boottime();
|
|
|
|
intel_display_power_put_unchecked(dev_priv,
|
|
intel_aux_power_domain(intel_dig_port));
|
|
}
|
|
|
|
static void edp_panel_vdd_work(struct work_struct *__work)
|
|
{
|
|
struct intel_dp *intel_dp =
|
|
container_of(to_delayed_work(__work),
|
|
struct intel_dp, panel_vdd_work);
|
|
intel_wakeref_t wakeref;
|
|
|
|
with_pps_lock(intel_dp, wakeref) {
|
|
if (!intel_dp->want_panel_vdd)
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
}
|
|
}
|
|
|
|
static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
|
|
{
|
|
unsigned long delay;
|
|
|
|
/*
|
|
* Queue the timer to fire a long time from now (relative to the power
|
|
* down delay) to keep the panel power up across a sequence of
|
|
* operations.
|
|
*/
|
|
delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
|
|
schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
|
|
}
|
|
|
|
/*
|
|
* Must be paired with edp_panel_vdd_on().
|
|
* Must hold pps_mutex around the whole on/off sequence.
|
|
* Can be nested with intel_edp_panel_vdd_{on,off}() calls.
|
|
*/
|
|
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
|
|
port_name(dp_to_dig_port(intel_dp)->base.port));
|
|
|
|
intel_dp->want_panel_vdd = false;
|
|
|
|
if (sync)
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
else
|
|
edp_panel_vdd_schedule_off(intel_dp);
|
|
}
|
|
|
|
static void edp_panel_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
u32 pp;
|
|
i915_reg_t pp_ctrl_reg;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
|
|
port_name(dp_to_dig_port(intel_dp)->base.port));
|
|
|
|
if (WARN(edp_have_panel_power(intel_dp),
|
|
"eDP port %c panel power already on\n",
|
|
port_name(dp_to_dig_port(intel_dp)->base.port)))
|
|
return;
|
|
|
|
wait_panel_power_cycle(intel_dp);
|
|
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
if (IS_GEN(dev_priv, 5)) {
|
|
/* ILK workaround: disable reset around power sequence */
|
|
pp &= ~PANEL_POWER_RESET;
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
}
|
|
|
|
pp |= PANEL_POWER_ON;
|
|
if (!IS_GEN(dev_priv, 5))
|
|
pp |= PANEL_POWER_RESET;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
wait_panel_on(intel_dp);
|
|
intel_dp->last_power_on = jiffies;
|
|
|
|
if (IS_GEN(dev_priv, 5)) {
|
|
pp |= PANEL_POWER_RESET; /* restore panel reset bit */
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
}
|
|
}
|
|
|
|
void intel_edp_panel_on(struct intel_dp *intel_dp)
|
|
{
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
with_pps_lock(intel_dp, wakeref)
|
|
edp_panel_on(intel_dp);
|
|
}
|
|
|
|
|
|
static void edp_panel_off(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
u32 pp;
|
|
i915_reg_t pp_ctrl_reg;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
|
|
port_name(dig_port->base.port));
|
|
|
|
WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
|
|
port_name(dig_port->base.port));
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
/* We need to switch off panel power _and_ force vdd, for otherwise some
|
|
* panels get very unhappy and cease to work. */
|
|
pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
|
|
EDP_BLC_ENABLE);
|
|
|
|
pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
|
|
intel_dp->want_panel_vdd = false;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
|
|
wait_panel_off(intel_dp);
|
|
intel_dp->panel_power_off_time = ktime_get_boottime();
|
|
|
|
/* We got a reference when we enabled the VDD. */
|
|
intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
|
|
}
|
|
|
|
void intel_edp_panel_off(struct intel_dp *intel_dp)
|
|
{
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
with_pps_lock(intel_dp, wakeref)
|
|
edp_panel_off(intel_dp);
|
|
}
|
|
|
|
/* Enable backlight in the panel power control. */
|
|
static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
intel_wakeref_t wakeref;
|
|
|
|
/*
|
|
* If we enable the backlight right away following a panel power
|
|
* on, we may see slight flicker as the panel syncs with the eDP
|
|
* link. So delay a bit to make sure the image is solid before
|
|
* allowing it to appear.
|
|
*/
|
|
wait_backlight_on(intel_dp);
|
|
|
|
with_pps_lock(intel_dp, wakeref) {
|
|
i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
u32 pp;
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp |= EDP_BLC_ENABLE;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
}
|
|
}
|
|
|
|
/* Enable backlight PWM and backlight PP control. */
|
|
void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
|
|
intel_panel_enable_backlight(crtc_state, conn_state);
|
|
_intel_edp_backlight_on(intel_dp);
|
|
}
|
|
|
|
/* Disable backlight in the panel power control. */
|
|
static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
with_pps_lock(intel_dp, wakeref) {
|
|
i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
|
|
u32 pp;
|
|
|
|
pp = ironlake_get_pp_control(intel_dp);
|
|
pp &= ~EDP_BLC_ENABLE;
|
|
|
|
I915_WRITE(pp_ctrl_reg, pp);
|
|
POSTING_READ(pp_ctrl_reg);
|
|
}
|
|
|
|
intel_dp->last_backlight_off = jiffies;
|
|
edp_wait_backlight_off(intel_dp);
|
|
}
|
|
|
|
/* Disable backlight PP control and backlight PWM. */
|
|
void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
|
|
_intel_edp_backlight_off(intel_dp);
|
|
intel_panel_disable_backlight(old_conn_state);
|
|
}
|
|
|
|
/*
|
|
* Hook for controlling the panel power control backlight through the bl_power
|
|
* sysfs attribute. Take care to handle multiple calls.
|
|
*/
|
|
static void intel_edp_backlight_power(struct intel_connector *connector,
|
|
bool enable)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
|
|
intel_wakeref_t wakeref;
|
|
bool is_enabled;
|
|
|
|
is_enabled = false;
|
|
with_pps_lock(intel_dp, wakeref)
|
|
is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
|
|
if (is_enabled == enable)
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("panel power control backlight %s\n",
|
|
enable ? "enable" : "disable");
|
|
|
|
if (enable)
|
|
_intel_edp_backlight_on(intel_dp);
|
|
else
|
|
_intel_edp_backlight_off(intel_dp);
|
|
}
|
|
|
|
static void assert_dp_port(struct intel_dp *intel_dp, bool state)
|
|
{
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
|
|
bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
|
|
|
|
I915_STATE_WARN(cur_state != state,
|
|
"DP port %c state assertion failure (expected %s, current %s)\n",
|
|
port_name(dig_port->base.port),
|
|
onoff(state), onoff(cur_state));
|
|
}
|
|
#define assert_dp_port_disabled(d) assert_dp_port((d), false)
|
|
|
|
static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
|
|
{
|
|
bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
|
|
|
|
I915_STATE_WARN(cur_state != state,
|
|
"eDP PLL state assertion failure (expected %s, current %s)\n",
|
|
onoff(state), onoff(cur_state));
|
|
}
|
|
#define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
|
|
#define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
|
|
|
|
static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
assert_dp_port_disabled(intel_dp);
|
|
assert_edp_pll_disabled(dev_priv);
|
|
|
|
DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
|
|
pipe_config->port_clock);
|
|
|
|
intel_dp->DP &= ~DP_PLL_FREQ_MASK;
|
|
|
|
if (pipe_config->port_clock == 162000)
|
|
intel_dp->DP |= DP_PLL_FREQ_162MHZ;
|
|
else
|
|
intel_dp->DP |= DP_PLL_FREQ_270MHZ;
|
|
|
|
I915_WRITE(DP_A, intel_dp->DP);
|
|
POSTING_READ(DP_A);
|
|
udelay(500);
|
|
|
|
/*
|
|
* [DevILK] Work around required when enabling DP PLL
|
|
* while a pipe is enabled going to FDI:
|
|
* 1. Wait for the start of vertical blank on the enabled pipe going to FDI
|
|
* 2. Program DP PLL enable
|
|
*/
|
|
if (IS_GEN(dev_priv, 5))
|
|
intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
|
|
|
|
intel_dp->DP |= DP_PLL_ENABLE;
|
|
|
|
I915_WRITE(DP_A, intel_dp->DP);
|
|
POSTING_READ(DP_A);
|
|
udelay(200);
|
|
}
|
|
|
|
static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
|
|
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
|
|
|
|
assert_pipe_disabled(dev_priv, crtc->pipe);
|
|
assert_dp_port_disabled(intel_dp);
|
|
assert_edp_pll_enabled(dev_priv);
|
|
|
|
DRM_DEBUG_KMS("disabling eDP PLL\n");
|
|
|
|
intel_dp->DP &= ~DP_PLL_ENABLE;
|
|
|
|
I915_WRITE(DP_A, intel_dp->DP);
|
|
POSTING_READ(DP_A);
|
|
udelay(200);
|
|
}
|
|
|
|
static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
|
|
{
|
|
/*
|
|
* DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
|
|
* be capable of signalling downstream hpd with a long pulse.
|
|
* Whether or not that means D3 is safe to use is not clear,
|
|
* but let's assume so until proven otherwise.
|
|
*
|
|
* FIXME should really check all downstream ports...
|
|
*/
|
|
return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
|
|
intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
|
|
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
|
|
}
|
|
|
|
void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *crtc_state,
|
|
bool enable)
|
|
{
|
|
int ret;
|
|
|
|
if (!crtc_state->dsc_params.compression_enable)
|
|
return;
|
|
|
|
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
|
|
enable ? DP_DECOMPRESSION_EN : 0);
|
|
if (ret < 0)
|
|
DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
|
|
enable ? "enable" : "disable");
|
|
}
|
|
|
|
/* If the sink supports it, try to set the power state appropriately */
|
|
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
|
|
{
|
|
int ret, i;
|
|
|
|
/* Should have a valid DPCD by this point */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
|
|
return;
|
|
|
|
if (mode != DRM_MODE_DPMS_ON) {
|
|
if (downstream_hpd_needs_d0(intel_dp))
|
|
return;
|
|
|
|
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
|
|
DP_SET_POWER_D3);
|
|
} else {
|
|
struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
|
|
|
|
/*
|
|
* When turning on, we need to retry for 1ms to give the sink
|
|
* time to wake up.
|
|
*/
|
|
for (i = 0; i < 3; i++) {
|
|
ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
|
|
DP_SET_POWER_D0);
|
|
if (ret == 1)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
if (ret == 1 && lspcon->active)
|
|
lspcon_wait_pcon_mode(lspcon);
|
|
}
|
|
|
|
if (ret != 1)
|
|
DRM_DEBUG_KMS("failed to %s sink power state\n",
|
|
mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
|
|
}
|
|
|
|
static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
|
|
enum port port, enum pipe *pipe)
|
|
{
|
|
enum pipe p;
|
|
|
|
for_each_pipe(dev_priv, p) {
|
|
u32 val = I915_READ(TRANS_DP_CTL(p));
|
|
|
|
if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
|
|
*pipe = p;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
|
|
|
|
/* must initialize pipe to something for the asserts */
|
|
*pipe = PIPE_A;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
|
|
i915_reg_t dp_reg, enum port port,
|
|
enum pipe *pipe)
|
|
{
|
|
bool ret;
|
|
u32 val;
|
|
|
|
val = I915_READ(dp_reg);
|
|
|
|
ret = val & DP_PORT_EN;
|
|
|
|
/* asserts want to know the pipe even if the port is disabled */
|
|
if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
|
|
*pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
|
|
else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
|
|
ret &= cpt_dp_port_selected(dev_priv, port, pipe);
|
|
else if (IS_CHERRYVIEW(dev_priv))
|
|
*pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
|
|
else
|
|
*pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
|
|
enum pipe *pipe)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
intel_wakeref_t wakeref;
|
|
bool ret;
|
|
|
|
wakeref = intel_display_power_get_if_enabled(dev_priv,
|
|
encoder->power_domain);
|
|
if (!wakeref)
|
|
return false;
|
|
|
|
ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
|
|
encoder->port, pipe);
|
|
|
|
intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void intel_dp_get_config(struct intel_encoder *encoder,
|
|
struct intel_crtc_state *pipe_config)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
u32 tmp, flags = 0;
|
|
enum port port = encoder->port;
|
|
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
|
|
|
|
if (encoder->type == INTEL_OUTPUT_EDP)
|
|
pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
|
|
else
|
|
pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
|
|
|
|
tmp = I915_READ(intel_dp->output_reg);
|
|
|
|
pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
|
|
|
|
if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
|
|
u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
|
|
|
|
if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
|
|
flags |= DRM_MODE_FLAG_PHSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NHSYNC;
|
|
|
|
if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
|
|
flags |= DRM_MODE_FLAG_PVSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NVSYNC;
|
|
} else {
|
|
if (tmp & DP_SYNC_HS_HIGH)
|
|
flags |= DRM_MODE_FLAG_PHSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NHSYNC;
|
|
|
|
if (tmp & DP_SYNC_VS_HIGH)
|
|
flags |= DRM_MODE_FLAG_PVSYNC;
|
|
else
|
|
flags |= DRM_MODE_FLAG_NVSYNC;
|
|
}
|
|
|
|
pipe_config->base.adjusted_mode.flags |= flags;
|
|
|
|
if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
|
|
pipe_config->limited_color_range = true;
|
|
|
|
pipe_config->lane_count =
|
|
((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
|
|
|
|
intel_dp_get_m_n(crtc, pipe_config);
|
|
|
|
if (port == PORT_A) {
|
|
if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
|
|
pipe_config->port_clock = 162000;
|
|
else
|
|
pipe_config->port_clock = 270000;
|
|
}
|
|
|
|
pipe_config->base.adjusted_mode.crtc_clock =
|
|
intel_dotclock_calculate(pipe_config->port_clock,
|
|
&pipe_config->dp_m_n);
|
|
|
|
if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
|
|
pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
|
|
/*
|
|
* This is a big fat ugly hack.
|
|
*
|
|
* Some machines in UEFI boot mode provide us a VBT that has 18
|
|
* bpp and 1.62 GHz link bandwidth for eDP, which for reasons
|
|
* unknown we fail to light up. Yet the same BIOS boots up with
|
|
* 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
|
|
* max, not what it tells us to use.
|
|
*
|
|
* Note: This will still be broken if the eDP panel is not lit
|
|
* up by the BIOS, and thus we can't get the mode at module
|
|
* load.
|
|
*/
|
|
DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
|
|
pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
|
|
dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
|
|
}
|
|
}
|
|
|
|
static void intel_disable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *old_crtc_state,
|
|
const struct drm_connector_state *old_conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
|
|
intel_dp->link_trained = false;
|
|
|
|
if (old_crtc_state->has_audio)
|
|
intel_audio_codec_disable(encoder,
|
|
old_crtc_state, old_conn_state);
|
|
|
|
/* Make sure the panel is off before trying to change the mode. But also
|
|
* ensure that we have vdd while we switch off the panel. */
|
|
intel_edp_panel_vdd_on(intel_dp);
|
|
intel_edp_backlight_off(old_conn_state);
|
|
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
|
|
intel_edp_panel_off(intel_dp);
|
|
}
|
|
|
|
static void g4x_disable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *old_crtc_state,
|
|
const struct drm_connector_state *old_conn_state)
|
|
{
|
|
intel_disable_dp(encoder, old_crtc_state, old_conn_state);
|
|
}
|
|
|
|
static void vlv_disable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *old_crtc_state,
|
|
const struct drm_connector_state *old_conn_state)
|
|
{
|
|
intel_disable_dp(encoder, old_crtc_state, old_conn_state);
|
|
}
|
|
|
|
static void g4x_post_disable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *old_crtc_state,
|
|
const struct drm_connector_state *old_conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = encoder->port;
|
|
|
|
/*
|
|
* Bspec does not list a specific disable sequence for g4x DP.
|
|
* Follow the ilk+ sequence (disable pipe before the port) for
|
|
* g4x DP as it does not suffer from underruns like the normal
|
|
* g4x modeset sequence (disable pipe after the port).
|
|
*/
|
|
intel_dp_link_down(encoder, old_crtc_state);
|
|
|
|
/* Only ilk+ has port A */
|
|
if (port == PORT_A)
|
|
ironlake_edp_pll_off(intel_dp, old_crtc_state);
|
|
}
|
|
|
|
static void vlv_post_disable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *old_crtc_state,
|
|
const struct drm_connector_state *old_conn_state)
|
|
{
|
|
intel_dp_link_down(encoder, old_crtc_state);
|
|
}
|
|
|
|
static void chv_post_disable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *old_crtc_state,
|
|
const struct drm_connector_state *old_conn_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
|
|
intel_dp_link_down(encoder, old_crtc_state);
|
|
|
|
mutex_lock(&dev_priv->sb_lock);
|
|
|
|
/* Assert data lane reset */
|
|
chv_data_lane_soft_reset(encoder, old_crtc_state, true);
|
|
|
|
mutex_unlock(&dev_priv->sb_lock);
|
|
}
|
|
|
|
static void
|
|
_intel_dp_set_link_train(struct intel_dp *intel_dp,
|
|
u32 *DP,
|
|
u8 dp_train_pat)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
enum port port = intel_dig_port->base.port;
|
|
u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
|
|
|
|
if (dp_train_pat & train_pat_mask)
|
|
DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
|
|
dp_train_pat & train_pat_mask);
|
|
|
|
if (HAS_DDI(dev_priv)) {
|
|
u32 temp = I915_READ(DP_TP_CTL(port));
|
|
|
|
if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
|
|
temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
|
|
else
|
|
temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
|
|
|
|
temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
|
|
switch (dp_train_pat & train_pat_mask) {
|
|
case DP_TRAINING_PATTERN_DISABLE:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
|
|
|
|
break;
|
|
case DP_TRAINING_PATTERN_1:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
|
|
break;
|
|
case DP_TRAINING_PATTERN_2:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
|
|
break;
|
|
case DP_TRAINING_PATTERN_3:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
|
|
break;
|
|
case DP_TRAINING_PATTERN_4:
|
|
temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
|
|
break;
|
|
}
|
|
I915_WRITE(DP_TP_CTL(port), temp);
|
|
|
|
} else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
|
|
(HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
|
|
*DP &= ~DP_LINK_TRAIN_MASK_CPT;
|
|
|
|
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
|
|
case DP_TRAINING_PATTERN_DISABLE:
|
|
*DP |= DP_LINK_TRAIN_OFF_CPT;
|
|
break;
|
|
case DP_TRAINING_PATTERN_1:
|
|
*DP |= DP_LINK_TRAIN_PAT_1_CPT;
|
|
break;
|
|
case DP_TRAINING_PATTERN_2:
|
|
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
|
|
break;
|
|
case DP_TRAINING_PATTERN_3:
|
|
DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
|
|
*DP |= DP_LINK_TRAIN_PAT_2_CPT;
|
|
break;
|
|
}
|
|
|
|
} else {
|
|
*DP &= ~DP_LINK_TRAIN_MASK;
|
|
|
|
switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
|
|
case DP_TRAINING_PATTERN_DISABLE:
|
|
*DP |= DP_LINK_TRAIN_OFF;
|
|
break;
|
|
case DP_TRAINING_PATTERN_1:
|
|
*DP |= DP_LINK_TRAIN_PAT_1;
|
|
break;
|
|
case DP_TRAINING_PATTERN_2:
|
|
*DP |= DP_LINK_TRAIN_PAT_2;
|
|
break;
|
|
case DP_TRAINING_PATTERN_3:
|
|
DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
|
|
*DP |= DP_LINK_TRAIN_PAT_2;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void intel_dp_enable_port(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
/* enable with pattern 1 (as per spec) */
|
|
|
|
intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
|
|
|
|
/*
|
|
* Magic for VLV/CHV. We _must_ first set up the register
|
|
* without actually enabling the port, and then do another
|
|
* write to enable the port. Otherwise link training will
|
|
* fail when the power sequencer is freshly used for this port.
|
|
*/
|
|
intel_dp->DP |= DP_PORT_EN;
|
|
if (old_crtc_state->has_audio)
|
|
intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
|
|
|
|
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
}
|
|
|
|
static void intel_enable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
|
|
u32 dp_reg = I915_READ(intel_dp->output_reg);
|
|
enum pipe pipe = crtc->pipe;
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (WARN_ON(dp_reg & DP_PORT_EN))
|
|
return;
|
|
|
|
with_pps_lock(intel_dp, wakeref) {
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
vlv_init_panel_power_sequencer(encoder, pipe_config);
|
|
|
|
intel_dp_enable_port(intel_dp, pipe_config);
|
|
|
|
edp_panel_vdd_on(intel_dp);
|
|
edp_panel_on(intel_dp);
|
|
edp_panel_vdd_off(intel_dp, true);
|
|
}
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
unsigned int lane_mask = 0x0;
|
|
|
|
if (IS_CHERRYVIEW(dev_priv))
|
|
lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
|
|
|
|
vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
|
|
lane_mask);
|
|
}
|
|
|
|
intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
|
|
intel_dp_start_link_train(intel_dp);
|
|
intel_dp_stop_link_train(intel_dp);
|
|
|
|
if (pipe_config->has_audio) {
|
|
DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
|
|
pipe_name(pipe));
|
|
intel_audio_codec_enable(encoder, pipe_config, conn_state);
|
|
}
|
|
}
|
|
|
|
static void g4x_enable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
intel_enable_dp(encoder, pipe_config, conn_state);
|
|
intel_edp_backlight_on(pipe_config, conn_state);
|
|
}
|
|
|
|
static void vlv_enable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
intel_edp_backlight_on(pipe_config, conn_state);
|
|
}
|
|
|
|
static void g4x_pre_enable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = encoder->port;
|
|
|
|
intel_dp_prepare(encoder, pipe_config);
|
|
|
|
/* Only ilk+ has port A */
|
|
if (port == PORT_A)
|
|
ironlake_edp_pll_on(intel_dp, pipe_config);
|
|
}
|
|
|
|
static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
|
|
enum pipe pipe = intel_dp->pps_pipe;
|
|
i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
|
|
|
|
WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
|
|
|
|
if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
|
|
return;
|
|
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
|
|
/*
|
|
* VLV seems to get confused when multiple power sequencers
|
|
* have the same port selected (even if only one has power/vdd
|
|
* enabled). The failure manifests as vlv_wait_port_ready() failing
|
|
* CHV on the other hand doesn't seem to mind having the same port
|
|
* selected in multiple power sequencers, but let's clear the
|
|
* port select always when logically disconnecting a power sequencer
|
|
* from a port.
|
|
*/
|
|
DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
|
|
pipe_name(pipe), port_name(intel_dig_port->base.port));
|
|
I915_WRITE(pp_on_reg, 0);
|
|
POSTING_READ(pp_on_reg);
|
|
|
|
intel_dp->pps_pipe = INVALID_PIPE;
|
|
}
|
|
|
|
static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
|
|
enum pipe pipe)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
for_each_intel_dp(&dev_priv->drm, encoder) {
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
enum port port = encoder->port;
|
|
|
|
WARN(intel_dp->active_pipe == pipe,
|
|
"stealing pipe %c power sequencer from active (e)DP port %c\n",
|
|
pipe_name(pipe), port_name(port));
|
|
|
|
if (intel_dp->pps_pipe != pipe)
|
|
continue;
|
|
|
|
DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
|
|
pipe_name(pipe), port_name(port));
|
|
|
|
/* make sure vdd is off before we steal it */
|
|
vlv_detach_power_sequencer(intel_dp);
|
|
}
|
|
}
|
|
|
|
static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
|
|
|
|
if (intel_dp->pps_pipe != INVALID_PIPE &&
|
|
intel_dp->pps_pipe != crtc->pipe) {
|
|
/*
|
|
* If another power sequencer was being used on this
|
|
* port previously make sure to turn off vdd there while
|
|
* we still have control of it.
|
|
*/
|
|
vlv_detach_power_sequencer(intel_dp);
|
|
}
|
|
|
|
/*
|
|
* We may be stealing the power
|
|
* sequencer from another port.
|
|
*/
|
|
vlv_steal_power_sequencer(dev_priv, crtc->pipe);
|
|
|
|
intel_dp->active_pipe = crtc->pipe;
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
/* now it's all ours */
|
|
intel_dp->pps_pipe = crtc->pipe;
|
|
|
|
DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
|
|
pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
|
|
|
|
/* init power sequencer on this pipe and port */
|
|
intel_dp_init_panel_power_sequencer(intel_dp);
|
|
intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
|
|
}
|
|
|
|
static void vlv_pre_enable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
vlv_phy_pre_encoder_enable(encoder, pipe_config);
|
|
|
|
intel_enable_dp(encoder, pipe_config, conn_state);
|
|
}
|
|
|
|
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
intel_dp_prepare(encoder, pipe_config);
|
|
|
|
vlv_phy_pre_pll_enable(encoder, pipe_config);
|
|
}
|
|
|
|
static void chv_pre_enable_dp(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
chv_phy_pre_encoder_enable(encoder, pipe_config);
|
|
|
|
intel_enable_dp(encoder, pipe_config, conn_state);
|
|
|
|
/* Second common lane will stay alive on its own now */
|
|
chv_phy_release_cl2_override(encoder);
|
|
}
|
|
|
|
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *pipe_config,
|
|
const struct drm_connector_state *conn_state)
|
|
{
|
|
intel_dp_prepare(encoder, pipe_config);
|
|
|
|
chv_phy_pre_pll_enable(encoder, pipe_config);
|
|
}
|
|
|
|
static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *old_crtc_state,
|
|
const struct drm_connector_state *old_conn_state)
|
|
{
|
|
chv_phy_post_pll_disable(encoder, old_crtc_state);
|
|
}
|
|
|
|
/*
|
|
* Fetch AUX CH registers 0x202 - 0x207 which contain
|
|
* link status information
|
|
*/
|
|
bool
|
|
intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
|
|
{
|
|
return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
|
|
DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
|
|
}
|
|
|
|
/* These are source-specific values. */
|
|
u8
|
|
intel_dp_voltage_max(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
|
|
enum port port = encoder->port;
|
|
|
|
if (HAS_DDI(dev_priv))
|
|
return intel_ddi_dp_voltage_max(encoder);
|
|
else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
|
|
else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
|
|
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
|
|
else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
|
|
return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
|
|
else
|
|
return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
|
|
}
|
|
|
|
u8
|
|
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
|
|
enum port port = encoder->port;
|
|
|
|
if (HAS_DDI(dev_priv)) {
|
|
return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
|
|
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_3;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_2;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_1;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
default:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_0;
|
|
}
|
|
} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_2;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_1;
|
|
default:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_0;
|
|
}
|
|
} else {
|
|
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_2;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_2;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_1;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
default:
|
|
return DP_TRAIN_PRE_EMPH_LEVEL_0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static u32 vlv_signal_levels(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
|
|
unsigned long demph_reg_value, preemph_reg_value,
|
|
uniqtranscale_reg_value;
|
|
u8 train_set = intel_dp->train_set[0];
|
|
|
|
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
preemph_reg_value = 0x0004000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
demph_reg_value = 0x2B405555;
|
|
uniqtranscale_reg_value = 0x552AB83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
demph_reg_value = 0x2B404040;
|
|
uniqtranscale_reg_value = 0x5548B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
demph_reg_value = 0x2B245555;
|
|
uniqtranscale_reg_value = 0x5560B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
demph_reg_value = 0x2B405555;
|
|
uniqtranscale_reg_value = 0x5598DA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
preemph_reg_value = 0x0002000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
demph_reg_value = 0x2B404040;
|
|
uniqtranscale_reg_value = 0x5552B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
demph_reg_value = 0x2B404848;
|
|
uniqtranscale_reg_value = 0x5580B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
demph_reg_value = 0x2B404040;
|
|
uniqtranscale_reg_value = 0x55ADDA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
preemph_reg_value = 0x0000000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
demph_reg_value = 0x2B305555;
|
|
uniqtranscale_reg_value = 0x5570B83A;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
demph_reg_value = 0x2B2B4040;
|
|
uniqtranscale_reg_value = 0x55ADDA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_3:
|
|
preemph_reg_value = 0x0006000;
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
demph_reg_value = 0x1B405555;
|
|
uniqtranscale_reg_value = 0x55ADDA3A;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
|
|
uniqtranscale_reg_value, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32 chv_signal_levels(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
|
|
u32 deemph_reg_value, margin_reg_value;
|
|
bool uniq_trans_scale = false;
|
|
u8 train_set = intel_dp->train_set[0];
|
|
|
|
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
deemph_reg_value = 128;
|
|
margin_reg_value = 52;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
deemph_reg_value = 128;
|
|
margin_reg_value = 77;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
deemph_reg_value = 128;
|
|
margin_reg_value = 102;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
deemph_reg_value = 128;
|
|
margin_reg_value = 154;
|
|
uniq_trans_scale = true;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
deemph_reg_value = 85;
|
|
margin_reg_value = 78;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
deemph_reg_value = 85;
|
|
margin_reg_value = 116;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
deemph_reg_value = 85;
|
|
margin_reg_value = 154;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
deemph_reg_value = 64;
|
|
margin_reg_value = 104;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
deemph_reg_value = 64;
|
|
margin_reg_value = 154;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_3:
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
deemph_reg_value = 43;
|
|
margin_reg_value = 154;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
chv_set_phy_signal_level(encoder, deemph_reg_value,
|
|
margin_reg_value, uniq_trans_scale);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static u32
|
|
g4x_signal_levels(u8 train_set)
|
|
{
|
|
u32 signal_levels = 0;
|
|
|
|
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
|
|
default:
|
|
signal_levels |= DP_VOLTAGE_0_4;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
|
|
signal_levels |= DP_VOLTAGE_0_6;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
|
|
signal_levels |= DP_VOLTAGE_0_8;
|
|
break;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
|
|
signal_levels |= DP_VOLTAGE_1_2;
|
|
break;
|
|
}
|
|
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
default:
|
|
signal_levels |= DP_PRE_EMPHASIS_0;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
signal_levels |= DP_PRE_EMPHASIS_3_5;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
signal_levels |= DP_PRE_EMPHASIS_6;
|
|
break;
|
|
case DP_TRAIN_PRE_EMPH_LEVEL_3:
|
|
signal_levels |= DP_PRE_EMPHASIS_9_5;
|
|
break;
|
|
}
|
|
return signal_levels;
|
|
}
|
|
|
|
/* SNB CPU eDP voltage swing and pre-emphasis control */
|
|
static u32
|
|
snb_cpu_edp_signal_levels(u8 train_set)
|
|
{
|
|
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
|
|
DP_TRAIN_PRE_EMPHASIS_MASK);
|
|
switch (signal_levels) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
|
|
default:
|
|
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
|
|
"0x%x\n", signal_levels);
|
|
return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
|
|
}
|
|
}
|
|
|
|
/* IVB CPU eDP voltage swing and pre-emphasis control */
|
|
static u32
|
|
ivb_cpu_edp_signal_levels(u8 train_set)
|
|
{
|
|
int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
|
|
DP_TRAIN_PRE_EMPHASIS_MASK);
|
|
switch (signal_levels) {
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
return EDP_LINK_TRAIN_400MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
|
|
return EDP_LINK_TRAIN_400MV_6DB_IVB;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
return EDP_LINK_TRAIN_600MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
|
|
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
|
|
return EDP_LINK_TRAIN_800MV_0DB_IVB;
|
|
case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
|
|
return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
|
|
|
|
default:
|
|
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
|
|
"0x%x\n", signal_levels);
|
|
return EDP_LINK_TRAIN_500MV_0DB_IVB;
|
|
}
|
|
}
|
|
|
|
void
|
|
intel_dp_set_signal_levels(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
enum port port = intel_dig_port->base.port;
|
|
u32 signal_levels, mask = 0;
|
|
u8 train_set = intel_dp->train_set[0];
|
|
|
|
if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
|
|
signal_levels = bxt_signal_levels(intel_dp);
|
|
} else if (HAS_DDI(dev_priv)) {
|
|
signal_levels = ddi_signal_levels(intel_dp);
|
|
mask = DDI_BUF_EMP_MASK;
|
|
} else if (IS_CHERRYVIEW(dev_priv)) {
|
|
signal_levels = chv_signal_levels(intel_dp);
|
|
} else if (IS_VALLEYVIEW(dev_priv)) {
|
|
signal_levels = vlv_signal_levels(intel_dp);
|
|
} else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
|
|
signal_levels = ivb_cpu_edp_signal_levels(train_set);
|
|
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
|
|
} else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
|
|
signal_levels = snb_cpu_edp_signal_levels(train_set);
|
|
mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
|
|
} else {
|
|
signal_levels = g4x_signal_levels(train_set);
|
|
mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
|
|
}
|
|
|
|
if (mask)
|
|
DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
|
|
|
|
DRM_DEBUG_KMS("Using vswing level %d\n",
|
|
train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
|
|
DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
|
|
(train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
|
|
DP_TRAIN_PRE_EMPHASIS_SHIFT);
|
|
|
|
intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
|
|
|
|
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
}
|
|
|
|
void
|
|
intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
|
|
u8 dp_train_pat)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
struct drm_i915_private *dev_priv =
|
|
to_i915(intel_dig_port->base.base.dev);
|
|
|
|
_intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
|
|
|
|
I915_WRITE(intel_dp->output_reg, intel_dp->DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
}
|
|
|
|
void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
|
|
enum port port = intel_dig_port->base.port;
|
|
u32 val;
|
|
|
|
if (!HAS_DDI(dev_priv))
|
|
return;
|
|
|
|
val = I915_READ(DP_TP_CTL(port));
|
|
val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
|
|
val |= DP_TP_CTL_LINK_TRAIN_IDLE;
|
|
I915_WRITE(DP_TP_CTL(port), val);
|
|
|
|
/*
|
|
* On PORT_A we can have only eDP in SST mode. There the only reason
|
|
* we need to set idle transmission mode is to work around a HW issue
|
|
* where we enable the pipe while not in idle link-training mode.
|
|
* In this case there is requirement to wait for a minimum number of
|
|
* idle patterns to be sent.
|
|
*/
|
|
if (port == PORT_A)
|
|
return;
|
|
|
|
if (intel_wait_for_register(dev_priv,DP_TP_STATUS(port),
|
|
DP_TP_STATUS_IDLE_DONE,
|
|
DP_TP_STATUS_IDLE_DONE,
|
|
1))
|
|
DRM_ERROR("Timed out waiting for DP idle patterns\n");
|
|
}
|
|
|
|
static void
|
|
intel_dp_link_down(struct intel_encoder *encoder,
|
|
const struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
|
|
enum port port = encoder->port;
|
|
u32 DP = intel_dp->DP;
|
|
|
|
if (WARN_ON(HAS_DDI(dev_priv)))
|
|
return;
|
|
|
|
if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
|
|
if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
|
|
(HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
|
|
DP &= ~DP_LINK_TRAIN_MASK_CPT;
|
|
DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
|
|
} else {
|
|
DP &= ~DP_LINK_TRAIN_MASK;
|
|
DP |= DP_LINK_TRAIN_PAT_IDLE;
|
|
}
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
/*
|
|
* HW workaround for IBX, we need to move the port
|
|
* to transcoder A after disabling it to allow the
|
|
* matching HDMI port to be enabled on transcoder A.
|
|
*/
|
|
if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
|
|
/*
|
|
* We get CPU/PCH FIFO underruns on the other pipe when
|
|
* doing the workaround. Sweep them under the rug.
|
|
*/
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
|
|
|
|
/* always enable with pattern 1 (as per spec) */
|
|
DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
|
|
DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
|
|
DP_LINK_TRAIN_PAT_1;
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
DP &= ~DP_PORT_EN;
|
|
I915_WRITE(intel_dp->output_reg, DP);
|
|
POSTING_READ(intel_dp->output_reg);
|
|
|
|
intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
|
|
}
|
|
|
|
msleep(intel_dp->panel_power_down_delay);
|
|
|
|
intel_dp->DP = DP;
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
intel_wakeref_t wakeref;
|
|
|
|
with_pps_lock(intel_dp, wakeref)
|
|
intel_dp->active_pipe = INVALID_PIPE;
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
|
|
{
|
|
u8 dpcd_ext[6];
|
|
|
|
/*
|
|
* Prior to DP1.3 the bit represented by
|
|
* DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
|
|
* if it is set DP_DPCD_REV at 0000h could be at a value less than
|
|
* the true capability of the panel. The only way to check is to
|
|
* then compare 0000h and 2200h.
|
|
*/
|
|
if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
|
|
DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
|
|
return;
|
|
|
|
if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
|
|
&dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
|
|
DRM_ERROR("DPCD failed read at extended capabilities\n");
|
|
return;
|
|
}
|
|
|
|
if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
|
|
DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
|
|
return;
|
|
}
|
|
|
|
if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
|
|
return;
|
|
|
|
DRM_DEBUG_KMS("Base DPCD: %*ph\n",
|
|
(int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
|
|
|
|
memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
|
|
}
|
|
|
|
bool
|
|
intel_dp_read_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
|
|
sizeof(intel_dp->dpcd)) < 0)
|
|
return false; /* aux transfer failed */
|
|
|
|
intel_dp_extended_receiver_capabilities(intel_dp);
|
|
|
|
DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
|
|
|
|
return intel_dp->dpcd[DP_DPCD_REV] != 0;
|
|
}
|
|
|
|
static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
|
|
{
|
|
/*
|
|
* Clear the cached register set to avoid using stale values
|
|
* for the sinks that do not support DSC.
|
|
*/
|
|
memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
|
|
|
|
/* Clear fec_capable to avoid using stale values */
|
|
intel_dp->fec_capable = 0;
|
|
|
|
/* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
|
|
intel_dp->edp_dpcd[0] >= DP_EDP_14) {
|
|
if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
|
|
intel_dp->dsc_dpcd,
|
|
sizeof(intel_dp->dsc_dpcd)) < 0)
|
|
DRM_ERROR("Failed to read DPCD register 0x%x\n",
|
|
DP_DSC_SUPPORT);
|
|
|
|
DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
|
|
(int)sizeof(intel_dp->dsc_dpcd),
|
|
intel_dp->dsc_dpcd);
|
|
|
|
/* FEC is supported only on DP 1.4 */
|
|
if (!intel_dp_is_edp(intel_dp) &&
|
|
drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
|
|
&intel_dp->fec_capable) < 0)
|
|
DRM_ERROR("Failed to read FEC DPCD register\n");
|
|
|
|
DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
|
|
}
|
|
}
|
|
|
|
static bool
|
|
intel_edp_init_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
|
|
|
|
/* this function is meant to be called only once */
|
|
WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
|
|
|
|
if (!intel_dp_read_dpcd(intel_dp))
|
|
return false;
|
|
|
|
drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
|
|
drm_dp_is_branch(intel_dp->dpcd));
|
|
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
|
|
dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
|
|
DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
|
|
|
|
/*
|
|
* Read the eDP display control registers.
|
|
*
|
|
* Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
|
|
* DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
|
|
* set, but require eDP 1.4+ detection (e.g. for supported link rates
|
|
* method). The display control registers should read zero if they're
|
|
* not supported anyway.
|
|
*/
|
|
if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
|
|
intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
|
|
sizeof(intel_dp->edp_dpcd))
|
|
DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
|
|
intel_dp->edp_dpcd);
|
|
|
|
/*
|
|
* This has to be called after intel_dp->edp_dpcd is filled, PSR checks
|
|
* for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
|
|
*/
|
|
intel_psr_init_dpcd(intel_dp);
|
|
|
|
/* Read the eDP 1.4+ supported link rates. */
|
|
if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
|
|
__le16 sink_rates[DP_MAX_SUPPORTED_RATES];
|
|
int i;
|
|
|
|
drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
|
|
sink_rates, sizeof(sink_rates));
|
|
|
|
for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
|
|
int val = le16_to_cpu(sink_rates[i]);
|
|
|
|
if (val == 0)
|
|
break;
|
|
|
|
/* Value read multiplied by 200kHz gives the per-lane
|
|
* link rate in kHz. The source rates are, however,
|
|
* stored in terms of LS_Clk kHz. The full conversion
|
|
* back to symbols is
|
|
* (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
|
|
*/
|
|
intel_dp->sink_rates[i] = (val * 200) / 10;
|
|
}
|
|
intel_dp->num_sink_rates = i;
|
|
}
|
|
|
|
/*
|
|
* Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
|
|
* default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
|
|
*/
|
|
if (intel_dp->num_sink_rates)
|
|
intel_dp->use_rate_select = true;
|
|
else
|
|
intel_dp_set_sink_rates(intel_dp);
|
|
|
|
intel_dp_set_common_rates(intel_dp);
|
|
|
|
/* Read the eDP DSC DPCD registers */
|
|
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
|
|
intel_dp_get_dsc_sink_cap(intel_dp);
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
static bool
|
|
intel_dp_get_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
if (!intel_dp_read_dpcd(intel_dp))
|
|
return false;
|
|
|
|
/* Don't clobber cached eDP rates. */
|
|
if (!intel_dp_is_edp(intel_dp)) {
|
|
intel_dp_set_sink_rates(intel_dp);
|
|
intel_dp_set_common_rates(intel_dp);
|
|
}
|
|
|
|
/*
|
|
* Some eDP panels do not set a valid value for sink count, that is why
|
|
* it don't care about read it here and in intel_edp_init_dpcd().
|
|
*/
|
|
if (!intel_dp_is_edp(intel_dp)) {
|
|
u8 count;
|
|
ssize_t r;
|
|
|
|
r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
|
|
if (r < 1)
|
|
return false;
|
|
|
|
/*
|
|
* Sink count can change between short pulse hpd hence
|
|
* a member variable in intel_dp will track any changes
|
|
* between short pulse interrupts.
|
|
*/
|
|
intel_dp->sink_count = DP_GET_SINK_COUNT(count);
|
|
|
|
/*
|
|
* SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
|
|
* a dongle is present but no display. Unless we require to know
|
|
* if a dongle is present or not, we don't need to update
|
|
* downstream port information. So, an early return here saves
|
|
* time from performing other operations which are not required.
|
|
*/
|
|
if (!intel_dp->sink_count)
|
|
return false;
|
|
}
|
|
|
|
if (!drm_dp_is_branch(intel_dp->dpcd))
|
|
return true; /* native DP sink */
|
|
|
|
if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
|
|
return true; /* no per-port downstream info */
|
|
|
|
if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
|
|
intel_dp->downstream_ports,
|
|
DP_MAX_DOWNSTREAM_PORTS) < 0)
|
|
return false; /* downstream port status fetch failed */
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_sink_can_mst(struct intel_dp *intel_dp)
|
|
{
|
|
u8 mstm_cap;
|
|
|
|
if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
|
|
return false;
|
|
|
|
if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
|
|
return false;
|
|
|
|
return mstm_cap & DP_MST_CAP;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_can_mst(struct intel_dp *intel_dp)
|
|
{
|
|
return i915_modparams.enable_dp_mst &&
|
|
intel_dp->can_mst &&
|
|
intel_dp_sink_can_mst(intel_dp);
|
|
}
|
|
|
|
static void
|
|
intel_dp_configure_mst(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_encoder *encoder =
|
|
&dp_to_dig_port(intel_dp)->base;
|
|
bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
|
|
|
|
DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
|
|
port_name(encoder->port), yesno(intel_dp->can_mst),
|
|
yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
|
|
|
|
if (!intel_dp->can_mst)
|
|
return;
|
|
|
|
intel_dp->is_mst = sink_can_mst &&
|
|
i915_modparams.enable_dp_mst;
|
|
|
|
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
|
|
intel_dp->is_mst);
|
|
}
|
|
|
|
static bool
|
|
intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
|
|
{
|
|
return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
|
|
sink_irq_vector, DP_DPRX_ESI_LEN) ==
|
|
DP_DPRX_ESI_LEN;
|
|
}
|
|
|
|
u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
|
|
int mode_clock, int mode_hdisplay)
|
|
{
|
|
u16 bits_per_pixel, max_bpp_small_joiner_ram;
|
|
int i;
|
|
|
|
/*
|
|
* Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
|
|
* (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
|
|
* FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
|
|
* for MST -> TimeSlotsPerMTP has to be calculated
|
|
*/
|
|
bits_per_pixel = (link_clock * lane_count * 8 *
|
|
DP_DSC_FEC_OVERHEAD_FACTOR) /
|
|
mode_clock;
|
|
|
|
/* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
|
|
max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
|
|
mode_hdisplay;
|
|
|
|
/*
|
|
* Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
|
|
* check, output bpp from small joiner RAM check)
|
|
*/
|
|
bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
|
|
|
|
/* Error out if the max bpp is less than smallest allowed valid bpp */
|
|
if (bits_per_pixel < valid_dsc_bpp[0]) {
|
|
DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
|
|
return 0;
|
|
}
|
|
|
|
/* Find the nearest match in the array of known BPPs from VESA */
|
|
for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
|
|
if (bits_per_pixel < valid_dsc_bpp[i + 1])
|
|
break;
|
|
}
|
|
bits_per_pixel = valid_dsc_bpp[i];
|
|
|
|
/*
|
|
* Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
|
|
* fractional part is 0
|
|
*/
|
|
return bits_per_pixel << 4;
|
|
}
|
|
|
|
u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
|
|
int mode_clock,
|
|
int mode_hdisplay)
|
|
{
|
|
u8 min_slice_count, i;
|
|
int max_slice_width;
|
|
|
|
if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
|
|
min_slice_count = DIV_ROUND_UP(mode_clock,
|
|
DP_DSC_MAX_ENC_THROUGHPUT_0);
|
|
else
|
|
min_slice_count = DIV_ROUND_UP(mode_clock,
|
|
DP_DSC_MAX_ENC_THROUGHPUT_1);
|
|
|
|
max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
|
|
if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
|
|
DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
|
|
max_slice_width);
|
|
return 0;
|
|
}
|
|
/* Also take into account max slice width */
|
|
min_slice_count = min_t(u8, min_slice_count,
|
|
DIV_ROUND_UP(mode_hdisplay,
|
|
max_slice_width));
|
|
|
|
/* Find the closest match to the valid slice count values */
|
|
for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
|
|
if (valid_dsc_slicecount[i] >
|
|
drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
|
|
false))
|
|
break;
|
|
if (min_slice_count <= valid_dsc_slicecount[i])
|
|
return valid_dsc_slicecount[i];
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
|
|
return 0;
|
|
}
|
|
|
|
static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
|
|
{
|
|
int status = 0;
|
|
int test_link_rate;
|
|
u8 test_lane_count, test_link_bw;
|
|
/* (DP CTS 1.2)
|
|
* 4.3.1.11
|
|
*/
|
|
/* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
|
|
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
|
|
&test_lane_count);
|
|
|
|
if (status <= 0) {
|
|
DRM_DEBUG_KMS("Lane count read failed\n");
|
|
return DP_TEST_NAK;
|
|
}
|
|
test_lane_count &= DP_MAX_LANE_COUNT_MASK;
|
|
|
|
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
|
|
&test_link_bw);
|
|
if (status <= 0) {
|
|
DRM_DEBUG_KMS("Link Rate read failed\n");
|
|
return DP_TEST_NAK;
|
|
}
|
|
test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
|
|
|
|
/* Validate the requested link rate and lane count */
|
|
if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
|
|
test_lane_count))
|
|
return DP_TEST_NAK;
|
|
|
|
intel_dp->compliance.test_lane_count = test_lane_count;
|
|
intel_dp->compliance.test_link_rate = test_link_rate;
|
|
|
|
return DP_TEST_ACK;
|
|
}
|
|
|
|
static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
|
|
{
|
|
u8 test_pattern;
|
|
u8 test_misc;
|
|
__be16 h_width, v_height;
|
|
int status = 0;
|
|
|
|
/* Read the TEST_PATTERN (DP CTS 3.1.5) */
|
|
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
|
|
&test_pattern);
|
|
if (status <= 0) {
|
|
DRM_DEBUG_KMS("Test pattern read failed\n");
|
|
return DP_TEST_NAK;
|
|
}
|
|
if (test_pattern != DP_COLOR_RAMP)
|
|
return DP_TEST_NAK;
|
|
|
|
status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
|
|
&h_width, 2);
|
|
if (status <= 0) {
|
|
DRM_DEBUG_KMS("H Width read failed\n");
|
|
return DP_TEST_NAK;
|
|
}
|
|
|
|
status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
|
|
&v_height, 2);
|
|
if (status <= 0) {
|
|
DRM_DEBUG_KMS("V Height read failed\n");
|
|
return DP_TEST_NAK;
|
|
}
|
|
|
|
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
|
|
&test_misc);
|
|
if (status <= 0) {
|
|
DRM_DEBUG_KMS("TEST MISC read failed\n");
|
|
return DP_TEST_NAK;
|
|
}
|
|
if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
|
|
return DP_TEST_NAK;
|
|
if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
|
|
return DP_TEST_NAK;
|
|
switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
|
|
case DP_TEST_BIT_DEPTH_6:
|
|
intel_dp->compliance.test_data.bpc = 6;
|
|
break;
|
|
case DP_TEST_BIT_DEPTH_8:
|
|
intel_dp->compliance.test_data.bpc = 8;
|
|
break;
|
|
default:
|
|
return DP_TEST_NAK;
|
|
}
|
|
|
|
intel_dp->compliance.test_data.video_pattern = test_pattern;
|
|
intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
|
|
intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
|
|
/* Set test active flag here so userspace doesn't interrupt things */
|
|
intel_dp->compliance.test_active = 1;
|
|
|
|
return DP_TEST_ACK;
|
|
}
|
|
|
|
static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
|
|
{
|
|
u8 test_result = DP_TEST_ACK;
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
|
|
if (intel_connector->detect_edid == NULL ||
|
|
connector->edid_corrupt ||
|
|
intel_dp->aux.i2c_defer_count > 6) {
|
|
/* Check EDID read for NACKs, DEFERs and corruption
|
|
* (DP CTS 1.2 Core r1.1)
|
|
* 4.2.2.4 : Failed EDID read, I2C_NAK
|
|
* 4.2.2.5 : Failed EDID read, I2C_DEFER
|
|
* 4.2.2.6 : EDID corruption detected
|
|
* Use failsafe mode for all cases
|
|
*/
|
|
if (intel_dp->aux.i2c_nack_count > 0 ||
|
|
intel_dp->aux.i2c_defer_count > 0)
|
|
DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
|
|
intel_dp->aux.i2c_nack_count,
|
|
intel_dp->aux.i2c_defer_count);
|
|
intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
|
|
} else {
|
|
struct edid *block = intel_connector->detect_edid;
|
|
|
|
/* We have to write the checksum
|
|
* of the last block read
|
|
*/
|
|
block += intel_connector->detect_edid->extensions;
|
|
|
|
if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
|
|
block->checksum) <= 0)
|
|
DRM_DEBUG_KMS("Failed to write EDID checksum\n");
|
|
|
|
test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
|
|
intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
|
|
}
|
|
|
|
/* Set test active flag here so userspace doesn't interrupt things */
|
|
intel_dp->compliance.test_active = 1;
|
|
|
|
return test_result;
|
|
}
|
|
|
|
static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
|
|
{
|
|
u8 test_result = DP_TEST_NAK;
|
|
return test_result;
|
|
}
|
|
|
|
static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
|
|
{
|
|
u8 response = DP_TEST_NAK;
|
|
u8 request = 0;
|
|
int status;
|
|
|
|
status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
|
|
if (status <= 0) {
|
|
DRM_DEBUG_KMS("Could not read test request from sink\n");
|
|
goto update_status;
|
|
}
|
|
|
|
switch (request) {
|
|
case DP_TEST_LINK_TRAINING:
|
|
DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
|
|
response = intel_dp_autotest_link_training(intel_dp);
|
|
break;
|
|
case DP_TEST_LINK_VIDEO_PATTERN:
|
|
DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
|
|
response = intel_dp_autotest_video_pattern(intel_dp);
|
|
break;
|
|
case DP_TEST_LINK_EDID_READ:
|
|
DRM_DEBUG_KMS("EDID test requested\n");
|
|
response = intel_dp_autotest_edid(intel_dp);
|
|
break;
|
|
case DP_TEST_LINK_PHY_TEST_PATTERN:
|
|
DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
|
|
response = intel_dp_autotest_phy_pattern(intel_dp);
|
|
break;
|
|
default:
|
|
DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
|
|
break;
|
|
}
|
|
|
|
if (response & DP_TEST_ACK)
|
|
intel_dp->compliance.test_type = request;
|
|
|
|
update_status:
|
|
status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
|
|
if (status <= 0)
|
|
DRM_DEBUG_KMS("Could not write test response to sink\n");
|
|
}
|
|
|
|
static int
|
|
intel_dp_check_mst_status(struct intel_dp *intel_dp)
|
|
{
|
|
bool bret;
|
|
|
|
if (intel_dp->is_mst) {
|
|
u8 esi[DP_DPRX_ESI_LEN] = { 0 };
|
|
int ret = 0;
|
|
int retry;
|
|
bool handled;
|
|
|
|
WARN_ON_ONCE(intel_dp->active_mst_links < 0);
|
|
bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
|
|
go_again:
|
|
if (bret == true) {
|
|
|
|
/* check link status - esi[10] = 0x200c */
|
|
if (intel_dp->active_mst_links > 0 &&
|
|
!drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
|
|
DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
|
|
intel_dp_start_link_train(intel_dp);
|
|
intel_dp_stop_link_train(intel_dp);
|
|
}
|
|
|
|
DRM_DEBUG_KMS("got esi %3ph\n", esi);
|
|
ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
|
|
|
|
if (handled) {
|
|
for (retry = 0; retry < 3; retry++) {
|
|
int wret;
|
|
wret = drm_dp_dpcd_write(&intel_dp->aux,
|
|
DP_SINK_COUNT_ESI+1,
|
|
&esi[1], 3);
|
|
if (wret == 3) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
|
|
if (bret == true) {
|
|
DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
|
|
goto go_again;
|
|
}
|
|
} else
|
|
ret = 0;
|
|
|
|
return ret;
|
|
} else {
|
|
DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
|
|
intel_dp->is_mst = false;
|
|
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
|
|
intel_dp->is_mst);
|
|
}
|
|
}
|
|
return -EINVAL;
|
|
}
|
|
|
|
static bool
|
|
intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
|
|
{
|
|
u8 link_status[DP_LINK_STATUS_SIZE];
|
|
|
|
if (!intel_dp->link_trained)
|
|
return false;
|
|
|
|
/*
|
|
* While PSR source HW is enabled, it will control main-link sending
|
|
* frames, enabling and disabling it so trying to do a retrain will fail
|
|
* as the link would or not be on or it could mix training patterns
|
|
* and frame data at the same time causing retrain to fail.
|
|
* Also when exiting PSR, HW will retrain the link anyways fixing
|
|
* any link status error.
|
|
*/
|
|
if (intel_psr_enabled(intel_dp))
|
|
return false;
|
|
|
|
if (!intel_dp_get_link_status(intel_dp, link_status))
|
|
return false;
|
|
|
|
/*
|
|
* Validate the cached values of intel_dp->link_rate and
|
|
* intel_dp->lane_count before attempting to retrain.
|
|
*/
|
|
if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
|
|
intel_dp->lane_count))
|
|
return false;
|
|
|
|
/* Retrain if Channel EQ or CR not ok */
|
|
return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
|
|
}
|
|
|
|
int intel_dp_retrain_link(struct intel_encoder *encoder,
|
|
struct drm_modeset_acquire_ctx *ctx)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
|
|
struct intel_connector *connector = intel_dp->attached_connector;
|
|
struct drm_connector_state *conn_state;
|
|
struct intel_crtc_state *crtc_state;
|
|
struct intel_crtc *crtc;
|
|
int ret;
|
|
|
|
/* FIXME handle the MST connectors as well */
|
|
|
|
if (!connector || connector->base.status != connector_status_connected)
|
|
return 0;
|
|
|
|
ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
|
|
ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
conn_state = connector->base.state;
|
|
|
|
crtc = to_intel_crtc(conn_state->crtc);
|
|
if (!crtc)
|
|
return 0;
|
|
|
|
ret = drm_modeset_lock(&crtc->base.mutex, ctx);
|
|
if (ret)
|
|
return ret;
|
|
|
|
crtc_state = to_intel_crtc_state(crtc->base.state);
|
|
|
|
WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
|
|
|
|
if (!crtc_state->base.active)
|
|
return 0;
|
|
|
|
if (conn_state->commit &&
|
|
!try_wait_for_completion(&conn_state->commit->hw_done))
|
|
return 0;
|
|
|
|
if (!intel_dp_needs_link_retrain(intel_dp))
|
|
return 0;
|
|
|
|
/* Suppress underruns caused by re-training */
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
|
|
if (crtc_state->has_pch_encoder)
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv,
|
|
intel_crtc_pch_transcoder(crtc), false);
|
|
|
|
intel_dp_start_link_train(intel_dp);
|
|
intel_dp_stop_link_train(intel_dp);
|
|
|
|
/* Keep underrun reporting disabled until things are stable */
|
|
intel_wait_for_vblank(dev_priv, crtc->pipe);
|
|
|
|
intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
|
|
if (crtc_state->has_pch_encoder)
|
|
intel_set_pch_fifo_underrun_reporting(dev_priv,
|
|
intel_crtc_pch_transcoder(crtc), true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If display is now connected check links status,
|
|
* there has been known issues of link loss triggering
|
|
* long pulse.
|
|
*
|
|
* Some sinks (eg. ASUS PB287Q) seem to perform some
|
|
* weird HPD ping pong during modesets. So we can apparently
|
|
* end up with HPD going low during a modeset, and then
|
|
* going back up soon after. And once that happens we must
|
|
* retrain the link to get a picture. That's in case no
|
|
* userspace component reacted to intermittent HPD dip.
|
|
*/
|
|
static bool intel_dp_hotplug(struct intel_encoder *encoder,
|
|
struct intel_connector *connector)
|
|
{
|
|
struct drm_modeset_acquire_ctx ctx;
|
|
bool changed;
|
|
int ret;
|
|
|
|
changed = intel_encoder_hotplug(encoder, connector);
|
|
|
|
drm_modeset_acquire_init(&ctx, 0);
|
|
|
|
for (;;) {
|
|
ret = intel_dp_retrain_link(encoder, &ctx);
|
|
|
|
if (ret == -EDEADLK) {
|
|
drm_modeset_backoff(&ctx);
|
|
continue;
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
drm_modeset_drop_locks(&ctx);
|
|
drm_modeset_acquire_fini(&ctx);
|
|
WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
|
|
|
|
return changed;
|
|
}
|
|
|
|
static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
|
|
{
|
|
u8 val;
|
|
|
|
if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
|
|
return;
|
|
|
|
if (drm_dp_dpcd_readb(&intel_dp->aux,
|
|
DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
|
|
return;
|
|
|
|
drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
|
|
|
|
if (val & DP_AUTOMATED_TEST_REQUEST)
|
|
intel_dp_handle_test_request(intel_dp);
|
|
|
|
if (val & DP_CP_IRQ)
|
|
intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
|
|
|
|
if (val & DP_SINK_SPECIFIC_IRQ)
|
|
DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
|
|
}
|
|
|
|
/*
|
|
* According to DP spec
|
|
* 5.1.2:
|
|
* 1. Read DPCD
|
|
* 2. Configure link according to Receiver Capabilities
|
|
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
|
|
* 4. Check link status on receipt of hot-plug interrupt
|
|
*
|
|
* intel_dp_short_pulse - handles short pulse interrupts
|
|
* when full detection is not required.
|
|
* Returns %true if short pulse is handled and full detection
|
|
* is NOT required and %false otherwise.
|
|
*/
|
|
static bool
|
|
intel_dp_short_pulse(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
u8 old_sink_count = intel_dp->sink_count;
|
|
bool ret;
|
|
|
|
/*
|
|
* Clearing compliance test variables to allow capturing
|
|
* of values for next automated test request.
|
|
*/
|
|
memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
|
|
|
|
/*
|
|
* Now read the DPCD to see if it's actually running
|
|
* If the current value of sink count doesn't match with
|
|
* the value that was stored earlier or dpcd read failed
|
|
* we need to do full detection
|
|
*/
|
|
ret = intel_dp_get_dpcd(intel_dp);
|
|
|
|
if ((old_sink_count != intel_dp->sink_count) || !ret) {
|
|
/* No need to proceed if we are going to do full detect */
|
|
return false;
|
|
}
|
|
|
|
intel_dp_check_service_irq(intel_dp);
|
|
|
|
/* Handle CEC interrupts, if any */
|
|
drm_dp_cec_irq(&intel_dp->aux);
|
|
|
|
/* defer to the hotplug work for link retraining if needed */
|
|
if (intel_dp_needs_link_retrain(intel_dp))
|
|
return false;
|
|
|
|
intel_psr_short_pulse(intel_dp);
|
|
|
|
if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
|
|
DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
|
|
/* Send a Hotplug Uevent to userspace to start modeset */
|
|
drm_kms_helper_hotplug_event(&dev_priv->drm);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* XXX this is probably wrong for multiple downstream ports */
|
|
static enum drm_connector_status
|
|
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
|
|
u8 *dpcd = intel_dp->dpcd;
|
|
u8 type;
|
|
|
|
if (lspcon->active)
|
|
lspcon_resume(lspcon);
|
|
|
|
if (!intel_dp_get_dpcd(intel_dp))
|
|
return connector_status_disconnected;
|
|
|
|
if (intel_dp_is_edp(intel_dp))
|
|
return connector_status_connected;
|
|
|
|
/* if there's no downstream port, we're done */
|
|
if (!drm_dp_is_branch(dpcd))
|
|
return connector_status_connected;
|
|
|
|
/* If we're HPD-aware, SINK_COUNT changes dynamically */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
|
|
intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
|
|
|
|
return intel_dp->sink_count ?
|
|
connector_status_connected : connector_status_disconnected;
|
|
}
|
|
|
|
if (intel_dp_can_mst(intel_dp))
|
|
return connector_status_connected;
|
|
|
|
/* If no HPD, poke DDC gently */
|
|
if (drm_probe_ddc(&intel_dp->aux.ddc))
|
|
return connector_status_connected;
|
|
|
|
/* Well we tried, say unknown for unreliable port types */
|
|
if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
|
|
type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
|
|
if (type == DP_DS_PORT_TYPE_VGA ||
|
|
type == DP_DS_PORT_TYPE_NON_EDID)
|
|
return connector_status_unknown;
|
|
} else {
|
|
type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
|
|
DP_DWN_STRM_PORT_TYPE_MASK;
|
|
if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
|
|
type == DP_DWN_STRM_PORT_TYPE_OTHER)
|
|
return connector_status_unknown;
|
|
}
|
|
|
|
/* Anything else is out of spec, warn and ignore */
|
|
DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
|
|
return connector_status_disconnected;
|
|
}
|
|
|
|
static enum drm_connector_status
|
|
edp_detect(struct intel_dp *intel_dp)
|
|
{
|
|
return connector_status_connected;
|
|
}
|
|
|
|
static bool ibx_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
u32 bit;
|
|
|
|
switch (encoder->hpd_pin) {
|
|
case HPD_PORT_B:
|
|
bit = SDE_PORTB_HOTPLUG;
|
|
break;
|
|
case HPD_PORT_C:
|
|
bit = SDE_PORTC_HOTPLUG;
|
|
break;
|
|
case HPD_PORT_D:
|
|
bit = SDE_PORTD_HOTPLUG;
|
|
break;
|
|
default:
|
|
MISSING_CASE(encoder->hpd_pin);
|
|
return false;
|
|
}
|
|
|
|
return I915_READ(SDEISR) & bit;
|
|
}
|
|
|
|
static bool cpt_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
u32 bit;
|
|
|
|
switch (encoder->hpd_pin) {
|
|
case HPD_PORT_B:
|
|
bit = SDE_PORTB_HOTPLUG_CPT;
|
|
break;
|
|
case HPD_PORT_C:
|
|
bit = SDE_PORTC_HOTPLUG_CPT;
|
|
break;
|
|
case HPD_PORT_D:
|
|
bit = SDE_PORTD_HOTPLUG_CPT;
|
|
break;
|
|
default:
|
|
MISSING_CASE(encoder->hpd_pin);
|
|
return false;
|
|
}
|
|
|
|
return I915_READ(SDEISR) & bit;
|
|
}
|
|
|
|
static bool spt_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
u32 bit;
|
|
|
|
switch (encoder->hpd_pin) {
|
|
case HPD_PORT_A:
|
|
bit = SDE_PORTA_HOTPLUG_SPT;
|
|
break;
|
|
case HPD_PORT_E:
|
|
bit = SDE_PORTE_HOTPLUG_SPT;
|
|
break;
|
|
default:
|
|
return cpt_digital_port_connected(encoder);
|
|
}
|
|
|
|
return I915_READ(SDEISR) & bit;
|
|
}
|
|
|
|
static bool g4x_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
u32 bit;
|
|
|
|
switch (encoder->hpd_pin) {
|
|
case HPD_PORT_B:
|
|
bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
|
|
break;
|
|
case HPD_PORT_C:
|
|
bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
|
|
break;
|
|
case HPD_PORT_D:
|
|
bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
|
|
break;
|
|
default:
|
|
MISSING_CASE(encoder->hpd_pin);
|
|
return false;
|
|
}
|
|
|
|
return I915_READ(PORT_HOTPLUG_STAT) & bit;
|
|
}
|
|
|
|
static bool gm45_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
u32 bit;
|
|
|
|
switch (encoder->hpd_pin) {
|
|
case HPD_PORT_B:
|
|
bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
|
|
break;
|
|
case HPD_PORT_C:
|
|
bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
|
|
break;
|
|
case HPD_PORT_D:
|
|
bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
|
|
break;
|
|
default:
|
|
MISSING_CASE(encoder->hpd_pin);
|
|
return false;
|
|
}
|
|
|
|
return I915_READ(PORT_HOTPLUG_STAT) & bit;
|
|
}
|
|
|
|
static bool ilk_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
|
|
if (encoder->hpd_pin == HPD_PORT_A)
|
|
return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
|
|
else
|
|
return ibx_digital_port_connected(encoder);
|
|
}
|
|
|
|
static bool snb_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
|
|
if (encoder->hpd_pin == HPD_PORT_A)
|
|
return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
|
|
else
|
|
return cpt_digital_port_connected(encoder);
|
|
}
|
|
|
|
static bool ivb_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
|
|
if (encoder->hpd_pin == HPD_PORT_A)
|
|
return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
|
|
else
|
|
return cpt_digital_port_connected(encoder);
|
|
}
|
|
|
|
static bool bdw_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
|
|
if (encoder->hpd_pin == HPD_PORT_A)
|
|
return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
|
|
else
|
|
return cpt_digital_port_connected(encoder);
|
|
}
|
|
|
|
static bool bxt_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
u32 bit;
|
|
|
|
switch (encoder->hpd_pin) {
|
|
case HPD_PORT_A:
|
|
bit = BXT_DE_PORT_HP_DDIA;
|
|
break;
|
|
case HPD_PORT_B:
|
|
bit = BXT_DE_PORT_HP_DDIB;
|
|
break;
|
|
case HPD_PORT_C:
|
|
bit = BXT_DE_PORT_HP_DDIC;
|
|
break;
|
|
default:
|
|
MISSING_CASE(encoder->hpd_pin);
|
|
return false;
|
|
}
|
|
|
|
return I915_READ(GEN8_DE_PORT_ISR) & bit;
|
|
}
|
|
|
|
static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *intel_dig_port)
|
|
{
|
|
enum port port = intel_dig_port->base.port;
|
|
|
|
return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
|
|
}
|
|
|
|
static const char *tc_type_name(enum tc_port_type type)
|
|
{
|
|
static const char * const names[] = {
|
|
[TC_PORT_UNKNOWN] = "unknown",
|
|
[TC_PORT_LEGACY] = "legacy",
|
|
[TC_PORT_TYPEC] = "typec",
|
|
[TC_PORT_TBT] = "tbt",
|
|
};
|
|
|
|
if (WARN_ON(type >= ARRAY_SIZE(names)))
|
|
type = TC_PORT_UNKNOWN;
|
|
|
|
return names[type];
|
|
}
|
|
|
|
static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *intel_dig_port,
|
|
bool is_legacy, bool is_typec, bool is_tbt)
|
|
{
|
|
enum port port = intel_dig_port->base.port;
|
|
enum tc_port_type old_type = intel_dig_port->tc_type;
|
|
|
|
WARN_ON(is_legacy + is_typec + is_tbt != 1);
|
|
|
|
if (is_legacy)
|
|
intel_dig_port->tc_type = TC_PORT_LEGACY;
|
|
else if (is_typec)
|
|
intel_dig_port->tc_type = TC_PORT_TYPEC;
|
|
else if (is_tbt)
|
|
intel_dig_port->tc_type = TC_PORT_TBT;
|
|
else
|
|
return;
|
|
|
|
/* Types are not supposed to be changed at runtime. */
|
|
WARN_ON(old_type != TC_PORT_UNKNOWN &&
|
|
old_type != intel_dig_port->tc_type);
|
|
|
|
if (old_type != intel_dig_port->tc_type)
|
|
DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
|
|
tc_type_name(intel_dig_port->tc_type));
|
|
}
|
|
|
|
/*
|
|
* This function implements the first part of the Connect Flow described by our
|
|
* specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
|
|
* lanes, EDID, etc) is done as needed in the typical places.
|
|
*
|
|
* Unlike the other ports, type-C ports are not available to use as soon as we
|
|
* get a hotplug. The type-C PHYs can be shared between multiple controllers:
|
|
* display, USB, etc. As a result, handshaking through FIA is required around
|
|
* connect and disconnect to cleanly transfer ownership with the controller and
|
|
* set the type-C power state.
|
|
*
|
|
* We could opt to only do the connect flow when we actually try to use the AUX
|
|
* channels or do a modeset, then immediately run the disconnect flow after
|
|
* usage, but there are some implications on this for a dynamic environment:
|
|
* things may go away or change behind our backs. So for now our driver is
|
|
* always trying to acquire ownership of the controller as soon as it gets an
|
|
* interrupt (or polls state and sees a port is connected) and only gives it
|
|
* back when it sees a disconnect. Implementation of a more fine-grained model
|
|
* will require a lot of coordination with user space and thorough testing for
|
|
* the extra possible cases.
|
|
*/
|
|
static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *dig_port)
|
|
{
|
|
enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
|
|
u32 val;
|
|
|
|
if (dig_port->tc_type != TC_PORT_LEGACY &&
|
|
dig_port->tc_type != TC_PORT_TYPEC)
|
|
return true;
|
|
|
|
val = I915_READ(PORT_TX_DFLEXDPPMS);
|
|
if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
|
|
DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
|
|
WARN_ON(dig_port->tc_legacy_port);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* This function may be called many times in a row without an HPD event
|
|
* in between, so try to avoid the write when we can.
|
|
*/
|
|
val = I915_READ(PORT_TX_DFLEXDPCSSS);
|
|
if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
|
|
val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
|
|
I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
|
|
}
|
|
|
|
/*
|
|
* Now we have to re-check the live state, in case the port recently
|
|
* became disconnected. Not necessary for legacy mode.
|
|
*/
|
|
if (dig_port->tc_type == TC_PORT_TYPEC &&
|
|
!(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
|
|
DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
|
|
icl_tc_phy_disconnect(dev_priv, dig_port);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* See the comment at the connect function. This implements the Disconnect
|
|
* Flow.
|
|
*/
|
|
void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *dig_port)
|
|
{
|
|
enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
|
|
|
|
if (dig_port->tc_type == TC_PORT_UNKNOWN)
|
|
return;
|
|
|
|
/*
|
|
* TBT disconnection flow is read the live status, what was done in
|
|
* caller.
|
|
*/
|
|
if (dig_port->tc_type == TC_PORT_TYPEC ||
|
|
dig_port->tc_type == TC_PORT_LEGACY) {
|
|
u32 val;
|
|
|
|
val = I915_READ(PORT_TX_DFLEXDPCSSS);
|
|
val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
|
|
I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
|
|
}
|
|
|
|
DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
|
|
port_name(dig_port->base.port),
|
|
tc_type_name(dig_port->tc_type));
|
|
|
|
dig_port->tc_type = TC_PORT_UNKNOWN;
|
|
}
|
|
|
|
/*
|
|
* The type-C ports are different because even when they are connected, they may
|
|
* not be available/usable by the graphics driver: see the comment on
|
|
* icl_tc_phy_connect(). So in our driver instead of adding the additional
|
|
* concept of "usable" and make everything check for "connected and usable" we
|
|
* define a port as "connected" when it is not only connected, but also when it
|
|
* is usable by the rest of the driver. That maintains the old assumption that
|
|
* connected ports are usable, and avoids exposing to the users objects they
|
|
* can't really use.
|
|
*/
|
|
static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
|
|
struct intel_digital_port *intel_dig_port)
|
|
{
|
|
enum port port = intel_dig_port->base.port;
|
|
enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
|
|
bool is_legacy, is_typec, is_tbt;
|
|
u32 dpsp;
|
|
|
|
/*
|
|
* WARN if we got a legacy port HPD, but VBT didn't mark the port as
|
|
* legacy. Treat the port as legacy from now on.
|
|
*/
|
|
if (WARN_ON(!intel_dig_port->tc_legacy_port &&
|
|
I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)))
|
|
intel_dig_port->tc_legacy_port = true;
|
|
is_legacy = intel_dig_port->tc_legacy_port;
|
|
|
|
/*
|
|
* The spec says we shouldn't be using the ISR bits for detecting
|
|
* between TC and TBT. We should use DFLEXDPSP.
|
|
*/
|
|
dpsp = I915_READ(PORT_TX_DFLEXDPSP);
|
|
is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
|
|
is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);
|
|
|
|
if (!is_legacy && !is_typec && !is_tbt) {
|
|
icl_tc_phy_disconnect(dev_priv, intel_dig_port);
|
|
|
|
return false;
|
|
}
|
|
|
|
icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
|
|
is_tbt);
|
|
|
|
if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool icl_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
|
|
|
|
if (intel_port_is_combophy(dev_priv, encoder->port))
|
|
return icl_combo_port_connected(dev_priv, dig_port);
|
|
else if (intel_port_is_tc(dev_priv, encoder->port))
|
|
return icl_tc_port_connected(dev_priv, dig_port);
|
|
else
|
|
MISSING_CASE(encoder->hpd_pin);
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* intel_digital_port_connected - is the specified port connected?
|
|
* @encoder: intel_encoder
|
|
*
|
|
* In cases where there's a connector physically connected but it can't be used
|
|
* by our hardware we also return false, since the rest of the driver should
|
|
* pretty much treat the port as disconnected. This is relevant for type-C
|
|
* (starting on ICL) where there's ownership involved.
|
|
*
|
|
* Return %true if port is connected, %false otherwise.
|
|
*/
|
|
bool intel_digital_port_connected(struct intel_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
|
|
|
|
if (HAS_GMCH(dev_priv)) {
|
|
if (IS_GM45(dev_priv))
|
|
return gm45_digital_port_connected(encoder);
|
|
else
|
|
return g4x_digital_port_connected(encoder);
|
|
}
|
|
|
|
if (INTEL_GEN(dev_priv) >= 11)
|
|
return icl_digital_port_connected(encoder);
|
|
else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
|
|
return spt_digital_port_connected(encoder);
|
|
else if (IS_GEN9_LP(dev_priv))
|
|
return bxt_digital_port_connected(encoder);
|
|
else if (IS_GEN(dev_priv, 8))
|
|
return bdw_digital_port_connected(encoder);
|
|
else if (IS_GEN(dev_priv, 7))
|
|
return ivb_digital_port_connected(encoder);
|
|
else if (IS_GEN(dev_priv, 6))
|
|
return snb_digital_port_connected(encoder);
|
|
else if (IS_GEN(dev_priv, 5))
|
|
return ilk_digital_port_connected(encoder);
|
|
|
|
MISSING_CASE(INTEL_GEN(dev_priv));
|
|
return false;
|
|
}
|
|
|
|
static struct edid *
|
|
intel_dp_get_edid(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
|
|
/* use cached edid if we have one */
|
|
if (intel_connector->edid) {
|
|
/* invalid edid */
|
|
if (IS_ERR(intel_connector->edid))
|
|
return NULL;
|
|
|
|
return drm_edid_duplicate(intel_connector->edid);
|
|
} else
|
|
return drm_get_edid(&intel_connector->base,
|
|
&intel_dp->aux.ddc);
|
|
}
|
|
|
|
static void
|
|
intel_dp_set_edid(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
struct edid *edid;
|
|
|
|
intel_dp_unset_edid(intel_dp);
|
|
edid = intel_dp_get_edid(intel_dp);
|
|
intel_connector->detect_edid = edid;
|
|
|
|
intel_dp->has_audio = drm_detect_monitor_audio(edid);
|
|
drm_dp_cec_set_edid(&intel_dp->aux, edid);
|
|
}
|
|
|
|
static void
|
|
intel_dp_unset_edid(struct intel_dp *intel_dp)
|
|
{
|
|
struct intel_connector *intel_connector = intel_dp->attached_connector;
|
|
|
|
drm_dp_cec_unset_edid(&intel_dp->aux);
|
|
kfree(intel_connector->detect_edid);
|
|
intel_connector->detect_edid = NULL;
|
|
|
|
intel_dp->has_audio = false;
|
|
}
|
|
|
|
static int
|
|
intel_dp_detect(struct drm_connector *connector,
|
|
struct drm_modeset_acquire_ctx *ctx,
|
|
bool force)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(connector->dev);
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *encoder = &dig_port->base;
|
|
enum drm_connector_status status;
|
|
enum intel_display_power_domain aux_domain =
|
|
intel_aux_power_domain(dig_port);
|
|
intel_wakeref_t wakeref;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
|
|
connector->base.id, connector->name);
|
|
WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
|
|
|
|
wakeref = intel_display_power_get(dev_priv, aux_domain);
|
|
|
|
/* Can't disconnect eDP */
|
|
if (intel_dp_is_edp(intel_dp))
|
|
status = edp_detect(intel_dp);
|
|
else if (intel_digital_port_connected(encoder))
|
|
status = intel_dp_detect_dpcd(intel_dp);
|
|
else
|
|
status = connector_status_disconnected;
|
|
|
|
if (status == connector_status_disconnected) {
|
|
memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
|
|
memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
|
|
|
|
if (intel_dp->is_mst) {
|
|
DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
|
|
intel_dp->is_mst,
|
|
intel_dp->mst_mgr.mst_state);
|
|
intel_dp->is_mst = false;
|
|
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
|
|
intel_dp->is_mst);
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
if (intel_dp->reset_link_params) {
|
|
/* Initial max link lane count */
|
|
intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
|
|
|
|
/* Initial max link rate */
|
|
intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
|
|
|
|
intel_dp->reset_link_params = false;
|
|
}
|
|
|
|
intel_dp_print_rates(intel_dp);
|
|
|
|
/* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
|
|
if (INTEL_GEN(dev_priv) >= 11)
|
|
intel_dp_get_dsc_sink_cap(intel_dp);
|
|
|
|
drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
|
|
drm_dp_is_branch(intel_dp->dpcd));
|
|
|
|
intel_dp_configure_mst(intel_dp);
|
|
|
|
if (intel_dp->is_mst) {
|
|
/*
|
|
* If we are in MST mode then this connector
|
|
* won't appear connected or have anything
|
|
* with EDID on it
|
|
*/
|
|
status = connector_status_disconnected;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Some external monitors do not signal loss of link synchronization
|
|
* with an IRQ_HPD, so force a link status check.
|
|
*/
|
|
if (!intel_dp_is_edp(intel_dp)) {
|
|
int ret;
|
|
|
|
ret = intel_dp_retrain_link(encoder, ctx);
|
|
if (ret) {
|
|
intel_display_power_put(dev_priv, aux_domain, wakeref);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Clearing NACK and defer counts to get their exact values
|
|
* while reading EDID which are required by Compliance tests
|
|
* 4.2.2.4 and 4.2.2.5
|
|
*/
|
|
intel_dp->aux.i2c_nack_count = 0;
|
|
intel_dp->aux.i2c_defer_count = 0;
|
|
|
|
intel_dp_set_edid(intel_dp);
|
|
if (intel_dp_is_edp(intel_dp) ||
|
|
to_intel_connector(connector)->detect_edid)
|
|
status = connector_status_connected;
|
|
|
|
intel_dp_check_service_irq(intel_dp);
|
|
|
|
out:
|
|
if (status != connector_status_connected && !intel_dp->is_mst)
|
|
intel_dp_unset_edid(intel_dp);
|
|
|
|
intel_display_power_put(dev_priv, aux_domain, wakeref);
|
|
return status;
|
|
}
|
|
|
|
static void
|
|
intel_dp_force(struct drm_connector *connector)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
struct intel_encoder *intel_encoder = &dig_port->base;
|
|
struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
|
|
enum intel_display_power_domain aux_domain =
|
|
intel_aux_power_domain(dig_port);
|
|
intel_wakeref_t wakeref;
|
|
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
|
|
connector->base.id, connector->name);
|
|
intel_dp_unset_edid(intel_dp);
|
|
|
|
if (connector->status != connector_status_connected)
|
|
return;
|
|
|
|
wakeref = intel_display_power_get(dev_priv, aux_domain);
|
|
|
|
intel_dp_set_edid(intel_dp);
|
|
|
|
intel_display_power_put(dev_priv, aux_domain, wakeref);
|
|
}
|
|
|
|
static int intel_dp_get_modes(struct drm_connector *connector)
|
|
{
|
|
struct intel_connector *intel_connector = to_intel_connector(connector);
|
|
struct edid *edid;
|
|
|
|
edid = intel_connector->detect_edid;
|
|
if (edid) {
|
|
int ret = intel_connector_update_modes(connector, edid);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* if eDP has no EDID, fall back to fixed mode */
|
|
if (intel_dp_is_edp(intel_attached_dp(connector)) &&
|
|
intel_connector->panel.fixed_mode) {
|
|
struct drm_display_mode *mode;
|
|
|
|
mode = drm_mode_duplicate(connector->dev,
|
|
intel_connector->panel.fixed_mode);
|
|
if (mode) {
|
|
drm_mode_probed_add(connector, mode);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
intel_dp_connector_register(struct drm_connector *connector)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
struct drm_device *dev = connector->dev;
|
|
int ret;
|
|
|
|
ret = intel_connector_register(connector);
|
|
if (ret)
|
|
return ret;
|
|
|
|
i915_debugfs_connector_add(connector);
|
|
|
|
DRM_DEBUG_KMS("registering %s bus for %s\n",
|
|
intel_dp->aux.name, connector->kdev->kobj.name);
|
|
|
|
intel_dp->aux.dev = connector->kdev;
|
|
ret = drm_dp_aux_register(&intel_dp->aux);
|
|
if (!ret)
|
|
drm_dp_cec_register_connector(&intel_dp->aux,
|
|
connector->name, dev->dev);
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
intel_dp_connector_unregister(struct drm_connector *connector)
|
|
{
|
|
struct intel_dp *intel_dp = intel_attached_dp(connector);
|
|
|
|
drm_dp_cec_unregister_connector(&intel_dp->aux);
|
|
drm_dp_aux_unregister(&intel_dp->aux);
|
|
intel_connector_unregister(connector);
|
|
}
|
|
|
|
void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
|
|
{
|
|
struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
|
|
struct intel_dp *intel_dp = &intel_dig_port->dp;
|
|
|
|
intel_dp_mst_encoder_cleanup(intel_dig_port);
|
|
if (intel_dp_is_edp(intel_dp)) {
|
|
intel_wakeref_t wakeref;
|
|
|
|
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
|
|
/*
|
|
* vdd might still be enabled do to the delayed vdd off.
|
|
* Make sure vdd is actually turned off here.
|
|
*/
|
|
with_pps_lock(intel_dp, wakeref)
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
|
|
if (intel_dp->edp_notifier.notifier_call) {
|
|
unregister_reboot_notifier(&intel_dp->edp_notifier);
|
|
intel_dp->edp_notifier.notifier_call = NULL;
|
|
}
|
|
}
|
|
|
|
intel_dp_aux_fini(intel_dp);
|
|
}
|
|
|
|
static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
|
|
{
|
|
intel_dp_encoder_flush_work(encoder);
|
|
|
|
drm_encoder_cleanup(encoder);
|
|
kfree(enc_to_dig_port(encoder));
|
|
}
|
|
|
|
void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return;
|
|
|
|
/*
|
|
* vdd might still be enabled do to the delayed vdd off.
|
|
* Make sure vdd is actually turned off here.
|
|
*/
|
|
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
|
|
with_pps_lock(intel_dp, wakeref)
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
}
|
|
|
|
static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
|
|
{
|
|
long ret;
|
|
|
|
#define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
|
|
ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
|
|
msecs_to_jiffies(timeout));
|
|
|
|
if (!ret)
|
|
DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
|
|
u8 *an)
|
|
{
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
|
|
static const struct drm_dp_aux_msg msg = {
|
|
.request = DP_AUX_NATIVE_WRITE,
|
|
.address = DP_AUX_HDCP_AKSV,
|
|
.size = DRM_HDCP_KSV_LEN,
|
|
};
|
|
u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
|
|
ssize_t dpcd_ret;
|
|
int ret;
|
|
|
|
/* Output An first, that's easy */
|
|
dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
|
|
an, DRM_HDCP_AN_LEN);
|
|
if (dpcd_ret != DRM_HDCP_AN_LEN) {
|
|
DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
|
|
dpcd_ret);
|
|
return dpcd_ret >= 0 ? -EIO : dpcd_ret;
|
|
}
|
|
|
|
/*
|
|
* Since Aksv is Oh-So-Secret, we can't access it in software. So in
|
|
* order to get it on the wire, we need to create the AUX header as if
|
|
* we were writing the data, and then tickle the hardware to output the
|
|
* data once the header is sent out.
|
|
*/
|
|
intel_dp_aux_header(txbuf, &msg);
|
|
|
|
ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
|
|
rxbuf, sizeof(rxbuf),
|
|
DP_AUX_CH_CTL_AUX_AKSV_SELECT);
|
|
if (ret < 0) {
|
|
DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
|
|
return ret;
|
|
} else if (ret == 0) {
|
|
DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
|
|
return -EIO;
|
|
}
|
|
|
|
reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
|
|
if (reply != DP_AUX_NATIVE_REPLY_ACK) {
|
|
DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
|
|
reply);
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
|
|
u8 *bksv)
|
|
{
|
|
ssize_t ret;
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
|
|
DRM_HDCP_KSV_LEN);
|
|
if (ret != DRM_HDCP_KSV_LEN) {
|
|
DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
|
|
return ret >= 0 ? -EIO : ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
|
|
u8 *bstatus)
|
|
{
|
|
ssize_t ret;
|
|
/*
|
|
* For some reason the HDMI and DP HDCP specs call this register
|
|
* definition by different names. In the HDMI spec, it's called BSTATUS,
|
|
* but in DP it's called BINFO.
|
|
*/
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
|
|
bstatus, DRM_HDCP_BSTATUS_LEN);
|
|
if (ret != DRM_HDCP_BSTATUS_LEN) {
|
|
DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
|
|
return ret >= 0 ? -EIO : ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
|
|
u8 *bcaps)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
|
|
bcaps, 1);
|
|
if (ret != 1) {
|
|
DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
|
|
return ret >= 0 ? -EIO : ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
|
|
bool *repeater_present)
|
|
{
|
|
ssize_t ret;
|
|
u8 bcaps;
|
|
|
|
ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
|
|
u8 *ri_prime)
|
|
{
|
|
ssize_t ret;
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
|
|
ri_prime, DRM_HDCP_RI_LEN);
|
|
if (ret != DRM_HDCP_RI_LEN) {
|
|
DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
|
|
return ret >= 0 ? -EIO : ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
|
|
bool *ksv_ready)
|
|
{
|
|
ssize_t ret;
|
|
u8 bstatus;
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
|
|
&bstatus, 1);
|
|
if (ret != 1) {
|
|
DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
|
|
return ret >= 0 ? -EIO : ret;
|
|
}
|
|
*ksv_ready = bstatus & DP_BSTATUS_READY;
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
|
|
int num_downstream, u8 *ksv_fifo)
|
|
{
|
|
ssize_t ret;
|
|
int i;
|
|
|
|
/* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
|
|
for (i = 0; i < num_downstream; i += 3) {
|
|
size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
|
|
DP_AUX_HDCP_KSV_FIFO,
|
|
ksv_fifo + i * DRM_HDCP_KSV_LEN,
|
|
len);
|
|
if (ret != len) {
|
|
DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
|
|
i, ret);
|
|
return ret >= 0 ? -EIO : ret;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
|
|
int i, u32 *part)
|
|
{
|
|
ssize_t ret;
|
|
|
|
if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
|
|
return -EINVAL;
|
|
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
|
|
DP_AUX_HDCP_V_PRIME(i), part,
|
|
DRM_HDCP_V_PRIME_PART_LEN);
|
|
if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
|
|
DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
|
|
return ret >= 0 ? -EIO : ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
|
|
bool enable)
|
|
{
|
|
/* Not used for single stream DisplayPort setups */
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
|
|
{
|
|
ssize_t ret;
|
|
u8 bstatus;
|
|
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
|
|
&bstatus, 1);
|
|
if (ret != 1) {
|
|
DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
|
|
return false;
|
|
}
|
|
|
|
return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
|
|
bool *hdcp_capable)
|
|
{
|
|
ssize_t ret;
|
|
u8 bcaps;
|
|
|
|
ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
|
|
return 0;
|
|
}
|
|
|
|
struct hdcp2_dp_errata_stream_type {
|
|
u8 msg_id;
|
|
u8 stream_type;
|
|
} __packed;
|
|
|
|
static struct hdcp2_dp_msg_data {
|
|
u8 msg_id;
|
|
u32 offset;
|
|
bool msg_detectable;
|
|
u32 timeout;
|
|
u32 timeout2; /* Added for non_paired situation */
|
|
} hdcp2_msg_data[] = {
|
|
{HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0},
|
|
{HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
|
|
false, HDCP_2_2_CERT_TIMEOUT_MS, 0},
|
|
{HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
|
|
false, 0, 0},
|
|
{HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
|
|
false, 0, 0},
|
|
{HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
|
|
true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
|
|
HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS},
|
|
{HDCP_2_2_AKE_SEND_PAIRING_INFO,
|
|
DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
|
|
HDCP_2_2_PAIRING_TIMEOUT_MS, 0},
|
|
{HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0},
|
|
{HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
|
|
false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0},
|
|
{HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
|
|
0, 0},
|
|
{HDCP_2_2_REP_SEND_RECVID_LIST,
|
|
DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
|
|
HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0},
|
|
{HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
|
|
0, 0},
|
|
{HDCP_2_2_REP_STREAM_MANAGE,
|
|
DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
|
|
0, 0},
|
|
{HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
|
|
false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0},
|
|
/* local define to shovel this through the write_2_2 interface */
|
|
#define HDCP_2_2_ERRATA_DP_STREAM_TYPE 50
|
|
{HDCP_2_2_ERRATA_DP_STREAM_TYPE,
|
|
DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
|
|
0, 0},
|
|
};
|
|
|
|
static inline
|
|
int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
|
|
u8 *rx_status)
|
|
{
|
|
ssize_t ret;
|
|
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
|
|
DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
|
|
HDCP_2_2_DP_RXSTATUS_LEN);
|
|
if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
|
|
DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
|
|
return ret >= 0 ? -EIO : ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static
|
|
int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
|
|
u8 msg_id, bool *msg_ready)
|
|
{
|
|
u8 rx_status;
|
|
int ret;
|
|
|
|
*msg_ready = false;
|
|
ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
switch (msg_id) {
|
|
case HDCP_2_2_AKE_SEND_HPRIME:
|
|
if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
|
|
*msg_ready = true;
|
|
break;
|
|
case HDCP_2_2_AKE_SEND_PAIRING_INFO:
|
|
if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
|
|
*msg_ready = true;
|
|
break;
|
|
case HDCP_2_2_REP_SEND_RECVID_LIST:
|
|
if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
|
|
*msg_ready = true;
|
|
break;
|
|
default:
|
|
DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t
|
|
intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
|
|
struct hdcp2_dp_msg_data *hdcp2_msg_data)
|
|
{
|
|
struct intel_dp *dp = &intel_dig_port->dp;
|
|
struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
|
|
u8 msg_id = hdcp2_msg_data->msg_id;
|
|
int ret, timeout;
|
|
bool msg_ready = false;
|
|
|
|
if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
|
|
timeout = hdcp2_msg_data->timeout2;
|
|
else
|
|
timeout = hdcp2_msg_data->timeout;
|
|
|
|
/*
|
|
* There is no way to detect the CERT, LPRIME and STREAM_READY
|
|
* availability. So Wait for timeout and read the msg.
|
|
*/
|
|
if (!hdcp2_msg_data->msg_detectable) {
|
|
mdelay(timeout);
|
|
ret = 0;
|
|
} else {
|
|
/*
|
|
* As we want to check the msg availability at timeout, Ignoring
|
|
* the timeout at wait for CP_IRQ.
|
|
*/
|
|
intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
|
|
ret = hdcp2_detect_msg_availability(intel_dig_port,
|
|
msg_id, &msg_ready);
|
|
if (!msg_ready)
|
|
ret = -ETIMEDOUT;
|
|
}
|
|
|
|
if (ret)
|
|
DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
|
|
hdcp2_msg_data->msg_id, ret, timeout);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
|
|
if (hdcp2_msg_data[i].msg_id == msg_id)
|
|
return &hdcp2_msg_data[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
|
|
void *buf, size_t size)
|
|
{
|
|
struct intel_dp *dp = &intel_dig_port->dp;
|
|
struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
|
|
unsigned int offset;
|
|
u8 *byte = buf;
|
|
ssize_t ret, bytes_to_write, len;
|
|
struct hdcp2_dp_msg_data *hdcp2_msg_data;
|
|
|
|
hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
|
|
if (!hdcp2_msg_data)
|
|
return -EINVAL;
|
|
|
|
offset = hdcp2_msg_data->offset;
|
|
|
|
/* No msg_id in DP HDCP2.2 msgs */
|
|
bytes_to_write = size - 1;
|
|
byte++;
|
|
|
|
hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
|
|
|
|
while (bytes_to_write) {
|
|
len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
|
|
DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
|
|
|
|
ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
|
|
offset, (void *)byte, len);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
bytes_to_write -= ret;
|
|
byte += ret;
|
|
offset += ret;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
static
|
|
ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
|
|
{
|
|
u8 rx_info[HDCP_2_2_RXINFO_LEN];
|
|
u32 dev_cnt;
|
|
ssize_t ret;
|
|
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
|
|
DP_HDCP_2_2_REG_RXINFO_OFFSET,
|
|
(void *)rx_info, HDCP_2_2_RXINFO_LEN);
|
|
if (ret != HDCP_2_2_RXINFO_LEN)
|
|
return ret >= 0 ? -EIO : ret;
|
|
|
|
dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
|
|
HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
|
|
|
|
if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
|
|
dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
|
|
|
|
ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
|
|
HDCP_2_2_RECEIVER_IDS_MAX_LEN +
|
|
(dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
|
|
u8 msg_id, void *buf, size_t size)
|
|
{
|
|
unsigned int offset;
|
|
u8 *byte = buf;
|
|
ssize_t ret, bytes_to_recv, len;
|
|
struct hdcp2_dp_msg_data *hdcp2_msg_data;
|
|
|
|
hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
|
|
if (!hdcp2_msg_data)
|
|
return -EINVAL;
|
|
offset = hdcp2_msg_data->offset;
|
|
|
|
ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
|
|
ret = get_receiver_id_list_size(intel_dig_port);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
size = ret;
|
|
}
|
|
bytes_to_recv = size - 1;
|
|
|
|
/* DP adaptation msgs has no msg_id */
|
|
byte++;
|
|
|
|
while (bytes_to_recv) {
|
|
len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
|
|
DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
|
|
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
|
|
(void *)byte, len);
|
|
if (ret < 0) {
|
|
DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
|
|
return ret;
|
|
}
|
|
|
|
bytes_to_recv -= ret;
|
|
byte += ret;
|
|
offset += ret;
|
|
}
|
|
byte = buf;
|
|
*byte = msg_id;
|
|
|
|
return size;
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
|
|
bool is_repeater, u8 content_type)
|
|
{
|
|
struct hdcp2_dp_errata_stream_type stream_type_msg;
|
|
|
|
if (is_repeater)
|
|
return 0;
|
|
|
|
/*
|
|
* Errata for DP: As Stream type is used for encryption, Receiver
|
|
* should be communicated with stream type for the decryption of the
|
|
* content.
|
|
* Repeater will be communicated with stream type as a part of it's
|
|
* auth later in time.
|
|
*/
|
|
stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
|
|
stream_type_msg.stream_type = content_type;
|
|
|
|
return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
|
|
sizeof(stream_type_msg));
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
|
|
{
|
|
u8 rx_status;
|
|
int ret;
|
|
|
|
ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
|
|
ret = HDCP_REAUTH_REQUEST;
|
|
else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
|
|
ret = HDCP_LINK_INTEGRITY_FAILURE;
|
|
else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
|
|
ret = HDCP_TOPOLOGY_CHANGE;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static
|
|
int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
|
|
bool *capable)
|
|
{
|
|
u8 rx_caps[3];
|
|
int ret;
|
|
|
|
*capable = false;
|
|
ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
|
|
DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
|
|
rx_caps, HDCP_2_2_RXCAPS_LEN);
|
|
if (ret != HDCP_2_2_RXCAPS_LEN)
|
|
return ret >= 0 ? -EIO : ret;
|
|
|
|
if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
|
|
HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
|
|
*capable = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
|
|
.write_an_aksv = intel_dp_hdcp_write_an_aksv,
|
|
.read_bksv = intel_dp_hdcp_read_bksv,
|
|
.read_bstatus = intel_dp_hdcp_read_bstatus,
|
|
.repeater_present = intel_dp_hdcp_repeater_present,
|
|
.read_ri_prime = intel_dp_hdcp_read_ri_prime,
|
|
.read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
|
|
.read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
|
|
.read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
|
|
.toggle_signalling = intel_dp_hdcp_toggle_signalling,
|
|
.check_link = intel_dp_hdcp_check_link,
|
|
.hdcp_capable = intel_dp_hdcp_capable,
|
|
.write_2_2_msg = intel_dp_hdcp2_write_msg,
|
|
.read_2_2_msg = intel_dp_hdcp2_read_msg,
|
|
.config_stream_type = intel_dp_hdcp2_config_stream_type,
|
|
.check_2_2_link = intel_dp_hdcp2_check_link,
|
|
.hdcp_2_2_capable = intel_dp_hdcp2_capable,
|
|
.protocol = HDCP_PROTOCOL_DP,
|
|
};
|
|
|
|
static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
if (!edp_have_panel_vdd(intel_dp))
|
|
return;
|
|
|
|
/*
|
|
* The VDD bit needs a power domain reference, so if the bit is
|
|
* already enabled when we boot or resume, grab this reference and
|
|
* schedule a vdd off, so we don't hold on to the reference
|
|
* indefinitely.
|
|
*/
|
|
DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
|
|
intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
|
|
|
|
edp_panel_vdd_schedule_off(intel_dp);
|
|
}
|
|
|
|
static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
|
|
enum pipe pipe;
|
|
|
|
if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
|
|
encoder->port, &pipe))
|
|
return pipe;
|
|
|
|
return INVALID_PIPE;
|
|
}
|
|
|
|
void intel_dp_encoder_reset(struct drm_encoder *encoder)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(encoder->dev);
|
|
struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
|
|
struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (!HAS_DDI(dev_priv))
|
|
intel_dp->DP = I915_READ(intel_dp->output_reg);
|
|
|
|
if (lspcon->active)
|
|
lspcon_resume(lspcon);
|
|
|
|
intel_dp->reset_link_params = true;
|
|
|
|
with_pps_lock(intel_dp, wakeref) {
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
intel_dp->active_pipe = vlv_active_pipe(intel_dp);
|
|
|
|
if (intel_dp_is_edp(intel_dp)) {
|
|
/*
|
|
* Reinit the power sequencer, in case BIOS did
|
|
* something nasty with it.
|
|
*/
|
|
intel_dp_pps_init(intel_dp);
|
|
intel_edp_panel_vdd_sanitize(intel_dp);
|
|
}
|
|
}
|
|
}
|
|
|
|
static const struct drm_connector_funcs intel_dp_connector_funcs = {
|
|
.force = intel_dp_force,
|
|
.fill_modes = drm_helper_probe_single_connector_modes,
|
|
.atomic_get_property = intel_digital_connector_atomic_get_property,
|
|
.atomic_set_property = intel_digital_connector_atomic_set_property,
|
|
.late_register = intel_dp_connector_register,
|
|
.early_unregister = intel_dp_connector_unregister,
|
|
.destroy = intel_connector_destroy,
|
|
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
|
|
.atomic_duplicate_state = intel_digital_connector_duplicate_state,
|
|
};
|
|
|
|
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
|
|
.detect_ctx = intel_dp_detect,
|
|
.get_modes = intel_dp_get_modes,
|
|
.mode_valid = intel_dp_mode_valid,
|
|
.atomic_check = intel_digital_connector_atomic_check,
|
|
};
|
|
|
|
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
|
|
.reset = intel_dp_encoder_reset,
|
|
.destroy = intel_dp_encoder_destroy,
|
|
};
|
|
|
|
enum irqreturn
|
|
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
|
|
{
|
|
struct intel_dp *intel_dp = &intel_dig_port->dp;
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
enum irqreturn ret = IRQ_NONE;
|
|
intel_wakeref_t wakeref;
|
|
|
|
if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
|
|
/*
|
|
* vdd off can generate a long pulse on eDP which
|
|
* would require vdd on to handle it, and thus we
|
|
* would end up in an endless cycle of
|
|
* "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
|
|
*/
|
|
DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
|
|
port_name(intel_dig_port->base.port));
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
|
|
port_name(intel_dig_port->base.port),
|
|
long_hpd ? "long" : "short");
|
|
|
|
if (long_hpd) {
|
|
intel_dp->reset_link_params = true;
|
|
return IRQ_NONE;
|
|
}
|
|
|
|
wakeref = intel_display_power_get(dev_priv,
|
|
intel_aux_power_domain(intel_dig_port));
|
|
|
|
if (intel_dp->is_mst) {
|
|
if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
|
|
/*
|
|
* If we were in MST mode, and device is not
|
|
* there, get out of MST mode
|
|
*/
|
|
DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
|
|
intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
|
|
intel_dp->is_mst = false;
|
|
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
|
|
intel_dp->is_mst);
|
|
goto put_power;
|
|
}
|
|
}
|
|
|
|
if (!intel_dp->is_mst) {
|
|
bool handled;
|
|
|
|
handled = intel_dp_short_pulse(intel_dp);
|
|
|
|
if (!handled)
|
|
goto put_power;
|
|
}
|
|
|
|
ret = IRQ_HANDLED;
|
|
|
|
put_power:
|
|
intel_display_power_put(dev_priv,
|
|
intel_aux_power_domain(intel_dig_port),
|
|
wakeref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* check the VBT to see whether the eDP is on another port */
|
|
bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
|
|
{
|
|
/*
|
|
* eDP not supported on g4x. so bail out early just
|
|
* for a bit extra safety in case the VBT is bonkers.
|
|
*/
|
|
if (INTEL_GEN(dev_priv) < 5)
|
|
return false;
|
|
|
|
if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
|
|
return true;
|
|
|
|
return intel_bios_is_port_edp(dev_priv, port);
|
|
}
|
|
|
|
static void
|
|
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(connector->dev);
|
|
enum port port = dp_to_dig_port(intel_dp)->base.port;
|
|
|
|
if (!IS_G4X(dev_priv) && port != PORT_A)
|
|
intel_attach_force_audio_property(connector);
|
|
|
|
intel_attach_broadcast_rgb_property(connector);
|
|
if (HAS_GMCH(dev_priv))
|
|
drm_connector_attach_max_bpc_property(connector, 6, 10);
|
|
else if (INTEL_GEN(dev_priv) >= 5)
|
|
drm_connector_attach_max_bpc_property(connector, 6, 12);
|
|
|
|
if (intel_dp_is_edp(intel_dp)) {
|
|
u32 allowed_scalers;
|
|
|
|
allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
|
|
if (!HAS_GMCH(dev_priv))
|
|
allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
|
|
|
|
drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
|
|
|
|
connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
|
|
|
|
}
|
|
}
|
|
|
|
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
|
|
{
|
|
intel_dp->panel_power_off_time = ktime_get_boottime();
|
|
intel_dp->last_power_on = jiffies;
|
|
intel_dp->last_backlight_off = jiffies;
|
|
}
|
|
|
|
static void
|
|
intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
u32 pp_on, pp_off, pp_div = 0, pp_ctl = 0;
|
|
struct pps_registers regs;
|
|
|
|
intel_pps_get_registers(intel_dp, ®s);
|
|
|
|
/* Workaround: Need to write PP_CONTROL with the unlock key as
|
|
* the very first thing. */
|
|
pp_ctl = ironlake_get_pp_control(intel_dp);
|
|
|
|
pp_on = I915_READ(regs.pp_on);
|
|
pp_off = I915_READ(regs.pp_off);
|
|
if (!IS_GEN9_LP(dev_priv) && !HAS_PCH_CNP(dev_priv) &&
|
|
!HAS_PCH_ICP(dev_priv)) {
|
|
I915_WRITE(regs.pp_ctrl, pp_ctl);
|
|
pp_div = I915_READ(regs.pp_div);
|
|
}
|
|
|
|
/* Pull timing values out of registers */
|
|
seq->t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
|
|
PANEL_POWER_UP_DELAY_SHIFT;
|
|
|
|
seq->t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
|
|
PANEL_LIGHT_ON_DELAY_SHIFT;
|
|
|
|
seq->t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
|
|
PANEL_LIGHT_OFF_DELAY_SHIFT;
|
|
|
|
seq->t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
|
|
PANEL_POWER_DOWN_DELAY_SHIFT;
|
|
|
|
if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
|
|
HAS_PCH_ICP(dev_priv)) {
|
|
seq->t11_t12 = ((pp_ctl & BXT_POWER_CYCLE_DELAY_MASK) >>
|
|
BXT_POWER_CYCLE_DELAY_SHIFT) * 1000;
|
|
} else {
|
|
seq->t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
|
|
PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
|
|
{
|
|
DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
|
|
state_name,
|
|
seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
|
|
}
|
|
|
|
static void
|
|
intel_pps_verify_state(struct intel_dp *intel_dp)
|
|
{
|
|
struct edp_power_seq hw;
|
|
struct edp_power_seq *sw = &intel_dp->pps_delays;
|
|
|
|
intel_pps_readout_hw_state(intel_dp, &hw);
|
|
|
|
if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
|
|
hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
|
|
DRM_ERROR("PPS state mismatch\n");
|
|
intel_pps_dump_state("sw", sw);
|
|
intel_pps_dump_state("hw", &hw);
|
|
}
|
|
}
|
|
|
|
static void
|
|
intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct edp_power_seq cur, vbt, spec,
|
|
*final = &intel_dp->pps_delays;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
/* already initialized? */
|
|
if (final->t11_t12 != 0)
|
|
return;
|
|
|
|
intel_pps_readout_hw_state(intel_dp, &cur);
|
|
|
|
intel_pps_dump_state("cur", &cur);
|
|
|
|
vbt = dev_priv->vbt.edp.pps;
|
|
/* On Toshiba Satellite P50-C-18C system the VBT T12 delay
|
|
* of 500ms appears to be too short. Ocassionally the panel
|
|
* just fails to power back on. Increasing the delay to 800ms
|
|
* seems sufficient to avoid this problem.
|
|
*/
|
|
if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
|
|
vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
|
|
DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
|
|
vbt.t11_t12);
|
|
}
|
|
/* T11_T12 delay is special and actually in units of 100ms, but zero
|
|
* based in the hw (so we need to add 100 ms). But the sw vbt
|
|
* table multiplies it with 1000 to make it in units of 100usec,
|
|
* too. */
|
|
vbt.t11_t12 += 100 * 10;
|
|
|
|
/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
|
|
* our hw here, which are all in 100usec. */
|
|
spec.t1_t3 = 210 * 10;
|
|
spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
|
|
spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
|
|
spec.t10 = 500 * 10;
|
|
/* This one is special and actually in units of 100ms, but zero
|
|
* based in the hw (so we need to add 100 ms). But the sw vbt
|
|
* table multiplies it with 1000 to make it in units of 100usec,
|
|
* too. */
|
|
spec.t11_t12 = (510 + 100) * 10;
|
|
|
|
intel_pps_dump_state("vbt", &vbt);
|
|
|
|
/* Use the max of the register settings and vbt. If both are
|
|
* unset, fall back to the spec limits. */
|
|
#define assign_final(field) final->field = (max(cur.field, vbt.field) == 0 ? \
|
|
spec.field : \
|
|
max(cur.field, vbt.field))
|
|
assign_final(t1_t3);
|
|
assign_final(t8);
|
|
assign_final(t9);
|
|
assign_final(t10);
|
|
assign_final(t11_t12);
|
|
#undef assign_final
|
|
|
|
#define get_delay(field) (DIV_ROUND_UP(final->field, 10))
|
|
intel_dp->panel_power_up_delay = get_delay(t1_t3);
|
|
intel_dp->backlight_on_delay = get_delay(t8);
|
|
intel_dp->backlight_off_delay = get_delay(t9);
|
|
intel_dp->panel_power_down_delay = get_delay(t10);
|
|
intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
|
|
#undef get_delay
|
|
|
|
DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
|
|
intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
|
|
intel_dp->panel_power_cycle_delay);
|
|
|
|
DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
|
|
intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
|
|
|
|
/*
|
|
* We override the HW backlight delays to 1 because we do manual waits
|
|
* on them. For T8, even BSpec recommends doing it. For T9, if we
|
|
* don't do this, we'll end up waiting for the backlight off delay
|
|
* twice: once when we do the manual sleep, and once when we disable
|
|
* the panel and wait for the PP_STATUS bit to become zero.
|
|
*/
|
|
final->t8 = 1;
|
|
final->t9 = 1;
|
|
|
|
/*
|
|
* HW has only a 100msec granularity for t11_t12 so round it up
|
|
* accordingly.
|
|
*/
|
|
final->t11_t12 = roundup(final->t11_t12, 100 * 10);
|
|
}
|
|
|
|
static void
|
|
intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
|
|
bool force_disable_vdd)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
u32 pp_on, pp_off, pp_div, port_sel = 0;
|
|
int div = dev_priv->rawclk_freq / 1000;
|
|
struct pps_registers regs;
|
|
enum port port = dp_to_dig_port(intel_dp)->base.port;
|
|
const struct edp_power_seq *seq = &intel_dp->pps_delays;
|
|
|
|
lockdep_assert_held(&dev_priv->pps_mutex);
|
|
|
|
intel_pps_get_registers(intel_dp, ®s);
|
|
|
|
/*
|
|
* On some VLV machines the BIOS can leave the VDD
|
|
* enabled even on power sequencers which aren't
|
|
* hooked up to any port. This would mess up the
|
|
* power domain tracking the first time we pick
|
|
* one of these power sequencers for use since
|
|
* edp_panel_vdd_on() would notice that the VDD was
|
|
* already on and therefore wouldn't grab the power
|
|
* domain reference. Disable VDD first to avoid this.
|
|
* This also avoids spuriously turning the VDD on as
|
|
* soon as the new power sequencer gets initialized.
|
|
*/
|
|
if (force_disable_vdd) {
|
|
u32 pp = ironlake_get_pp_control(intel_dp);
|
|
|
|
WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
|
|
|
|
if (pp & EDP_FORCE_VDD)
|
|
DRM_DEBUG_KMS("VDD already on, disabling first\n");
|
|
|
|
pp &= ~EDP_FORCE_VDD;
|
|
|
|
I915_WRITE(regs.pp_ctrl, pp);
|
|
}
|
|
|
|
pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
|
|
(seq->t8 << PANEL_LIGHT_ON_DELAY_SHIFT);
|
|
pp_off = (seq->t9 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
|
|
(seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
|
|
/* Compute the divisor for the pp clock, simply match the Bspec
|
|
* formula. */
|
|
if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
|
|
HAS_PCH_ICP(dev_priv)) {
|
|
pp_div = I915_READ(regs.pp_ctrl);
|
|
pp_div &= ~BXT_POWER_CYCLE_DELAY_MASK;
|
|
pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
|
|
<< BXT_POWER_CYCLE_DELAY_SHIFT);
|
|
} else {
|
|
pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
|
|
pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
|
|
<< PANEL_POWER_CYCLE_DELAY_SHIFT);
|
|
}
|
|
|
|
/* Haswell doesn't have any port selection bits for the panel
|
|
* power sequencer any more. */
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
port_sel = PANEL_PORT_SELECT_VLV(port);
|
|
} else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
|
|
switch (port) {
|
|
case PORT_A:
|
|
port_sel = PANEL_PORT_SELECT_DPA;
|
|
break;
|
|
case PORT_C:
|
|
port_sel = PANEL_PORT_SELECT_DPC;
|
|
break;
|
|
case PORT_D:
|
|
port_sel = PANEL_PORT_SELECT_DPD;
|
|
break;
|
|
default:
|
|
MISSING_CASE(port);
|
|
break;
|
|
}
|
|
}
|
|
|
|
pp_on |= port_sel;
|
|
|
|
I915_WRITE(regs.pp_on, pp_on);
|
|
I915_WRITE(regs.pp_off, pp_off);
|
|
if (IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
|
|
HAS_PCH_ICP(dev_priv))
|
|
I915_WRITE(regs.pp_ctrl, pp_div);
|
|
else
|
|
I915_WRITE(regs.pp_div, pp_div);
|
|
|
|
DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
|
|
I915_READ(regs.pp_on),
|
|
I915_READ(regs.pp_off),
|
|
(IS_GEN9_LP(dev_priv) || HAS_PCH_CNP(dev_priv) ||
|
|
HAS_PCH_ICP(dev_priv)) ?
|
|
(I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK) :
|
|
I915_READ(regs.pp_div));
|
|
}
|
|
|
|
static void intel_dp_pps_init(struct intel_dp *intel_dp)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
vlv_initial_power_sequencer_setup(intel_dp);
|
|
} else {
|
|
intel_dp_init_panel_power_sequencer(intel_dp);
|
|
intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* intel_dp_set_drrs_state - program registers for RR switch to take effect
|
|
* @dev_priv: i915 device
|
|
* @crtc_state: a pointer to the active intel_crtc_state
|
|
* @refresh_rate: RR to be programmed
|
|
*
|
|
* This function gets called when refresh rate (RR) has to be changed from
|
|
* one frequency to another. Switches can be between high and low RR
|
|
* supported by the panel or to any other RR based on media playback (in
|
|
* this case, RR value needs to be passed from user space).
|
|
*
|
|
* The caller of this function needs to take a lock on dev_priv->drrs.
|
|
*/
|
|
static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
|
|
const struct intel_crtc_state *crtc_state,
|
|
int refresh_rate)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
struct intel_digital_port *dig_port = NULL;
|
|
struct intel_dp *intel_dp = dev_priv->drrs.dp;
|
|
struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
|
|
enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
|
|
|
|
if (refresh_rate <= 0) {
|
|
DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
|
|
return;
|
|
}
|
|
|
|
if (intel_dp == NULL) {
|
|
DRM_DEBUG_KMS("DRRS not supported.\n");
|
|
return;
|
|
}
|
|
|
|
dig_port = dp_to_dig_port(intel_dp);
|
|
encoder = &dig_port->base;
|
|
|
|
if (!intel_crtc) {
|
|
DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
|
|
return;
|
|
}
|
|
|
|
if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
|
|
DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
|
|
return;
|
|
}
|
|
|
|
if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
|
|
refresh_rate)
|
|
index = DRRS_LOW_RR;
|
|
|
|
if (index == dev_priv->drrs.refresh_rate_type) {
|
|
DRM_DEBUG_KMS(
|
|
"DRRS requested for previously set RR...ignoring\n");
|
|
return;
|
|
}
|
|
|
|
if (!crtc_state->base.active) {
|
|
DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
|
|
return;
|
|
}
|
|
|
|
if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
|
|
switch (index) {
|
|
case DRRS_HIGH_RR:
|
|
intel_dp_set_m_n(crtc_state, M1_N1);
|
|
break;
|
|
case DRRS_LOW_RR:
|
|
intel_dp_set_m_n(crtc_state, M2_N2);
|
|
break;
|
|
case DRRS_MAX_RR:
|
|
default:
|
|
DRM_ERROR("Unsupported refreshrate type\n");
|
|
}
|
|
} else if (INTEL_GEN(dev_priv) > 6) {
|
|
i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
|
|
u32 val;
|
|
|
|
val = I915_READ(reg);
|
|
if (index > DRRS_HIGH_RR) {
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
|
|
else
|
|
val |= PIPECONF_EDP_RR_MODE_SWITCH;
|
|
} else {
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
|
|
else
|
|
val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
|
|
}
|
|
I915_WRITE(reg, val);
|
|
}
|
|
|
|
dev_priv->drrs.refresh_rate_type = index;
|
|
|
|
DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
|
|
}
|
|
|
|
/**
|
|
* intel_edp_drrs_enable - init drrs struct if supported
|
|
* @intel_dp: DP struct
|
|
* @crtc_state: A pointer to the active crtc state.
|
|
*
|
|
* Initializes frontbuffer_bits and drrs.dp
|
|
*/
|
|
void intel_edp_drrs_enable(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
if (!crtc_state->has_drrs) {
|
|
DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
|
|
return;
|
|
}
|
|
|
|
if (dev_priv->psr.enabled) {
|
|
DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
|
|
return;
|
|
}
|
|
|
|
mutex_lock(&dev_priv->drrs.mutex);
|
|
if (dev_priv->drrs.dp) {
|
|
DRM_DEBUG_KMS("DRRS already enabled\n");
|
|
goto unlock;
|
|
}
|
|
|
|
dev_priv->drrs.busy_frontbuffer_bits = 0;
|
|
|
|
dev_priv->drrs.dp = intel_dp;
|
|
|
|
unlock:
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
}
|
|
|
|
/**
|
|
* intel_edp_drrs_disable - Disable DRRS
|
|
* @intel_dp: DP struct
|
|
* @old_crtc_state: Pointer to old crtc_state.
|
|
*
|
|
*/
|
|
void intel_edp_drrs_disable(struct intel_dp *intel_dp,
|
|
const struct intel_crtc_state *old_crtc_state)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
|
|
if (!old_crtc_state->has_drrs)
|
|
return;
|
|
|
|
mutex_lock(&dev_priv->drrs.mutex);
|
|
if (!dev_priv->drrs.dp) {
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
return;
|
|
}
|
|
|
|
if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
|
|
intel_dp_set_drrs_state(dev_priv, old_crtc_state,
|
|
intel_dp->attached_connector->panel.fixed_mode->vrefresh);
|
|
|
|
dev_priv->drrs.dp = NULL;
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
|
|
cancel_delayed_work_sync(&dev_priv->drrs.work);
|
|
}
|
|
|
|
static void intel_edp_drrs_downclock_work(struct work_struct *work)
|
|
{
|
|
struct drm_i915_private *dev_priv =
|
|
container_of(work, typeof(*dev_priv), drrs.work.work);
|
|
struct intel_dp *intel_dp;
|
|
|
|
mutex_lock(&dev_priv->drrs.mutex);
|
|
|
|
intel_dp = dev_priv->drrs.dp;
|
|
|
|
if (!intel_dp)
|
|
goto unlock;
|
|
|
|
/*
|
|
* The delayed work can race with an invalidate hence we need to
|
|
* recheck.
|
|
*/
|
|
|
|
if (dev_priv->drrs.busy_frontbuffer_bits)
|
|
goto unlock;
|
|
|
|
if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
|
|
struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
|
|
|
|
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
|
|
intel_dp->attached_connector->panel.downclock_mode->vrefresh);
|
|
}
|
|
|
|
unlock:
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
}
|
|
|
|
/**
|
|
* intel_edp_drrs_invalidate - Disable Idleness DRRS
|
|
* @dev_priv: i915 device
|
|
* @frontbuffer_bits: frontbuffer plane tracking bits
|
|
*
|
|
* This function gets called everytime rendering on the given planes start.
|
|
* Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
|
|
*
|
|
* Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
|
|
*/
|
|
void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
|
|
unsigned int frontbuffer_bits)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
enum pipe pipe;
|
|
|
|
if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
|
|
return;
|
|
|
|
cancel_delayed_work(&dev_priv->drrs.work);
|
|
|
|
mutex_lock(&dev_priv->drrs.mutex);
|
|
if (!dev_priv->drrs.dp) {
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
return;
|
|
}
|
|
|
|
crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
|
|
pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
|
|
dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
|
|
|
|
/* invalidate means busy screen hence upclock */
|
|
if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
|
|
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
|
|
dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
|
|
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
}
|
|
|
|
/**
|
|
* intel_edp_drrs_flush - Restart Idleness DRRS
|
|
* @dev_priv: i915 device
|
|
* @frontbuffer_bits: frontbuffer plane tracking bits
|
|
*
|
|
* This function gets called every time rendering on the given planes has
|
|
* completed or flip on a crtc is completed. So DRRS should be upclocked
|
|
* (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
|
|
* if no other planes are dirty.
|
|
*
|
|
* Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
|
|
*/
|
|
void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
|
|
unsigned int frontbuffer_bits)
|
|
{
|
|
struct drm_crtc *crtc;
|
|
enum pipe pipe;
|
|
|
|
if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
|
|
return;
|
|
|
|
cancel_delayed_work(&dev_priv->drrs.work);
|
|
|
|
mutex_lock(&dev_priv->drrs.mutex);
|
|
if (!dev_priv->drrs.dp) {
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
return;
|
|
}
|
|
|
|
crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
|
|
pipe = to_intel_crtc(crtc)->pipe;
|
|
|
|
frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
|
|
dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
|
|
|
|
/* flush means busy screen hence upclock */
|
|
if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
|
|
intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
|
|
dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
|
|
|
|
/*
|
|
* flush also means no more activity hence schedule downclock, if all
|
|
* other fbs are quiescent too
|
|
*/
|
|
if (!dev_priv->drrs.busy_frontbuffer_bits)
|
|
schedule_delayed_work(&dev_priv->drrs.work,
|
|
msecs_to_jiffies(1000));
|
|
mutex_unlock(&dev_priv->drrs.mutex);
|
|
}
|
|
|
|
/**
|
|
* DOC: Display Refresh Rate Switching (DRRS)
|
|
*
|
|
* Display Refresh Rate Switching (DRRS) is a power conservation feature
|
|
* which enables swtching between low and high refresh rates,
|
|
* dynamically, based on the usage scenario. This feature is applicable
|
|
* for internal panels.
|
|
*
|
|
* Indication that the panel supports DRRS is given by the panel EDID, which
|
|
* would list multiple refresh rates for one resolution.
|
|
*
|
|
* DRRS is of 2 types - static and seamless.
|
|
* Static DRRS involves changing refresh rate (RR) by doing a full modeset
|
|
* (may appear as a blink on screen) and is used in dock-undock scenario.
|
|
* Seamless DRRS involves changing RR without any visual effect to the user
|
|
* and can be used during normal system usage. This is done by programming
|
|
* certain registers.
|
|
*
|
|
* Support for static/seamless DRRS may be indicated in the VBT based on
|
|
* inputs from the panel spec.
|
|
*
|
|
* DRRS saves power by switching to low RR based on usage scenarios.
|
|
*
|
|
* The implementation is based on frontbuffer tracking implementation. When
|
|
* there is a disturbance on the screen triggered by user activity or a periodic
|
|
* system activity, DRRS is disabled (RR is changed to high RR). When there is
|
|
* no movement on screen, after a timeout of 1 second, a switch to low RR is
|
|
* made.
|
|
*
|
|
* For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
|
|
* and intel_edp_drrs_flush() are called.
|
|
*
|
|
* DRRS can be further extended to support other internal panels and also
|
|
* the scenario of video playback wherein RR is set based on the rate
|
|
* requested by userspace.
|
|
*/
|
|
|
|
/**
|
|
* intel_dp_drrs_init - Init basic DRRS work and mutex.
|
|
* @connector: eDP connector
|
|
* @fixed_mode: preferred mode of panel
|
|
*
|
|
* This function is called only once at driver load to initialize basic
|
|
* DRRS stuff.
|
|
*
|
|
* Returns:
|
|
* Downclock mode if panel supports it, else return NULL.
|
|
* DRRS support is determined by the presence of downclock mode (apart
|
|
* from VBT setting).
|
|
*/
|
|
static struct drm_display_mode *
|
|
intel_dp_drrs_init(struct intel_connector *connector,
|
|
struct drm_display_mode *fixed_mode)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
|
|
struct drm_display_mode *downclock_mode = NULL;
|
|
|
|
INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
|
|
mutex_init(&dev_priv->drrs.mutex);
|
|
|
|
if (INTEL_GEN(dev_priv) <= 6) {
|
|
DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
|
|
DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
|
|
return NULL;
|
|
}
|
|
|
|
downclock_mode = intel_find_panel_downclock(dev_priv, fixed_mode,
|
|
&connector->base);
|
|
|
|
if (!downclock_mode) {
|
|
DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
|
|
return NULL;
|
|
}
|
|
|
|
dev_priv->drrs.type = dev_priv->vbt.drrs_type;
|
|
|
|
dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
|
|
DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
|
|
return downclock_mode;
|
|
}
|
|
|
|
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
|
|
struct intel_connector *intel_connector)
|
|
{
|
|
struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
|
|
struct drm_device *dev = &dev_priv->drm;
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
struct drm_display_mode *fixed_mode = NULL;
|
|
struct drm_display_mode *downclock_mode = NULL;
|
|
bool has_dpcd;
|
|
struct drm_display_mode *scan;
|
|
enum pipe pipe = INVALID_PIPE;
|
|
intel_wakeref_t wakeref;
|
|
struct edid *edid;
|
|
|
|
if (!intel_dp_is_edp(intel_dp))
|
|
return true;
|
|
|
|
INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
|
|
|
|
/*
|
|
* On IBX/CPT we may get here with LVDS already registered. Since the
|
|
* driver uses the only internal power sequencer available for both
|
|
* eDP and LVDS bail out early in this case to prevent interfering
|
|
* with an already powered-on LVDS power sequencer.
|
|
*/
|
|
if (intel_get_lvds_encoder(&dev_priv->drm)) {
|
|
WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
|
|
DRM_INFO("LVDS was detected, not registering eDP\n");
|
|
|
|
return false;
|
|
}
|
|
|
|
with_pps_lock(intel_dp, wakeref) {
|
|
intel_dp_init_panel_power_timestamps(intel_dp);
|
|
intel_dp_pps_init(intel_dp);
|
|
intel_edp_panel_vdd_sanitize(intel_dp);
|
|
}
|
|
|
|
/* Cache DPCD and EDID for edp. */
|
|
has_dpcd = intel_edp_init_dpcd(intel_dp);
|
|
|
|
if (!has_dpcd) {
|
|
/* if this fails, presume the device is a ghost */
|
|
DRM_INFO("failed to retrieve link info, disabling eDP\n");
|
|
goto out_vdd_off;
|
|
}
|
|
|
|
mutex_lock(&dev->mode_config.mutex);
|
|
edid = drm_get_edid(connector, &intel_dp->aux.ddc);
|
|
if (edid) {
|
|
if (drm_add_edid_modes(connector, edid)) {
|
|
drm_connector_update_edid_property(connector,
|
|
edid);
|
|
} else {
|
|
kfree(edid);
|
|
edid = ERR_PTR(-EINVAL);
|
|
}
|
|
} else {
|
|
edid = ERR_PTR(-ENOENT);
|
|
}
|
|
intel_connector->edid = edid;
|
|
|
|
/* prefer fixed mode from EDID if available */
|
|
list_for_each_entry(scan, &connector->probed_modes, head) {
|
|
if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
|
|
fixed_mode = drm_mode_duplicate(dev, scan);
|
|
downclock_mode = intel_dp_drrs_init(
|
|
intel_connector, fixed_mode);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* fallback to VBT if available for eDP */
|
|
if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
|
|
fixed_mode = drm_mode_duplicate(dev,
|
|
dev_priv->vbt.lfp_lvds_vbt_mode);
|
|
if (fixed_mode) {
|
|
fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
|
|
connector->display_info.width_mm = fixed_mode->width_mm;
|
|
connector->display_info.height_mm = fixed_mode->height_mm;
|
|
}
|
|
}
|
|
mutex_unlock(&dev->mode_config.mutex);
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
|
|
intel_dp->edp_notifier.notifier_call = edp_notify_handler;
|
|
register_reboot_notifier(&intel_dp->edp_notifier);
|
|
|
|
/*
|
|
* Figure out the current pipe for the initial backlight setup.
|
|
* If the current pipe isn't valid, try the PPS pipe, and if that
|
|
* fails just assume pipe A.
|
|
*/
|
|
pipe = vlv_active_pipe(intel_dp);
|
|
|
|
if (pipe != PIPE_A && pipe != PIPE_B)
|
|
pipe = intel_dp->pps_pipe;
|
|
|
|
if (pipe != PIPE_A && pipe != PIPE_B)
|
|
pipe = PIPE_A;
|
|
|
|
DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
|
|
pipe_name(pipe));
|
|
}
|
|
|
|
intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
|
|
intel_connector->panel.backlight.power = intel_edp_backlight_power;
|
|
intel_panel_setup_backlight(connector, pipe);
|
|
|
|
if (fixed_mode)
|
|
drm_connector_init_panel_orientation_property(
|
|
connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
|
|
|
|
return true;
|
|
|
|
out_vdd_off:
|
|
cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
|
|
/*
|
|
* vdd might still be enabled do to the delayed vdd off.
|
|
* Make sure vdd is actually turned off here.
|
|
*/
|
|
with_pps_lock(intel_dp, wakeref)
|
|
edp_panel_vdd_off_sync(intel_dp);
|
|
|
|
return false;
|
|
}
|
|
|
|
static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
|
|
{
|
|
struct intel_connector *intel_connector;
|
|
struct drm_connector *connector;
|
|
|
|
intel_connector = container_of(work, typeof(*intel_connector),
|
|
modeset_retry_work);
|
|
connector = &intel_connector->base;
|
|
DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
|
|
connector->name);
|
|
|
|
/* Grab the locks before changing connector property*/
|
|
mutex_lock(&connector->dev->mode_config.mutex);
|
|
/* Set connector link status to BAD and send a Uevent to notify
|
|
* userspace to do a modeset.
|
|
*/
|
|
drm_connector_set_link_status_property(connector,
|
|
DRM_MODE_LINK_STATUS_BAD);
|
|
mutex_unlock(&connector->dev->mode_config.mutex);
|
|
/* Send Hotplug uevent so userspace can reprobe */
|
|
drm_kms_helper_hotplug_event(connector->dev);
|
|
}
|
|
|
|
bool
|
|
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
|
|
struct intel_connector *intel_connector)
|
|
{
|
|
struct drm_connector *connector = &intel_connector->base;
|
|
struct intel_dp *intel_dp = &intel_dig_port->dp;
|
|
struct intel_encoder *intel_encoder = &intel_dig_port->base;
|
|
struct drm_device *dev = intel_encoder->base.dev;
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
enum port port = intel_encoder->port;
|
|
int type;
|
|
|
|
/* Initialize the work for modeset in case of link train failure */
|
|
INIT_WORK(&intel_connector->modeset_retry_work,
|
|
intel_dp_modeset_retry_work_fn);
|
|
|
|
if (WARN(intel_dig_port->max_lanes < 1,
|
|
"Not enough lanes (%d) for DP on port %c\n",
|
|
intel_dig_port->max_lanes, port_name(port)))
|
|
return false;
|
|
|
|
intel_dp_set_source_rates(intel_dp);
|
|
|
|
intel_dp->reset_link_params = true;
|
|
intel_dp->pps_pipe = INVALID_PIPE;
|
|
intel_dp->active_pipe = INVALID_PIPE;
|
|
|
|
/* intel_dp vfuncs */
|
|
if (HAS_DDI(dev_priv))
|
|
intel_dp->prepare_link_retrain = intel_ddi_prepare_link_retrain;
|
|
|
|
/* Preserve the current hw state. */
|
|
intel_dp->DP = I915_READ(intel_dp->output_reg);
|
|
intel_dp->attached_connector = intel_connector;
|
|
|
|
if (intel_dp_is_port_edp(dev_priv, port))
|
|
type = DRM_MODE_CONNECTOR_eDP;
|
|
else
|
|
type = DRM_MODE_CONNECTOR_DisplayPort;
|
|
|
|
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
|
|
intel_dp->active_pipe = vlv_active_pipe(intel_dp);
|
|
|
|
/*
|
|
* For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
|
|
* for DP the encoder type can be set by the caller to
|
|
* INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
|
|
*/
|
|
if (type == DRM_MODE_CONNECTOR_eDP)
|
|
intel_encoder->type = INTEL_OUTPUT_EDP;
|
|
|
|
/* eDP only on port B and/or C on vlv/chv */
|
|
if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
|
|
intel_dp_is_edp(intel_dp) &&
|
|
port != PORT_B && port != PORT_C))
|
|
return false;
|
|
|
|
DRM_DEBUG_KMS("Adding %s connector on port %c\n",
|
|
type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
|
|
port_name(port));
|
|
|
|
drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
|
|
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
|
|
|
|
if (!HAS_GMCH(dev_priv))
|
|
connector->interlace_allowed = true;
|
|
connector->doublescan_allowed = 0;
|
|
|
|
intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
|
|
|
|
intel_dp_aux_init(intel_dp);
|
|
|
|
intel_connector_attach_encoder(intel_connector, intel_encoder);
|
|
|
|
if (HAS_DDI(dev_priv))
|
|
intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
|
|
else
|
|
intel_connector->get_hw_state = intel_connector_get_hw_state;
|
|
|
|
/* init MST on ports that can support it */
|
|
if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
|
|
(port == PORT_B || port == PORT_C ||
|
|
port == PORT_D || port == PORT_F))
|
|
intel_dp_mst_encoder_init(intel_dig_port,
|
|
intel_connector->base.base.id);
|
|
|
|
if (!intel_edp_init_connector(intel_dp, intel_connector)) {
|
|
intel_dp_aux_fini(intel_dp);
|
|
intel_dp_mst_encoder_cleanup(intel_dig_port);
|
|
goto fail;
|
|
}
|
|
|
|
intel_dp_add_properties(intel_dp, connector);
|
|
|
|
if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
|
|
int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
|
|
if (ret)
|
|
DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
|
|
}
|
|
|
|
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
|
|
* 0xd. Failure to do so will result in spurious interrupts being
|
|
* generated on the port when a cable is not attached.
|
|
*/
|
|
if (IS_G45(dev_priv)) {
|
|
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
|
|
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
|
|
}
|
|
|
|
return true;
|
|
|
|
fail:
|
|
drm_connector_cleanup(connector);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool intel_dp_init(struct drm_i915_private *dev_priv,
|
|
i915_reg_t output_reg,
|
|
enum port port)
|
|
{
|
|
struct intel_digital_port *intel_dig_port;
|
|
struct intel_encoder *intel_encoder;
|
|
struct drm_encoder *encoder;
|
|
struct intel_connector *intel_connector;
|
|
|
|
intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
|
|
if (!intel_dig_port)
|
|
return false;
|
|
|
|
intel_connector = intel_connector_alloc();
|
|
if (!intel_connector)
|
|
goto err_connector_alloc;
|
|
|
|
intel_encoder = &intel_dig_port->base;
|
|
encoder = &intel_encoder->base;
|
|
|
|
if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
|
|
&intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
|
|
"DP %c", port_name(port)))
|
|
goto err_encoder_init;
|
|
|
|
intel_encoder->hotplug = intel_dp_hotplug;
|
|
intel_encoder->compute_config = intel_dp_compute_config;
|
|
intel_encoder->get_hw_state = intel_dp_get_hw_state;
|
|
intel_encoder->get_config = intel_dp_get_config;
|
|
intel_encoder->update_pipe = intel_panel_update_backlight;
|
|
intel_encoder->suspend = intel_dp_encoder_suspend;
|
|
if (IS_CHERRYVIEW(dev_priv)) {
|
|
intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
|
|
intel_encoder->pre_enable = chv_pre_enable_dp;
|
|
intel_encoder->enable = vlv_enable_dp;
|
|
intel_encoder->disable = vlv_disable_dp;
|
|
intel_encoder->post_disable = chv_post_disable_dp;
|
|
intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
|
|
} else if (IS_VALLEYVIEW(dev_priv)) {
|
|
intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
|
|
intel_encoder->pre_enable = vlv_pre_enable_dp;
|
|
intel_encoder->enable = vlv_enable_dp;
|
|
intel_encoder->disable = vlv_disable_dp;
|
|
intel_encoder->post_disable = vlv_post_disable_dp;
|
|
} else {
|
|
intel_encoder->pre_enable = g4x_pre_enable_dp;
|
|
intel_encoder->enable = g4x_enable_dp;
|
|
intel_encoder->disable = g4x_disable_dp;
|
|
intel_encoder->post_disable = g4x_post_disable_dp;
|
|
}
|
|
|
|
intel_dig_port->dp.output_reg = output_reg;
|
|
intel_dig_port->max_lanes = 4;
|
|
|
|
intel_encoder->type = INTEL_OUTPUT_DP;
|
|
intel_encoder->power_domain = intel_port_to_power_domain(port);
|
|
if (IS_CHERRYVIEW(dev_priv)) {
|
|
if (port == PORT_D)
|
|
intel_encoder->crtc_mask = 1 << 2;
|
|
else
|
|
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
|
|
} else {
|
|
intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
|
|
}
|
|
intel_encoder->cloneable = 0;
|
|
intel_encoder->port = port;
|
|
|
|
intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
|
|
|
|
if (port != PORT_A)
|
|
intel_infoframe_init(intel_dig_port);
|
|
|
|
intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
|
|
if (!intel_dp_init_connector(intel_dig_port, intel_connector))
|
|
goto err_init_connector;
|
|
|
|
return true;
|
|
|
|
err_init_connector:
|
|
drm_encoder_cleanup(encoder);
|
|
err_encoder_init:
|
|
kfree(intel_connector);
|
|
err_connector_alloc:
|
|
kfree(intel_dig_port);
|
|
return false;
|
|
}
|
|
|
|
void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
|
|
for_each_intel_encoder(&dev_priv->drm, encoder) {
|
|
struct intel_dp *intel_dp;
|
|
|
|
if (encoder->type != INTEL_OUTPUT_DDI)
|
|
continue;
|
|
|
|
intel_dp = enc_to_intel_dp(&encoder->base);
|
|
|
|
if (!intel_dp->can_mst)
|
|
continue;
|
|
|
|
if (intel_dp->is_mst)
|
|
drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
|
|
}
|
|
}
|
|
|
|
void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
|
|
{
|
|
struct intel_encoder *encoder;
|
|
|
|
for_each_intel_encoder(&dev_priv->drm, encoder) {
|
|
struct intel_dp *intel_dp;
|
|
int ret;
|
|
|
|
if (encoder->type != INTEL_OUTPUT_DDI)
|
|
continue;
|
|
|
|
intel_dp = enc_to_intel_dp(&encoder->base);
|
|
|
|
if (!intel_dp->can_mst)
|
|
continue;
|
|
|
|
ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
|
|
if (ret) {
|
|
intel_dp->is_mst = false;
|
|
drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
|
|
false);
|
|
}
|
|
}
|
|
}
|