linux_dsm_epyc7002/drivers/gpu/drm/tilcdc/tilcdc_crtc.c
Jyri Sarha 437c7d948d drm/tilcdc: Increase time out for waiting frame done interrupt
Increase time out for waiting frame done interrupt. 50ms is long
enough for the usual display modes (50 Hz or higher refresh rate), but
it may be a bit tight for some unusual mode.

Signed-off-by: Jyri Sarha <jsarha@ti.com>
2016-08-08 23:04:52 +03:00

814 lines
20 KiB
C

/*
* Copyright (C) 2012 Texas Instruments
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "drm_flip_work.h"
#include <drm/drm_plane_helper.h>
#include "tilcdc_drv.h"
#include "tilcdc_regs.h"
#define TILCDC_VBLANK_SAFETY_THRESHOLD_US 1000
struct tilcdc_crtc {
struct drm_crtc base;
const struct tilcdc_panel_info *info;
struct drm_pending_vblank_event *event;
int dpms;
wait_queue_head_t frame_done_wq;
bool frame_done;
spinlock_t irq_lock;
ktime_t last_vblank;
struct drm_framebuffer *curr_fb;
struct drm_framebuffer *next_fb;
/* for deferred fb unref's: */
struct drm_flip_work unref_work;
/* Only set if an external encoder is connected */
bool simulate_vesa_sync;
int sync_lost_count;
bool frame_intact;
};
#define to_tilcdc_crtc(x) container_of(x, struct tilcdc_crtc, base)
static void unref_worker(struct drm_flip_work *work, void *val)
{
struct tilcdc_crtc *tilcdc_crtc =
container_of(work, struct tilcdc_crtc, unref_work);
struct drm_device *dev = tilcdc_crtc->base.dev;
mutex_lock(&dev->mode_config.mutex);
drm_framebuffer_unreference(val);
mutex_unlock(&dev->mode_config.mutex);
}
static void set_scanout(struct drm_crtc *crtc, struct drm_framebuffer *fb)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_gem_cma_object *gem;
unsigned int depth, bpp;
dma_addr_t start, end;
drm_fb_get_bpp_depth(fb->pixel_format, &depth, &bpp);
gem = drm_fb_cma_get_gem_obj(fb, 0);
start = gem->paddr + fb->offsets[0] +
crtc->y * fb->pitches[0] +
crtc->x * bpp / 8;
end = start + (crtc->mode.vdisplay * fb->pitches[0]);
tilcdc_write(dev, LCDC_DMA_FB_BASE_ADDR_0_REG, start);
tilcdc_write(dev, LCDC_DMA_FB_CEILING_ADDR_0_REG, end);
if (tilcdc_crtc->curr_fb)
drm_flip_work_queue(&tilcdc_crtc->unref_work,
tilcdc_crtc->curr_fb);
tilcdc_crtc->curr_fb = fb;
}
static void reset(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
if (priv->rev != 2)
return;
tilcdc_set(dev, LCDC_CLK_RESET_REG, LCDC_CLK_MAIN_RESET);
usleep_range(250, 1000);
tilcdc_clear(dev, LCDC_CLK_RESET_REG, LCDC_CLK_MAIN_RESET);
}
static void start(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
reset(crtc);
tilcdc_clear(dev, LCDC_DMA_CTRL_REG, LCDC_DUAL_FRAME_BUFFER_ENABLE);
tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_PALETTE_LOAD_MODE(DATA_ONLY));
tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
}
static void stop(struct drm_crtc *crtc)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
tilcdc_crtc->frame_done = false;
tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ENABLE);
/*
* if necessary wait for framedone irq which will still come
* before putting things to sleep..
*/
if (priv->rev == 2) {
int ret = wait_event_timeout(tilcdc_crtc->frame_done_wq,
tilcdc_crtc->frame_done,
msecs_to_jiffies(500));
if (ret == 0)
dev_err(dev->dev, "%s: timeout waiting for framedone\n",
__func__);
}
}
static void tilcdc_crtc_destroy(struct drm_crtc *crtc)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
tilcdc_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
of_node_put(crtc->port);
drm_crtc_cleanup(crtc);
drm_flip_work_cleanup(&tilcdc_crtc->unref_work);
}
static int tilcdc_verify_fb(struct drm_crtc *crtc, struct drm_framebuffer *fb)
{
struct drm_device *dev = crtc->dev;
unsigned int depth, bpp;
drm_fb_get_bpp_depth(fb->pixel_format, &depth, &bpp);
if (fb->pitches[0] != crtc->mode.hdisplay * bpp / 8) {
dev_err(dev->dev,
"Invalid pitch: fb and crtc widths must be the same");
return -EINVAL;
}
return 0;
}
static int tilcdc_crtc_page_flip(struct drm_crtc *crtc,
struct drm_framebuffer *fb,
struct drm_pending_vblank_event *event,
uint32_t page_flip_flags)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
int r;
unsigned long flags;
s64 tdiff;
ktime_t next_vblank;
r = tilcdc_verify_fb(crtc, fb);
if (r)
return r;
if (tilcdc_crtc->event) {
dev_err(dev->dev, "already pending page flip!\n");
return -EBUSY;
}
drm_framebuffer_reference(fb);
crtc->primary->fb = fb;
pm_runtime_get_sync(dev->dev);
spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
next_vblank = ktime_add_us(tilcdc_crtc->last_vblank,
1000000 / crtc->hwmode.vrefresh);
tdiff = ktime_to_us(ktime_sub(next_vblank, ktime_get()));
if (tdiff >= TILCDC_VBLANK_SAFETY_THRESHOLD_US)
set_scanout(crtc, fb);
else
tilcdc_crtc->next_fb = fb;
tilcdc_crtc->event = event;
spin_unlock_irqrestore(&tilcdc_crtc->irq_lock, flags);
pm_runtime_put_sync(dev->dev);
return 0;
}
void tilcdc_crtc_dpms(struct drm_crtc *crtc, int mode)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
/* we really only care about on or off: */
if (mode != DRM_MODE_DPMS_ON)
mode = DRM_MODE_DPMS_OFF;
if (tilcdc_crtc->dpms == mode)
return;
tilcdc_crtc->dpms = mode;
if (mode == DRM_MODE_DPMS_ON) {
pm_runtime_get_sync(dev->dev);
start(crtc);
} else {
stop(crtc);
pm_runtime_put_sync(dev->dev);
if (tilcdc_crtc->next_fb) {
drm_flip_work_queue(&tilcdc_crtc->unref_work,
tilcdc_crtc->next_fb);
tilcdc_crtc->next_fb = NULL;
}
if (tilcdc_crtc->curr_fb) {
drm_flip_work_queue(&tilcdc_crtc->unref_work,
tilcdc_crtc->curr_fb);
tilcdc_crtc->curr_fb = NULL;
}
drm_flip_work_commit(&tilcdc_crtc->unref_work, priv->wq);
}
}
int tilcdc_crtc_current_dpms_state(struct drm_crtc *crtc)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
return tilcdc_crtc->dpms;
}
static bool tilcdc_crtc_mode_fixup(struct drm_crtc *crtc,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
if (!tilcdc_crtc->simulate_vesa_sync)
return true;
/*
* tilcdc does not generate VESA-compliant sync but aligns
* VS on the second edge of HS instead of first edge.
* We use adjusted_mode, to fixup sync by aligning both rising
* edges and add HSKEW offset to fix the sync.
*/
adjusted_mode->hskew = mode->hsync_end - mode->hsync_start;
adjusted_mode->flags |= DRM_MODE_FLAG_HSKEW;
if (mode->flags & DRM_MODE_FLAG_NHSYNC) {
adjusted_mode->flags |= DRM_MODE_FLAG_PHSYNC;
adjusted_mode->flags &= ~DRM_MODE_FLAG_NHSYNC;
} else {
adjusted_mode->flags |= DRM_MODE_FLAG_NHSYNC;
adjusted_mode->flags &= ~DRM_MODE_FLAG_PHSYNC;
}
return true;
}
static void tilcdc_crtc_prepare(struct drm_crtc *crtc)
{
tilcdc_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
}
static void tilcdc_crtc_commit(struct drm_crtc *crtc)
{
tilcdc_crtc_dpms(crtc, DRM_MODE_DPMS_ON);
}
static int tilcdc_crtc_mode_set(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode,
int x, int y,
struct drm_framebuffer *old_fb)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
const struct tilcdc_panel_info *info = tilcdc_crtc->info;
uint32_t reg, hbp, hfp, hsw, vbp, vfp, vsw;
int ret;
ret = tilcdc_crtc_mode_valid(crtc, mode);
if (WARN_ON(ret))
return ret;
if (WARN_ON(!info))
return -EINVAL;
ret = tilcdc_verify_fb(crtc, crtc->primary->fb);
if (ret)
return ret;
pm_runtime_get_sync(dev->dev);
/* Configure the Burst Size and fifo threshold of DMA: */
reg = tilcdc_read(dev, LCDC_DMA_CTRL_REG) & ~0x00000770;
switch (info->dma_burst_sz) {
case 1:
reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_1);
break;
case 2:
reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_2);
break;
case 4:
reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_4);
break;
case 8:
reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_8);
break;
case 16:
reg |= LCDC_DMA_BURST_SIZE(LCDC_DMA_BURST_16);
break;
default:
return -EINVAL;
}
reg |= (info->fifo_th << 8);
tilcdc_write(dev, LCDC_DMA_CTRL_REG, reg);
/* Configure timings: */
hbp = mode->htotal - mode->hsync_end;
hfp = mode->hsync_start - mode->hdisplay;
hsw = mode->hsync_end - mode->hsync_start;
vbp = mode->vtotal - mode->vsync_end;
vfp = mode->vsync_start - mode->vdisplay;
vsw = mode->vsync_end - mode->vsync_start;
DBG("%dx%d, hbp=%u, hfp=%u, hsw=%u, vbp=%u, vfp=%u, vsw=%u",
mode->hdisplay, mode->vdisplay, hbp, hfp, hsw, vbp, vfp, vsw);
/* Configure the AC Bias Period and Number of Transitions per Interrupt: */
reg = tilcdc_read(dev, LCDC_RASTER_TIMING_2_REG) & ~0x000fff00;
reg |= LCDC_AC_BIAS_FREQUENCY(info->ac_bias) |
LCDC_AC_BIAS_TRANSITIONS_PER_INT(info->ac_bias_intrpt);
/*
* subtract one from hfp, hbp, hsw because the hardware uses
* a value of 0 as 1
*/
if (priv->rev == 2) {
/* clear bits we're going to set */
reg &= ~0x78000033;
reg |= ((hfp-1) & 0x300) >> 8;
reg |= ((hbp-1) & 0x300) >> 4;
reg |= ((hsw-1) & 0x3c0) << 21;
}
tilcdc_write(dev, LCDC_RASTER_TIMING_2_REG, reg);
reg = (((mode->hdisplay >> 4) - 1) << 4) |
(((hbp-1) & 0xff) << 24) |
(((hfp-1) & 0xff) << 16) |
(((hsw-1) & 0x3f) << 10);
if (priv->rev == 2)
reg |= (((mode->hdisplay >> 4) - 1) & 0x40) >> 3;
tilcdc_write(dev, LCDC_RASTER_TIMING_0_REG, reg);
reg = ((mode->vdisplay - 1) & 0x3ff) |
((vbp & 0xff) << 24) |
((vfp & 0xff) << 16) |
(((vsw-1) & 0x3f) << 10);
tilcdc_write(dev, LCDC_RASTER_TIMING_1_REG, reg);
/*
* be sure to set Bit 10 for the V2 LCDC controller,
* otherwise limited to 1024 pixels width, stopping
* 1920x1080 being suppoted.
*/
if (priv->rev == 2) {
if ((mode->vdisplay - 1) & 0x400) {
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG,
LCDC_LPP_B10);
} else {
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG,
LCDC_LPP_B10);
}
}
/* Configure display type: */
reg = tilcdc_read(dev, LCDC_RASTER_CTRL_REG) &
~(LCDC_TFT_MODE | LCDC_MONO_8BIT_MODE | LCDC_MONOCHROME_MODE |
LCDC_V2_TFT_24BPP_MODE | LCDC_V2_TFT_24BPP_UNPACK | 0x000ff000);
reg |= LCDC_TFT_MODE; /* no monochrome/passive support */
if (info->tft_alt_mode)
reg |= LCDC_TFT_ALT_ENABLE;
if (priv->rev == 2) {
unsigned int depth, bpp;
drm_fb_get_bpp_depth(crtc->primary->fb->pixel_format, &depth, &bpp);
switch (bpp) {
case 16:
break;
case 32:
reg |= LCDC_V2_TFT_24BPP_UNPACK;
/* fallthrough */
case 24:
reg |= LCDC_V2_TFT_24BPP_MODE;
break;
default:
dev_err(dev->dev, "invalid pixel format\n");
return -EINVAL;
}
}
reg |= info->fdd < 12;
tilcdc_write(dev, LCDC_RASTER_CTRL_REG, reg);
if (info->invert_pxl_clk)
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_PIXEL_CLOCK);
else
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_PIXEL_CLOCK);
if (info->sync_ctrl)
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_CTRL);
else
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_CTRL);
if (info->sync_edge)
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_EDGE);
else
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_SYNC_EDGE);
/*
* use value from adjusted_mode here as this might have been
* changed as part of the fixup for slave encoders to solve the
* issue where tilcdc timings are not VESA compliant
*/
if (adjusted_mode->flags & DRM_MODE_FLAG_NHSYNC)
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_HSYNC);
else
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_HSYNC);
if (mode->flags & DRM_MODE_FLAG_NVSYNC)
tilcdc_set(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_VSYNC);
else
tilcdc_clear(dev, LCDC_RASTER_TIMING_2_REG, LCDC_INVERT_VSYNC);
if (info->raster_order)
tilcdc_set(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ORDER);
else
tilcdc_clear(dev, LCDC_RASTER_CTRL_REG, LCDC_RASTER_ORDER);
drm_framebuffer_reference(crtc->primary->fb);
set_scanout(crtc, crtc->primary->fb);
tilcdc_crtc_update_clk(crtc);
pm_runtime_put_sync(dev->dev);
return 0;
}
static int tilcdc_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y,
struct drm_framebuffer *old_fb)
{
struct drm_device *dev = crtc->dev;
int r;
r = tilcdc_verify_fb(crtc, crtc->primary->fb);
if (r)
return r;
drm_framebuffer_reference(crtc->primary->fb);
pm_runtime_get_sync(dev->dev);
set_scanout(crtc, crtc->primary->fb);
pm_runtime_put_sync(dev->dev);
return 0;
}
static const struct drm_crtc_funcs tilcdc_crtc_funcs = {
.destroy = tilcdc_crtc_destroy,
.set_config = drm_crtc_helper_set_config,
.page_flip = tilcdc_crtc_page_flip,
};
static const struct drm_crtc_helper_funcs tilcdc_crtc_helper_funcs = {
.dpms = tilcdc_crtc_dpms,
.mode_fixup = tilcdc_crtc_mode_fixup,
.prepare = tilcdc_crtc_prepare,
.commit = tilcdc_crtc_commit,
.mode_set = tilcdc_crtc_mode_set,
.mode_set_base = tilcdc_crtc_mode_set_base,
};
int tilcdc_crtc_max_width(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
int max_width = 0;
if (priv->rev == 1)
max_width = 1024;
else if (priv->rev == 2)
max_width = 2048;
return max_width;
}
int tilcdc_crtc_mode_valid(struct drm_crtc *crtc, struct drm_display_mode *mode)
{
struct tilcdc_drm_private *priv = crtc->dev->dev_private;
unsigned int bandwidth;
uint32_t hbp, hfp, hsw, vbp, vfp, vsw;
/*
* check to see if the width is within the range that
* the LCD Controller physically supports
*/
if (mode->hdisplay > tilcdc_crtc_max_width(crtc))
return MODE_VIRTUAL_X;
/* width must be multiple of 16 */
if (mode->hdisplay & 0xf)
return MODE_VIRTUAL_X;
if (mode->vdisplay > 2048)
return MODE_VIRTUAL_Y;
DBG("Processing mode %dx%d@%d with pixel clock %d",
mode->hdisplay, mode->vdisplay,
drm_mode_vrefresh(mode), mode->clock);
hbp = mode->htotal - mode->hsync_end;
hfp = mode->hsync_start - mode->hdisplay;
hsw = mode->hsync_end - mode->hsync_start;
vbp = mode->vtotal - mode->vsync_end;
vfp = mode->vsync_start - mode->vdisplay;
vsw = mode->vsync_end - mode->vsync_start;
if ((hbp-1) & ~0x3ff) {
DBG("Pruning mode: Horizontal Back Porch out of range");
return MODE_HBLANK_WIDE;
}
if ((hfp-1) & ~0x3ff) {
DBG("Pruning mode: Horizontal Front Porch out of range");
return MODE_HBLANK_WIDE;
}
if ((hsw-1) & ~0x3ff) {
DBG("Pruning mode: Horizontal Sync Width out of range");
return MODE_HSYNC_WIDE;
}
if (vbp & ~0xff) {
DBG("Pruning mode: Vertical Back Porch out of range");
return MODE_VBLANK_WIDE;
}
if (vfp & ~0xff) {
DBG("Pruning mode: Vertical Front Porch out of range");
return MODE_VBLANK_WIDE;
}
if ((vsw-1) & ~0x3f) {
DBG("Pruning mode: Vertical Sync Width out of range");
return MODE_VSYNC_WIDE;
}
/*
* some devices have a maximum allowed pixel clock
* configured from the DT
*/
if (mode->clock > priv->max_pixelclock) {
DBG("Pruning mode: pixel clock too high");
return MODE_CLOCK_HIGH;
}
/*
* some devices further limit the max horizontal resolution
* configured from the DT
*/
if (mode->hdisplay > priv->max_width)
return MODE_BAD_WIDTH;
/* filter out modes that would require too much memory bandwidth: */
bandwidth = mode->hdisplay * mode->vdisplay *
drm_mode_vrefresh(mode);
if (bandwidth > priv->max_bandwidth) {
DBG("Pruning mode: exceeds defined bandwidth limit");
return MODE_BAD;
}
return MODE_OK;
}
void tilcdc_crtc_set_panel_info(struct drm_crtc *crtc,
const struct tilcdc_panel_info *info)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
tilcdc_crtc->info = info;
}
void tilcdc_crtc_set_simulate_vesa_sync(struct drm_crtc *crtc,
bool simulate_vesa_sync)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
tilcdc_crtc->simulate_vesa_sync = simulate_vesa_sync;
}
void tilcdc_crtc_update_clk(struct drm_crtc *crtc)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
int dpms = tilcdc_crtc->dpms;
unsigned long lcd_clk;
const unsigned clkdiv = 2; /* using a fixed divider of 2 */
int ret;
pm_runtime_get_sync(dev->dev);
if (dpms == DRM_MODE_DPMS_ON)
tilcdc_crtc_dpms(crtc, DRM_MODE_DPMS_OFF);
/* mode.clock is in KHz, set_rate wants parameter in Hz */
ret = clk_set_rate(priv->clk, crtc->mode.clock * 1000 * clkdiv);
if (ret < 0) {
dev_err(dev->dev, "failed to set display clock rate to: %d\n",
crtc->mode.clock);
goto out;
}
lcd_clk = clk_get_rate(priv->clk);
DBG("lcd_clk=%lu, mode clock=%d, div=%u",
lcd_clk, crtc->mode.clock, clkdiv);
/* Configure the LCD clock divisor. */
tilcdc_write(dev, LCDC_CTRL_REG, LCDC_CLK_DIVISOR(clkdiv) |
LCDC_RASTER_MODE);
if (priv->rev == 2)
tilcdc_set(dev, LCDC_CLK_ENABLE_REG,
LCDC_V2_DMA_CLK_EN | LCDC_V2_LIDD_CLK_EN |
LCDC_V2_CORE_CLK_EN);
if (dpms == DRM_MODE_DPMS_ON)
tilcdc_crtc_dpms(crtc, DRM_MODE_DPMS_ON);
out:
pm_runtime_put_sync(dev->dev);
}
#define SYNC_LOST_COUNT_LIMIT 50
irqreturn_t tilcdc_crtc_irq(struct drm_crtc *crtc)
{
struct tilcdc_crtc *tilcdc_crtc = to_tilcdc_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct tilcdc_drm_private *priv = dev->dev_private;
uint32_t stat;
stat = tilcdc_read_irqstatus(dev);
tilcdc_clear_irqstatus(dev, stat);
if (stat & LCDC_END_OF_FRAME0) {
unsigned long flags;
bool skip_event = false;
ktime_t now;
now = ktime_get();
drm_flip_work_commit(&tilcdc_crtc->unref_work, priv->wq);
spin_lock_irqsave(&tilcdc_crtc->irq_lock, flags);
tilcdc_crtc->last_vblank = now;
if (tilcdc_crtc->next_fb) {
set_scanout(crtc, tilcdc_crtc->next_fb);
tilcdc_crtc->next_fb = NULL;
skip_event = true;
}
spin_unlock_irqrestore(&tilcdc_crtc->irq_lock, flags);
drm_crtc_handle_vblank(crtc);
if (!skip_event) {
struct drm_pending_vblank_event *event;
spin_lock_irqsave(&dev->event_lock, flags);
event = tilcdc_crtc->event;
tilcdc_crtc->event = NULL;
if (event)
drm_crtc_send_vblank_event(crtc, event);
spin_unlock_irqrestore(&dev->event_lock, flags);
}
if (tilcdc_crtc->frame_intact)
tilcdc_crtc->sync_lost_count = 0;
else
tilcdc_crtc->frame_intact = true;
}
if (stat & LCDC_FIFO_UNDERFLOW)
dev_err_ratelimited(dev->dev, "%s(0x%08x): FIFO underfow",
__func__, stat);
/* For revision 2 only */
if (priv->rev == 2) {
if (stat & LCDC_FRAME_DONE) {
tilcdc_crtc->frame_done = true;
wake_up(&tilcdc_crtc->frame_done_wq);
}
if (stat & LCDC_SYNC_LOST) {
dev_err_ratelimited(dev->dev, "%s(0x%08x): Sync lost",
__func__, stat);
tilcdc_crtc->frame_intact = false;
if (tilcdc_crtc->sync_lost_count++ >
SYNC_LOST_COUNT_LIMIT) {
dev_err(dev->dev, "%s(0x%08x): Sync lost flood detected, disabling the interrupt", __func__, stat);
tilcdc_write(dev, LCDC_INT_ENABLE_CLR_REG,
LCDC_SYNC_LOST);
}
}
/* Indicate to LCDC that the interrupt service routine has
* completed, see 13.3.6.1.6 in AM335x TRM.
*/
tilcdc_write(dev, LCDC_END_OF_INT_IND_REG, 0);
}
return IRQ_HANDLED;
}
struct drm_crtc *tilcdc_crtc_create(struct drm_device *dev)
{
struct tilcdc_drm_private *priv = dev->dev_private;
struct tilcdc_crtc *tilcdc_crtc;
struct drm_crtc *crtc;
int ret;
tilcdc_crtc = devm_kzalloc(dev->dev, sizeof(*tilcdc_crtc), GFP_KERNEL);
if (!tilcdc_crtc) {
dev_err(dev->dev, "allocation failed\n");
return NULL;
}
crtc = &tilcdc_crtc->base;
tilcdc_crtc->dpms = DRM_MODE_DPMS_OFF;
init_waitqueue_head(&tilcdc_crtc->frame_done_wq);
drm_flip_work_init(&tilcdc_crtc->unref_work,
"unref", unref_worker);
spin_lock_init(&tilcdc_crtc->irq_lock);
ret = drm_crtc_init(dev, crtc, &tilcdc_crtc_funcs);
if (ret < 0)
goto fail;
drm_crtc_helper_add(crtc, &tilcdc_crtc_helper_funcs);
if (priv->is_componentized) {
struct device_node *ports =
of_get_child_by_name(dev->dev->of_node, "ports");
if (ports) {
crtc->port = of_get_child_by_name(ports, "port");
of_node_put(ports);
} else {
crtc->port =
of_get_child_by_name(dev->dev->of_node, "port");
}
if (!crtc->port) { /* This should never happen */
dev_err(dev->dev, "Port node not found in %s\n",
dev->dev->of_node->full_name);
goto fail;
}
}
return crtc;
fail:
tilcdc_crtc_destroy(crtc);
return NULL;
}