linux_dsm_epyc7002/drivers/firmware/dmi_scan.c
Andy Shevchenko 3af3452586 firmware/dmi_scan: Uninline dmi_get_bios_year() helper
Uninline dmi_get_bios_year() which, in particular, allows us
to optimize it in the future.

While doing this, convert the function to return an error code
when BIOS date is not present or not parsable, or CONFIG_DMI=n.

Additionally, during the move, add a bit of documentation.

Suggested-by: Bjorn Helgaas <helgaas@kernel.org>
Suggested-by: Rafael J. Wysocki <rafael@kernel.org>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Reviewed-by: Jean Delvare <jdelvare@suse.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lukas Wunner <lukas@wunner.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rjw@rjwysocki.net>
Cc: linux-acpi@vger.kernel.org
Cc: linux-pci@vger.kernel.org
Fixes: 492a1abd61 ("dmi: Introduce the dmi_get_bios_year() helper function")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-03-27 11:33:15 +02:00

1088 lines
26 KiB
C

#include <linux/types.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/ctype.h>
#include <linux/dmi.h>
#include <linux/efi.h>
#include <linux/bootmem.h>
#include <linux/random.h>
#include <asm/dmi.h>
#include <asm/unaligned.h>
struct kobject *dmi_kobj;
EXPORT_SYMBOL_GPL(dmi_kobj);
/*
* DMI stands for "Desktop Management Interface". It is part
* of and an antecedent to, SMBIOS, which stands for System
* Management BIOS. See further: http://www.dmtf.org/standards
*/
static const char dmi_empty_string[] = "";
static u32 dmi_ver __initdata;
static u32 dmi_len;
static u16 dmi_num;
static u8 smbios_entry_point[32];
static int smbios_entry_point_size;
/* DMI system identification string used during boot */
static char dmi_ids_string[128] __initdata;
static struct dmi_memdev_info {
const char *device;
const char *bank;
u16 handle;
} *dmi_memdev;
static int dmi_memdev_nr;
static const char * __init dmi_string_nosave(const struct dmi_header *dm, u8 s)
{
const u8 *bp = ((u8 *) dm) + dm->length;
const u8 *nsp;
if (s) {
while (--s > 0 && *bp)
bp += strlen(bp) + 1;
/* Strings containing only spaces are considered empty */
nsp = bp;
while (*nsp == ' ')
nsp++;
if (*nsp != '\0')
return bp;
}
return dmi_empty_string;
}
static const char * __init dmi_string(const struct dmi_header *dm, u8 s)
{
const char *bp = dmi_string_nosave(dm, s);
char *str;
size_t len;
if (bp == dmi_empty_string)
return dmi_empty_string;
len = strlen(bp) + 1;
str = dmi_alloc(len);
if (str != NULL)
strcpy(str, bp);
return str;
}
/*
* We have to be cautious here. We have seen BIOSes with DMI pointers
* pointing to completely the wrong place for example
*/
static void dmi_decode_table(u8 *buf,
void (*decode)(const struct dmi_header *, void *),
void *private_data)
{
u8 *data = buf;
int i = 0;
/*
* Stop when we have seen all the items the table claimed to have
* (SMBIOS < 3.0 only) OR we reach an end-of-table marker (SMBIOS
* >= 3.0 only) OR we run off the end of the table (should never
* happen but sometimes does on bogus implementations.)
*/
while ((!dmi_num || i < dmi_num) &&
(data - buf + sizeof(struct dmi_header)) <= dmi_len) {
const struct dmi_header *dm = (const struct dmi_header *)data;
/*
* We want to know the total length (formatted area and
* strings) before decoding to make sure we won't run off the
* table in dmi_decode or dmi_string
*/
data += dm->length;
while ((data - buf < dmi_len - 1) && (data[0] || data[1]))
data++;
if (data - buf < dmi_len - 1)
decode(dm, private_data);
data += 2;
i++;
/*
* 7.45 End-of-Table (Type 127) [SMBIOS reference spec v3.0.0]
* For tables behind a 64-bit entry point, we have no item
* count and no exact table length, so stop on end-of-table
* marker. For tables behind a 32-bit entry point, we have
* seen OEM structures behind the end-of-table marker on
* some systems, so don't trust it.
*/
if (!dmi_num && dm->type == DMI_ENTRY_END_OF_TABLE)
break;
}
/* Trim DMI table length if needed */
if (dmi_len > data - buf)
dmi_len = data - buf;
}
static phys_addr_t dmi_base;
static int __init dmi_walk_early(void (*decode)(const struct dmi_header *,
void *))
{
u8 *buf;
u32 orig_dmi_len = dmi_len;
buf = dmi_early_remap(dmi_base, orig_dmi_len);
if (buf == NULL)
return -ENOMEM;
dmi_decode_table(buf, decode, NULL);
add_device_randomness(buf, dmi_len);
dmi_early_unmap(buf, orig_dmi_len);
return 0;
}
static int __init dmi_checksum(const u8 *buf, u8 len)
{
u8 sum = 0;
int a;
for (a = 0; a < len; a++)
sum += buf[a];
return sum == 0;
}
static const char *dmi_ident[DMI_STRING_MAX];
static LIST_HEAD(dmi_devices);
int dmi_available;
/*
* Save a DMI string
*/
static void __init dmi_save_ident(const struct dmi_header *dm, int slot,
int string)
{
const char *d = (const char *) dm;
const char *p;
if (dmi_ident[slot] || dm->length <= string)
return;
p = dmi_string(dm, d[string]);
if (p == NULL)
return;
dmi_ident[slot] = p;
}
static void __init dmi_save_uuid(const struct dmi_header *dm, int slot,
int index)
{
const u8 *d;
char *s;
int is_ff = 1, is_00 = 1, i;
if (dmi_ident[slot] || dm->length <= index + 16)
return;
d = (u8 *) dm + index;
for (i = 0; i < 16 && (is_ff || is_00); i++) {
if (d[i] != 0x00)
is_00 = 0;
if (d[i] != 0xFF)
is_ff = 0;
}
if (is_ff || is_00)
return;
s = dmi_alloc(16*2+4+1);
if (!s)
return;
/*
* As of version 2.6 of the SMBIOS specification, the first 3 fields of
* the UUID are supposed to be little-endian encoded. The specification
* says that this is the defacto standard.
*/
if (dmi_ver >= 0x020600)
sprintf(s, "%pUL", d);
else
sprintf(s, "%pUB", d);
dmi_ident[slot] = s;
}
static void __init dmi_save_type(const struct dmi_header *dm, int slot,
int index)
{
const u8 *d;
char *s;
if (dmi_ident[slot] || dm->length <= index)
return;
s = dmi_alloc(4);
if (!s)
return;
d = (u8 *) dm + index;
sprintf(s, "%u", *d & 0x7F);
dmi_ident[slot] = s;
}
static void __init dmi_save_one_device(int type, const char *name)
{
struct dmi_device *dev;
/* No duplicate device */
if (dmi_find_device(type, name, NULL))
return;
dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
if (!dev)
return;
dev->type = type;
strcpy((char *)(dev + 1), name);
dev->name = (char *)(dev + 1);
dev->device_data = NULL;
list_add(&dev->list, &dmi_devices);
}
static void __init dmi_save_devices(const struct dmi_header *dm)
{
int i, count = (dm->length - sizeof(struct dmi_header)) / 2;
for (i = 0; i < count; i++) {
const char *d = (char *)(dm + 1) + (i * 2);
/* Skip disabled device */
if ((*d & 0x80) == 0)
continue;
dmi_save_one_device(*d & 0x7f, dmi_string_nosave(dm, *(d + 1)));
}
}
static void __init dmi_save_oem_strings_devices(const struct dmi_header *dm)
{
int i, count;
struct dmi_device *dev;
if (dm->length < 0x05)
return;
count = *(u8 *)(dm + 1);
for (i = 1; i <= count; i++) {
const char *devname = dmi_string(dm, i);
if (devname == dmi_empty_string)
continue;
dev = dmi_alloc(sizeof(*dev));
if (!dev)
break;
dev->type = DMI_DEV_TYPE_OEM_STRING;
dev->name = devname;
dev->device_data = NULL;
list_add(&dev->list, &dmi_devices);
}
}
static void __init dmi_save_ipmi_device(const struct dmi_header *dm)
{
struct dmi_device *dev;
void *data;
data = dmi_alloc(dm->length);
if (data == NULL)
return;
memcpy(data, dm, dm->length);
dev = dmi_alloc(sizeof(*dev));
if (!dev)
return;
dev->type = DMI_DEV_TYPE_IPMI;
dev->name = "IPMI controller";
dev->device_data = data;
list_add_tail(&dev->list, &dmi_devices);
}
static void __init dmi_save_dev_pciaddr(int instance, int segment, int bus,
int devfn, const char *name, int type)
{
struct dmi_dev_onboard *dev;
/* Ignore invalid values */
if (type == DMI_DEV_TYPE_DEV_SLOT &&
segment == 0xFFFF && bus == 0xFF && devfn == 0xFF)
return;
dev = dmi_alloc(sizeof(*dev) + strlen(name) + 1);
if (!dev)
return;
dev->instance = instance;
dev->segment = segment;
dev->bus = bus;
dev->devfn = devfn;
strcpy((char *)&dev[1], name);
dev->dev.type = type;
dev->dev.name = (char *)&dev[1];
dev->dev.device_data = dev;
list_add(&dev->dev.list, &dmi_devices);
}
static void __init dmi_save_extended_devices(const struct dmi_header *dm)
{
const char *name;
const u8 *d = (u8 *)dm;
if (dm->length < 0x0B)
return;
/* Skip disabled device */
if ((d[0x5] & 0x80) == 0)
return;
name = dmi_string_nosave(dm, d[0x4]);
dmi_save_dev_pciaddr(d[0x6], *(u16 *)(d + 0x7), d[0x9], d[0xA], name,
DMI_DEV_TYPE_DEV_ONBOARD);
dmi_save_one_device(d[0x5] & 0x7f, name);
}
static void __init dmi_save_system_slot(const struct dmi_header *dm)
{
const u8 *d = (u8 *)dm;
/* Need SMBIOS 2.6+ structure */
if (dm->length < 0x11)
return;
dmi_save_dev_pciaddr(*(u16 *)(d + 0x9), *(u16 *)(d + 0xD), d[0xF],
d[0x10], dmi_string_nosave(dm, d[0x4]),
DMI_DEV_TYPE_DEV_SLOT);
}
static void __init count_mem_devices(const struct dmi_header *dm, void *v)
{
if (dm->type != DMI_ENTRY_MEM_DEVICE)
return;
dmi_memdev_nr++;
}
static void __init save_mem_devices(const struct dmi_header *dm, void *v)
{
const char *d = (const char *)dm;
static int nr;
if (dm->type != DMI_ENTRY_MEM_DEVICE || dm->length < 0x12)
return;
if (nr >= dmi_memdev_nr) {
pr_warn(FW_BUG "Too many DIMM entries in SMBIOS table\n");
return;
}
dmi_memdev[nr].handle = get_unaligned(&dm->handle);
dmi_memdev[nr].device = dmi_string(dm, d[0x10]);
dmi_memdev[nr].bank = dmi_string(dm, d[0x11]);
nr++;
}
void __init dmi_memdev_walk(void)
{
if (!dmi_available)
return;
if (dmi_walk_early(count_mem_devices) == 0 && dmi_memdev_nr) {
dmi_memdev = dmi_alloc(sizeof(*dmi_memdev) * dmi_memdev_nr);
if (dmi_memdev)
dmi_walk_early(save_mem_devices);
}
}
/*
* Process a DMI table entry. Right now all we care about are the BIOS
* and machine entries. For 2.5 we should pull the smbus controller info
* out of here.
*/
static void __init dmi_decode(const struct dmi_header *dm, void *dummy)
{
switch (dm->type) {
case 0: /* BIOS Information */
dmi_save_ident(dm, DMI_BIOS_VENDOR, 4);
dmi_save_ident(dm, DMI_BIOS_VERSION, 5);
dmi_save_ident(dm, DMI_BIOS_DATE, 8);
break;
case 1: /* System Information */
dmi_save_ident(dm, DMI_SYS_VENDOR, 4);
dmi_save_ident(dm, DMI_PRODUCT_NAME, 5);
dmi_save_ident(dm, DMI_PRODUCT_VERSION, 6);
dmi_save_ident(dm, DMI_PRODUCT_SERIAL, 7);
dmi_save_uuid(dm, DMI_PRODUCT_UUID, 8);
dmi_save_ident(dm, DMI_PRODUCT_FAMILY, 26);
break;
case 2: /* Base Board Information */
dmi_save_ident(dm, DMI_BOARD_VENDOR, 4);
dmi_save_ident(dm, DMI_BOARD_NAME, 5);
dmi_save_ident(dm, DMI_BOARD_VERSION, 6);
dmi_save_ident(dm, DMI_BOARD_SERIAL, 7);
dmi_save_ident(dm, DMI_BOARD_ASSET_TAG, 8);
break;
case 3: /* Chassis Information */
dmi_save_ident(dm, DMI_CHASSIS_VENDOR, 4);
dmi_save_type(dm, DMI_CHASSIS_TYPE, 5);
dmi_save_ident(dm, DMI_CHASSIS_VERSION, 6);
dmi_save_ident(dm, DMI_CHASSIS_SERIAL, 7);
dmi_save_ident(dm, DMI_CHASSIS_ASSET_TAG, 8);
break;
case 9: /* System Slots */
dmi_save_system_slot(dm);
break;
case 10: /* Onboard Devices Information */
dmi_save_devices(dm);
break;
case 11: /* OEM Strings */
dmi_save_oem_strings_devices(dm);
break;
case 38: /* IPMI Device Information */
dmi_save_ipmi_device(dm);
break;
case 41: /* Onboard Devices Extended Information */
dmi_save_extended_devices(dm);
}
}
static int __init print_filtered(char *buf, size_t len, const char *info)
{
int c = 0;
const char *p;
if (!info)
return c;
for (p = info; *p; p++)
if (isprint(*p))
c += scnprintf(buf + c, len - c, "%c", *p);
else
c += scnprintf(buf + c, len - c, "\\x%02x", *p & 0xff);
return c;
}
static void __init dmi_format_ids(char *buf, size_t len)
{
int c = 0;
const char *board; /* Board Name is optional */
c += print_filtered(buf + c, len - c,
dmi_get_system_info(DMI_SYS_VENDOR));
c += scnprintf(buf + c, len - c, " ");
c += print_filtered(buf + c, len - c,
dmi_get_system_info(DMI_PRODUCT_NAME));
board = dmi_get_system_info(DMI_BOARD_NAME);
if (board) {
c += scnprintf(buf + c, len - c, "/");
c += print_filtered(buf + c, len - c, board);
}
c += scnprintf(buf + c, len - c, ", BIOS ");
c += print_filtered(buf + c, len - c,
dmi_get_system_info(DMI_BIOS_VERSION));
c += scnprintf(buf + c, len - c, " ");
c += print_filtered(buf + c, len - c,
dmi_get_system_info(DMI_BIOS_DATE));
}
/*
* Check for DMI/SMBIOS headers in the system firmware image. Any
* SMBIOS header must start 16 bytes before the DMI header, so take a
* 32 byte buffer and check for DMI at offset 16 and SMBIOS at offset
* 0. If the DMI header is present, set dmi_ver accordingly (SMBIOS
* takes precedence) and return 0. Otherwise return 1.
*/
static int __init dmi_present(const u8 *buf)
{
u32 smbios_ver;
if (memcmp(buf, "_SM_", 4) == 0 &&
buf[5] < 32 && dmi_checksum(buf, buf[5])) {
smbios_ver = get_unaligned_be16(buf + 6);
smbios_entry_point_size = buf[5];
memcpy(smbios_entry_point, buf, smbios_entry_point_size);
/* Some BIOS report weird SMBIOS version, fix that up */
switch (smbios_ver) {
case 0x021F:
case 0x0221:
pr_debug("SMBIOS version fixup (2.%d->2.%d)\n",
smbios_ver & 0xFF, 3);
smbios_ver = 0x0203;
break;
case 0x0233:
pr_debug("SMBIOS version fixup (2.%d->2.%d)\n", 51, 6);
smbios_ver = 0x0206;
break;
}
} else {
smbios_ver = 0;
}
buf += 16;
if (memcmp(buf, "_DMI_", 5) == 0 && dmi_checksum(buf, 15)) {
if (smbios_ver)
dmi_ver = smbios_ver;
else
dmi_ver = (buf[14] & 0xF0) << 4 | (buf[14] & 0x0F);
dmi_ver <<= 8;
dmi_num = get_unaligned_le16(buf + 12);
dmi_len = get_unaligned_le16(buf + 6);
dmi_base = get_unaligned_le32(buf + 8);
if (dmi_walk_early(dmi_decode) == 0) {
if (smbios_ver) {
pr_info("SMBIOS %d.%d present.\n",
dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
} else {
smbios_entry_point_size = 15;
memcpy(smbios_entry_point, buf,
smbios_entry_point_size);
pr_info("Legacy DMI %d.%d present.\n",
dmi_ver >> 16, (dmi_ver >> 8) & 0xFF);
}
dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
pr_info("DMI: %s\n", dmi_ids_string);
return 0;
}
}
return 1;
}
/*
* Check for the SMBIOS 3.0 64-bit entry point signature. Unlike the legacy
* 32-bit entry point, there is no embedded DMI header (_DMI_) in here.
*/
static int __init dmi_smbios3_present(const u8 *buf)
{
if (memcmp(buf, "_SM3_", 5) == 0 &&
buf[6] < 32 && dmi_checksum(buf, buf[6])) {
dmi_ver = get_unaligned_be32(buf + 6) & 0xFFFFFF;
dmi_num = 0; /* No longer specified */
dmi_len = get_unaligned_le32(buf + 12);
dmi_base = get_unaligned_le64(buf + 16);
smbios_entry_point_size = buf[6];
memcpy(smbios_entry_point, buf, smbios_entry_point_size);
if (dmi_walk_early(dmi_decode) == 0) {
pr_info("SMBIOS %d.%d.%d present.\n",
dmi_ver >> 16, (dmi_ver >> 8) & 0xFF,
dmi_ver & 0xFF);
dmi_format_ids(dmi_ids_string, sizeof(dmi_ids_string));
pr_info("DMI: %s\n", dmi_ids_string);
return 0;
}
}
return 1;
}
void __init dmi_scan_machine(void)
{
char __iomem *p, *q;
char buf[32];
if (efi_enabled(EFI_CONFIG_TABLES)) {
/*
* According to the DMTF SMBIOS reference spec v3.0.0, it is
* allowed to define both the 64-bit entry point (smbios3) and
* the 32-bit entry point (smbios), in which case they should
* either both point to the same SMBIOS structure table, or the
* table pointed to by the 64-bit entry point should contain a
* superset of the table contents pointed to by the 32-bit entry
* point (section 5.2)
* This implies that the 64-bit entry point should have
* precedence if it is defined and supported by the OS. If we
* have the 64-bit entry point, but fail to decode it, fall
* back to the legacy one (if available)
*/
if (efi.smbios3 != EFI_INVALID_TABLE_ADDR) {
p = dmi_early_remap(efi.smbios3, 32);
if (p == NULL)
goto error;
memcpy_fromio(buf, p, 32);
dmi_early_unmap(p, 32);
if (!dmi_smbios3_present(buf)) {
dmi_available = 1;
return;
}
}
if (efi.smbios == EFI_INVALID_TABLE_ADDR)
goto error;
/* This is called as a core_initcall() because it isn't
* needed during early boot. This also means we can
* iounmap the space when we're done with it.
*/
p = dmi_early_remap(efi.smbios, 32);
if (p == NULL)
goto error;
memcpy_fromio(buf, p, 32);
dmi_early_unmap(p, 32);
if (!dmi_present(buf)) {
dmi_available = 1;
return;
}
} else if (IS_ENABLED(CONFIG_DMI_SCAN_MACHINE_NON_EFI_FALLBACK)) {
p = dmi_early_remap(0xF0000, 0x10000);
if (p == NULL)
goto error;
/*
* Same logic as above, look for a 64-bit entry point
* first, and if not found, fall back to 32-bit entry point.
*/
memcpy_fromio(buf, p, 16);
for (q = p + 16; q < p + 0x10000; q += 16) {
memcpy_fromio(buf + 16, q, 16);
if (!dmi_smbios3_present(buf)) {
dmi_available = 1;
dmi_early_unmap(p, 0x10000);
return;
}
memcpy(buf, buf + 16, 16);
}
/*
* Iterate over all possible DMI header addresses q.
* Maintain the 32 bytes around q in buf. On the
* first iteration, substitute zero for the
* out-of-range bytes so there is no chance of falsely
* detecting an SMBIOS header.
*/
memset(buf, 0, 16);
for (q = p; q < p + 0x10000; q += 16) {
memcpy_fromio(buf + 16, q, 16);
if (!dmi_present(buf)) {
dmi_available = 1;
dmi_early_unmap(p, 0x10000);
return;
}
memcpy(buf, buf + 16, 16);
}
dmi_early_unmap(p, 0x10000);
}
error:
pr_info("DMI not present or invalid.\n");
}
static ssize_t raw_table_read(struct file *file, struct kobject *kobj,
struct bin_attribute *attr, char *buf,
loff_t pos, size_t count)
{
memcpy(buf, attr->private + pos, count);
return count;
}
static BIN_ATTR(smbios_entry_point, S_IRUSR, raw_table_read, NULL, 0);
static BIN_ATTR(DMI, S_IRUSR, raw_table_read, NULL, 0);
static int __init dmi_init(void)
{
struct kobject *tables_kobj;
u8 *dmi_table;
int ret = -ENOMEM;
if (!dmi_available)
return 0;
/*
* Set up dmi directory at /sys/firmware/dmi. This entry should stay
* even after farther error, as it can be used by other modules like
* dmi-sysfs.
*/
dmi_kobj = kobject_create_and_add("dmi", firmware_kobj);
if (!dmi_kobj)
goto err;
tables_kobj = kobject_create_and_add("tables", dmi_kobj);
if (!tables_kobj)
goto err;
dmi_table = dmi_remap(dmi_base, dmi_len);
if (!dmi_table)
goto err_tables;
bin_attr_smbios_entry_point.size = smbios_entry_point_size;
bin_attr_smbios_entry_point.private = smbios_entry_point;
ret = sysfs_create_bin_file(tables_kobj, &bin_attr_smbios_entry_point);
if (ret)
goto err_unmap;
bin_attr_DMI.size = dmi_len;
bin_attr_DMI.private = dmi_table;
ret = sysfs_create_bin_file(tables_kobj, &bin_attr_DMI);
if (!ret)
return 0;
sysfs_remove_bin_file(tables_kobj,
&bin_attr_smbios_entry_point);
err_unmap:
dmi_unmap(dmi_table);
err_tables:
kobject_del(tables_kobj);
kobject_put(tables_kobj);
err:
pr_err("dmi: Firmware registration failed.\n");
return ret;
}
subsys_initcall(dmi_init);
/**
* dmi_set_dump_stack_arch_desc - set arch description for dump_stack()
*
* Invoke dump_stack_set_arch_desc() with DMI system information so that
* DMI identifiers are printed out on task dumps. Arch boot code should
* call this function after dmi_scan_machine() if it wants to print out DMI
* identifiers on task dumps.
*/
void __init dmi_set_dump_stack_arch_desc(void)
{
dump_stack_set_arch_desc("%s", dmi_ids_string);
}
/**
* dmi_matches - check if dmi_system_id structure matches system DMI data
* @dmi: pointer to the dmi_system_id structure to check
*/
static bool dmi_matches(const struct dmi_system_id *dmi)
{
int i;
for (i = 0; i < ARRAY_SIZE(dmi->matches); i++) {
int s = dmi->matches[i].slot;
if (s == DMI_NONE)
break;
if (dmi_ident[s]) {
if (dmi->matches[i].exact_match) {
if (!strcmp(dmi_ident[s],
dmi->matches[i].substr))
continue;
} else {
if (strstr(dmi_ident[s],
dmi->matches[i].substr))
continue;
}
}
/* No match */
return false;
}
return true;
}
/**
* dmi_is_end_of_table - check for end-of-table marker
* @dmi: pointer to the dmi_system_id structure to check
*/
static bool dmi_is_end_of_table(const struct dmi_system_id *dmi)
{
return dmi->matches[0].slot == DMI_NONE;
}
/**
* dmi_check_system - check system DMI data
* @list: array of dmi_system_id structures to match against
* All non-null elements of the list must match
* their slot's (field index's) data (i.e., each
* list string must be a substring of the specified
* DMI slot's string data) to be considered a
* successful match.
*
* Walk the blacklist table running matching functions until someone
* returns non zero or we hit the end. Callback function is called for
* each successful match. Returns the number of matches.
*
* dmi_scan_machine must be called before this function is called.
*/
int dmi_check_system(const struct dmi_system_id *list)
{
int count = 0;
const struct dmi_system_id *d;
for (d = list; !dmi_is_end_of_table(d); d++)
if (dmi_matches(d)) {
count++;
if (d->callback && d->callback(d))
break;
}
return count;
}
EXPORT_SYMBOL(dmi_check_system);
/**
* dmi_first_match - find dmi_system_id structure matching system DMI data
* @list: array of dmi_system_id structures to match against
* All non-null elements of the list must match
* their slot's (field index's) data (i.e., each
* list string must be a substring of the specified
* DMI slot's string data) to be considered a
* successful match.
*
* Walk the blacklist table until the first match is found. Return the
* pointer to the matching entry or NULL if there's no match.
*
* dmi_scan_machine must be called before this function is called.
*/
const struct dmi_system_id *dmi_first_match(const struct dmi_system_id *list)
{
const struct dmi_system_id *d;
for (d = list; !dmi_is_end_of_table(d); d++)
if (dmi_matches(d))
return d;
return NULL;
}
EXPORT_SYMBOL(dmi_first_match);
/**
* dmi_get_system_info - return DMI data value
* @field: data index (see enum dmi_field)
*
* Returns one DMI data value, can be used to perform
* complex DMI data checks.
*/
const char *dmi_get_system_info(int field)
{
return dmi_ident[field];
}
EXPORT_SYMBOL(dmi_get_system_info);
/**
* dmi_name_in_serial - Check if string is in the DMI product serial information
* @str: string to check for
*/
int dmi_name_in_serial(const char *str)
{
int f = DMI_PRODUCT_SERIAL;
if (dmi_ident[f] && strstr(dmi_ident[f], str))
return 1;
return 0;
}
/**
* dmi_name_in_vendors - Check if string is in the DMI system or board vendor name
* @str: Case sensitive Name
*/
int dmi_name_in_vendors(const char *str)
{
static int fields[] = { DMI_SYS_VENDOR, DMI_BOARD_VENDOR, DMI_NONE };
int i;
for (i = 0; fields[i] != DMI_NONE; i++) {
int f = fields[i];
if (dmi_ident[f] && strstr(dmi_ident[f], str))
return 1;
}
return 0;
}
EXPORT_SYMBOL(dmi_name_in_vendors);
/**
* dmi_find_device - find onboard device by type/name
* @type: device type or %DMI_DEV_TYPE_ANY to match all device types
* @name: device name string or %NULL to match all
* @from: previous device found in search, or %NULL for new search.
*
* Iterates through the list of known onboard devices. If a device is
* found with a matching @type and @name, a pointer to its device
* structure is returned. Otherwise, %NULL is returned.
* A new search is initiated by passing %NULL as the @from argument.
* If @from is not %NULL, searches continue from next device.
*/
const struct dmi_device *dmi_find_device(int type, const char *name,
const struct dmi_device *from)
{
const struct list_head *head = from ? &from->list : &dmi_devices;
struct list_head *d;
for (d = head->next; d != &dmi_devices; d = d->next) {
const struct dmi_device *dev =
list_entry(d, struct dmi_device, list);
if (((type == DMI_DEV_TYPE_ANY) || (dev->type == type)) &&
((name == NULL) || (strcmp(dev->name, name) == 0)))
return dev;
}
return NULL;
}
EXPORT_SYMBOL(dmi_find_device);
/**
* dmi_get_date - parse a DMI date
* @field: data index (see enum dmi_field)
* @yearp: optional out parameter for the year
* @monthp: optional out parameter for the month
* @dayp: optional out parameter for the day
*
* The date field is assumed to be in the form resembling
* [mm[/dd]]/yy[yy] and the result is stored in the out
* parameters any or all of which can be omitted.
*
* If the field doesn't exist, all out parameters are set to zero
* and false is returned. Otherwise, true is returned with any
* invalid part of date set to zero.
*
* On return, year, month and day are guaranteed to be in the
* range of [0,9999], [0,12] and [0,31] respectively.
*/
bool dmi_get_date(int field, int *yearp, int *monthp, int *dayp)
{
int year = 0, month = 0, day = 0;
bool exists;
const char *s, *y;
char *e;
s = dmi_get_system_info(field);
exists = s;
if (!exists)
goto out;
/*
* Determine year first. We assume the date string resembles
* mm/dd/yy[yy] but the original code extracted only the year
* from the end. Keep the behavior in the spirit of no
* surprises.
*/
y = strrchr(s, '/');
if (!y)
goto out;
y++;
year = simple_strtoul(y, &e, 10);
if (y != e && year < 100) { /* 2-digit year */
year += 1900;
if (year < 1996) /* no dates < spec 1.0 */
year += 100;
}
if (year > 9999) /* year should fit in %04d */
year = 0;
/* parse the mm and dd */
month = simple_strtoul(s, &e, 10);
if (s == e || *e != '/' || !month || month > 12) {
month = 0;
goto out;
}
s = e + 1;
day = simple_strtoul(s, &e, 10);
if (s == y || s == e || *e != '/' || day > 31)
day = 0;
out:
if (yearp)
*yearp = year;
if (monthp)
*monthp = month;
if (dayp)
*dayp = day;
return exists;
}
EXPORT_SYMBOL(dmi_get_date);
/**
* dmi_get_bios_year - get a year out of DMI_BIOS_DATE field
*
* Returns year on success, -ENXIO if DMI is not selected,
* or a different negative error code if DMI field is not present
* or not parseable.
*/
int dmi_get_bios_year(void)
{
bool exists;
int year;
exists = dmi_get_date(DMI_BIOS_DATE, &year, NULL, NULL);
if (!exists)
return -ENODATA;
return year ? year : -ERANGE;
}
EXPORT_SYMBOL(dmi_get_bios_year);
/**
* dmi_walk - Walk the DMI table and get called back for every record
* @decode: Callback function
* @private_data: Private data to be passed to the callback function
*
* Returns 0 on success, -ENXIO if DMI is not selected or not present,
* or a different negative error code if DMI walking fails.
*/
int dmi_walk(void (*decode)(const struct dmi_header *, void *),
void *private_data)
{
u8 *buf;
if (!dmi_available)
return -ENXIO;
buf = dmi_remap(dmi_base, dmi_len);
if (buf == NULL)
return -ENOMEM;
dmi_decode_table(buf, decode, private_data);
dmi_unmap(buf);
return 0;
}
EXPORT_SYMBOL_GPL(dmi_walk);
/**
* dmi_match - compare a string to the dmi field (if exists)
* @f: DMI field identifier
* @str: string to compare the DMI field to
*
* Returns true if the requested field equals to the str (including NULL).
*/
bool dmi_match(enum dmi_field f, const char *str)
{
const char *info = dmi_get_system_info(f);
if (info == NULL || str == NULL)
return info == str;
return !strcmp(info, str);
}
EXPORT_SYMBOL_GPL(dmi_match);
void dmi_memdev_name(u16 handle, const char **bank, const char **device)
{
int n;
if (dmi_memdev == NULL)
return;
for (n = 0; n < dmi_memdev_nr; n++) {
if (handle == dmi_memdev[n].handle) {
*bank = dmi_memdev[n].bank;
*device = dmi_memdev[n].device;
break;
}
}
}
EXPORT_SYMBOL_GPL(dmi_memdev_name);