linux_dsm_epyc7002/drivers/net/pasemi_mac.c
Olof Johansson 4352d82647 pasemi_mac: Fix reuse of free'd skb
Turns out we're freeing the skb when we detect CRC error, but we're
not clearing out info->skb. We could either clear it and have the stack
reallocate it, or just leave it and the rx ring refill code will reuse
the one that was allocated.

Reusing a freed skb obviously caused some nasty crashes of various kind,
as reported by Brent Baude and David Woodhouse.

Signed-off-by: Olof Johansson <olof@lixom.net>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
2007-12-04 14:53:49 -05:00

1503 lines
37 KiB
C

/*
* Copyright (C) 2006-2007 PA Semi, Inc
*
* Driver for the PA Semi PWRficient onchip 1G/10G Ethernet MACs
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/interrupt.h>
#include <linux/dmaengine.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <asm/dma-mapping.h>
#include <linux/in.h>
#include <linux/skbuff.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <net/checksum.h>
#include <asm/irq.h>
#include <asm/firmware.h>
#include "pasemi_mac.h"
/* We have our own align, since ppc64 in general has it at 0 because
* of design flaws in some of the server bridge chips. However, for
* PWRficient doing the unaligned copies is more expensive than doing
* unaligned DMA, so make sure the data is aligned instead.
*/
#define LOCAL_SKB_ALIGN 2
/* TODO list
*
* - Multicast support
* - Large MTU support
* - SW LRO
* - Multiqueue RX/TX
*/
/* Must be a power of two */
#define RX_RING_SIZE 4096
#define TX_RING_SIZE 4096
#define DEFAULT_MSG_ENABLE \
(NETIF_MSG_DRV | \
NETIF_MSG_PROBE | \
NETIF_MSG_LINK | \
NETIF_MSG_TIMER | \
NETIF_MSG_IFDOWN | \
NETIF_MSG_IFUP | \
NETIF_MSG_RX_ERR | \
NETIF_MSG_TX_ERR)
#define TX_RING(mac, num) ((mac)->tx->ring[(num) & (TX_RING_SIZE-1)])
#define TX_RING_INFO(mac, num) ((mac)->tx->ring_info[(num) & (TX_RING_SIZE-1)])
#define RX_RING(mac, num) ((mac)->rx->ring[(num) & (RX_RING_SIZE-1)])
#define RX_RING_INFO(mac, num) ((mac)->rx->ring_info[(num) & (RX_RING_SIZE-1)])
#define RX_BUFF(mac, num) ((mac)->rx->buffers[(num) & (RX_RING_SIZE-1)])
#define RING_USED(ring) (((ring)->next_to_fill - (ring)->next_to_clean) \
& ((ring)->size - 1))
#define RING_AVAIL(ring) ((ring->size) - RING_USED(ring))
#define BUF_SIZE 1646 /* 1500 MTU + ETH_HLEN + VLAN_HLEN + 2 64B cachelines */
MODULE_LICENSE("GPL");
MODULE_AUTHOR ("Olof Johansson <olof@lixom.net>");
MODULE_DESCRIPTION("PA Semi PWRficient Ethernet driver");
static int debug = -1; /* -1 == use DEFAULT_MSG_ENABLE as value */
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "PA Semi MAC bitmapped debugging message enable value");
static struct pasdma_status *dma_status;
static int translation_enabled(void)
{
#if defined(CONFIG_PPC_PASEMI_IOMMU_DMA_FORCE)
return 1;
#else
return firmware_has_feature(FW_FEATURE_LPAR);
#endif
}
static void write_iob_reg(struct pasemi_mac *mac, unsigned int reg,
unsigned int val)
{
out_le32(mac->iob_regs+reg, val);
}
static unsigned int read_mac_reg(struct pasemi_mac *mac, unsigned int reg)
{
return in_le32(mac->regs+reg);
}
static void write_mac_reg(struct pasemi_mac *mac, unsigned int reg,
unsigned int val)
{
out_le32(mac->regs+reg, val);
}
static unsigned int read_dma_reg(struct pasemi_mac *mac, unsigned int reg)
{
return in_le32(mac->dma_regs+reg);
}
static void write_dma_reg(struct pasemi_mac *mac, unsigned int reg,
unsigned int val)
{
out_le32(mac->dma_regs+reg, val);
}
static int pasemi_get_mac_addr(struct pasemi_mac *mac)
{
struct pci_dev *pdev = mac->pdev;
struct device_node *dn = pci_device_to_OF_node(pdev);
int len;
const u8 *maddr;
u8 addr[6];
if (!dn) {
dev_dbg(&pdev->dev,
"No device node for mac, not configuring\n");
return -ENOENT;
}
maddr = of_get_property(dn, "local-mac-address", &len);
if (maddr && len == 6) {
memcpy(mac->mac_addr, maddr, 6);
return 0;
}
/* Some old versions of firmware mistakenly uses mac-address
* (and as a string) instead of a byte array in local-mac-address.
*/
if (maddr == NULL)
maddr = of_get_property(dn, "mac-address", NULL);
if (maddr == NULL) {
dev_warn(&pdev->dev,
"no mac address in device tree, not configuring\n");
return -ENOENT;
}
if (sscanf(maddr, "%hhx:%hhx:%hhx:%hhx:%hhx:%hhx", &addr[0],
&addr[1], &addr[2], &addr[3], &addr[4], &addr[5]) != 6) {
dev_warn(&pdev->dev,
"can't parse mac address, not configuring\n");
return -EINVAL;
}
memcpy(mac->mac_addr, addr, 6);
return 0;
}
static int pasemi_mac_unmap_tx_skb(struct pasemi_mac *mac,
struct sk_buff *skb,
dma_addr_t *dmas)
{
int f;
int nfrags = skb_shinfo(skb)->nr_frags;
pci_unmap_single(mac->dma_pdev, dmas[0], skb_headlen(skb),
PCI_DMA_TODEVICE);
for (f = 0; f < nfrags; f++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
pci_unmap_page(mac->dma_pdev, dmas[f+1], frag->size,
PCI_DMA_TODEVICE);
}
dev_kfree_skb_irq(skb);
/* Freed descriptor slot + main SKB ptr + nfrags additional ptrs,
* aligned up to a power of 2
*/
return (nfrags + 3) & ~1;
}
static int pasemi_mac_setup_rx_resources(struct net_device *dev)
{
struct pasemi_mac_rxring *ring;
struct pasemi_mac *mac = netdev_priv(dev);
int chan_id = mac->dma_rxch;
unsigned int cfg;
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto out_ring;
spin_lock_init(&ring->lock);
ring->size = RX_RING_SIZE;
ring->ring_info = kzalloc(sizeof(struct pasemi_mac_buffer) *
RX_RING_SIZE, GFP_KERNEL);
if (!ring->ring_info)
goto out_ring_info;
/* Allocate descriptors */
ring->ring = dma_alloc_coherent(&mac->dma_pdev->dev,
RX_RING_SIZE * sizeof(u64),
&ring->dma, GFP_KERNEL);
if (!ring->ring)
goto out_ring_desc;
memset(ring->ring, 0, RX_RING_SIZE * sizeof(u64));
ring->buffers = dma_alloc_coherent(&mac->dma_pdev->dev,
RX_RING_SIZE * sizeof(u64),
&ring->buf_dma, GFP_KERNEL);
if (!ring->buffers)
goto out_buffers;
memset(ring->buffers, 0, RX_RING_SIZE * sizeof(u64));
write_dma_reg(mac, PAS_DMA_RXCHAN_BASEL(chan_id), PAS_DMA_RXCHAN_BASEL_BRBL(ring->dma));
write_dma_reg(mac, PAS_DMA_RXCHAN_BASEU(chan_id),
PAS_DMA_RXCHAN_BASEU_BRBH(ring->dma >> 32) |
PAS_DMA_RXCHAN_BASEU_SIZ(RX_RING_SIZE >> 3));
cfg = PAS_DMA_RXCHAN_CFG_HBU(2);
if (translation_enabled())
cfg |= PAS_DMA_RXCHAN_CFG_CTR;
write_dma_reg(mac, PAS_DMA_RXCHAN_CFG(chan_id), cfg);
write_dma_reg(mac, PAS_DMA_RXINT_BASEL(mac->dma_if),
PAS_DMA_RXINT_BASEL_BRBL(ring->buf_dma));
write_dma_reg(mac, PAS_DMA_RXINT_BASEU(mac->dma_if),
PAS_DMA_RXINT_BASEU_BRBH(ring->buf_dma >> 32) |
PAS_DMA_RXINT_BASEU_SIZ(RX_RING_SIZE >> 3));
cfg = PAS_DMA_RXINT_CFG_DHL(3) | PAS_DMA_RXINT_CFG_L2 |
PAS_DMA_RXINT_CFG_LW | PAS_DMA_RXINT_CFG_RBP |
PAS_DMA_RXINT_CFG_HEN;
if (translation_enabled())
cfg |= PAS_DMA_RXINT_CFG_ITRR | PAS_DMA_RXINT_CFG_ITR;
write_dma_reg(mac, PAS_DMA_RXINT_CFG(mac->dma_if), cfg);
ring->next_to_fill = 0;
ring->next_to_clean = 0;
snprintf(ring->irq_name, sizeof(ring->irq_name),
"%s rx", dev->name);
mac->rx = ring;
return 0;
out_buffers:
dma_free_coherent(&mac->dma_pdev->dev,
RX_RING_SIZE * sizeof(u64),
mac->rx->ring, mac->rx->dma);
out_ring_desc:
kfree(ring->ring_info);
out_ring_info:
kfree(ring);
out_ring:
return -ENOMEM;
}
static int pasemi_mac_setup_tx_resources(struct net_device *dev)
{
struct pasemi_mac *mac = netdev_priv(dev);
u32 val;
int chan_id = mac->dma_txch;
struct pasemi_mac_txring *ring;
unsigned int cfg;
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
goto out_ring;
spin_lock_init(&ring->lock);
ring->size = TX_RING_SIZE;
ring->ring_info = kzalloc(sizeof(struct pasemi_mac_buffer) *
TX_RING_SIZE, GFP_KERNEL);
if (!ring->ring_info)
goto out_ring_info;
/* Allocate descriptors */
ring->ring = dma_alloc_coherent(&mac->dma_pdev->dev,
TX_RING_SIZE * sizeof(u64),
&ring->dma, GFP_KERNEL);
if (!ring->ring)
goto out_ring_desc;
memset(ring->ring, 0, TX_RING_SIZE * sizeof(u64));
write_dma_reg(mac, PAS_DMA_TXCHAN_BASEL(chan_id),
PAS_DMA_TXCHAN_BASEL_BRBL(ring->dma));
val = PAS_DMA_TXCHAN_BASEU_BRBH(ring->dma >> 32);
val |= PAS_DMA_TXCHAN_BASEU_SIZ(TX_RING_SIZE >> 3);
write_dma_reg(mac, PAS_DMA_TXCHAN_BASEU(chan_id), val);
cfg = PAS_DMA_TXCHAN_CFG_TY_IFACE |
PAS_DMA_TXCHAN_CFG_TATTR(mac->dma_if) |
PAS_DMA_TXCHAN_CFG_UP |
PAS_DMA_TXCHAN_CFG_WT(2);
if (translation_enabled())
cfg |= PAS_DMA_TXCHAN_CFG_TRD | PAS_DMA_TXCHAN_CFG_TRR;
write_dma_reg(mac, PAS_DMA_TXCHAN_CFG(chan_id), cfg);
ring->next_to_fill = 0;
ring->next_to_clean = 0;
snprintf(ring->irq_name, sizeof(ring->irq_name),
"%s tx", dev->name);
mac->tx = ring;
return 0;
out_ring_desc:
kfree(ring->ring_info);
out_ring_info:
kfree(ring);
out_ring:
return -ENOMEM;
}
static void pasemi_mac_free_tx_resources(struct net_device *dev)
{
struct pasemi_mac *mac = netdev_priv(dev);
unsigned int i, j;
struct pasemi_mac_buffer *info;
dma_addr_t dmas[MAX_SKB_FRAGS+1];
int freed;
int start, limit;
start = mac->tx->next_to_clean;
limit = mac->tx->next_to_fill;
/* Compensate for when fill has wrapped and clean has not */
if (start > limit)
limit += TX_RING_SIZE;
for (i = start; i < limit; i += freed) {
info = &TX_RING_INFO(mac, i+1);
if (info->dma && info->skb) {
for (j = 0; j <= skb_shinfo(info->skb)->nr_frags; j++)
dmas[j] = TX_RING_INFO(mac, i+1+j).dma;
freed = pasemi_mac_unmap_tx_skb(mac, info->skb, dmas);
} else
freed = 2;
}
for (i = 0; i < TX_RING_SIZE; i++)
TX_RING(mac, i) = 0;
dma_free_coherent(&mac->dma_pdev->dev,
TX_RING_SIZE * sizeof(u64),
mac->tx->ring, mac->tx->dma);
kfree(mac->tx->ring_info);
kfree(mac->tx);
mac->tx = NULL;
}
static void pasemi_mac_free_rx_resources(struct net_device *dev)
{
struct pasemi_mac *mac = netdev_priv(dev);
unsigned int i;
struct pasemi_mac_buffer *info;
for (i = 0; i < RX_RING_SIZE; i++) {
info = &RX_RING_INFO(mac, i);
if (info->skb && info->dma) {
pci_unmap_single(mac->dma_pdev,
info->dma,
info->skb->len,
PCI_DMA_FROMDEVICE);
dev_kfree_skb_any(info->skb);
}
info->dma = 0;
info->skb = NULL;
}
for (i = 0; i < RX_RING_SIZE; i++)
RX_RING(mac, i) = 0;
dma_free_coherent(&mac->dma_pdev->dev,
RX_RING_SIZE * sizeof(u64),
mac->rx->ring, mac->rx->dma);
dma_free_coherent(&mac->dma_pdev->dev, RX_RING_SIZE * sizeof(u64),
mac->rx->buffers, mac->rx->buf_dma);
kfree(mac->rx->ring_info);
kfree(mac->rx);
mac->rx = NULL;
}
static void pasemi_mac_replenish_rx_ring(struct net_device *dev, int limit)
{
struct pasemi_mac *mac = netdev_priv(dev);
int fill, count;
if (limit <= 0)
return;
fill = mac->rx->next_to_fill;
for (count = 0; count < limit; count++) {
struct pasemi_mac_buffer *info = &RX_RING_INFO(mac, fill);
u64 *buff = &RX_BUFF(mac, fill);
struct sk_buff *skb;
dma_addr_t dma;
/* Entry in use? */
WARN_ON(*buff);
/* skb might still be in there for recycle on short receives */
if (info->skb)
skb = info->skb;
else {
skb = dev_alloc_skb(BUF_SIZE);
skb_reserve(skb, LOCAL_SKB_ALIGN);
}
if (unlikely(!skb))
break;
dma = pci_map_single(mac->dma_pdev, skb->data,
BUF_SIZE - LOCAL_SKB_ALIGN,
PCI_DMA_FROMDEVICE);
if (unlikely(dma_mapping_error(dma))) {
dev_kfree_skb_irq(info->skb);
break;
}
info->skb = skb;
info->dma = dma;
*buff = XCT_RXB_LEN(BUF_SIZE) | XCT_RXB_ADDR(dma);
fill++;
}
wmb();
write_dma_reg(mac, PAS_DMA_RXINT_INCR(mac->dma_if), count);
mac->rx->next_to_fill = (mac->rx->next_to_fill + count) &
(RX_RING_SIZE - 1);
}
static void pasemi_mac_restart_rx_intr(struct pasemi_mac *mac)
{
unsigned int reg, pcnt;
/* Re-enable packet count interrupts: finally
* ack the packet count interrupt we got in rx_intr.
*/
pcnt = *mac->rx_status & PAS_STATUS_PCNT_M;
reg = PAS_IOB_DMA_RXCH_RESET_PCNT(pcnt) | PAS_IOB_DMA_RXCH_RESET_PINTC;
write_iob_reg(mac, PAS_IOB_DMA_RXCH_RESET(mac->dma_rxch), reg);
}
static void pasemi_mac_restart_tx_intr(struct pasemi_mac *mac)
{
unsigned int reg, pcnt;
/* Re-enable packet count interrupts */
pcnt = *mac->tx_status & PAS_STATUS_PCNT_M;
reg = PAS_IOB_DMA_TXCH_RESET_PCNT(pcnt) | PAS_IOB_DMA_TXCH_RESET_PINTC;
write_iob_reg(mac, PAS_IOB_DMA_TXCH_RESET(mac->dma_txch), reg);
}
static inline void pasemi_mac_rx_error(struct pasemi_mac *mac, u64 macrx)
{
unsigned int rcmdsta, ccmdsta;
if (!netif_msg_rx_err(mac))
return;
rcmdsta = read_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if));
ccmdsta = read_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch));
printk(KERN_ERR "pasemi_mac: rx error. macrx %016lx, rx status %lx\n",
macrx, *mac->rx_status);
printk(KERN_ERR "pasemi_mac: rcmdsta %08x ccmdsta %08x\n",
rcmdsta, ccmdsta);
}
static inline void pasemi_mac_tx_error(struct pasemi_mac *mac, u64 mactx)
{
unsigned int cmdsta;
if (!netif_msg_tx_err(mac))
return;
cmdsta = read_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch));
printk(KERN_ERR "pasemi_mac: tx error. mactx 0x%016lx, "\
"tx status 0x%016lx\n", mactx, *mac->tx_status);
printk(KERN_ERR "pasemi_mac: tcmdsta 0x%08x\n", cmdsta);
}
static int pasemi_mac_clean_rx(struct pasemi_mac *mac, int limit)
{
unsigned int n;
int count;
struct pasemi_mac_buffer *info;
struct sk_buff *skb;
unsigned int len;
u64 macrx;
dma_addr_t dma;
int buf_index;
u64 eval;
spin_lock(&mac->rx->lock);
n = mac->rx->next_to_clean;
prefetch(&RX_RING(mac, n));
for (count = 0; count < limit; count++) {
macrx = RX_RING(mac, n);
if ((macrx & XCT_MACRX_E) ||
(*mac->rx_status & PAS_STATUS_ERROR))
pasemi_mac_rx_error(mac, macrx);
if (!(macrx & XCT_MACRX_O))
break;
info = NULL;
BUG_ON(!(macrx & XCT_MACRX_RR_8BRES));
eval = (RX_RING(mac, n+1) & XCT_RXRES_8B_EVAL_M) >>
XCT_RXRES_8B_EVAL_S;
buf_index = eval-1;
dma = (RX_RING(mac, n+2) & XCT_PTR_ADDR_M);
info = &RX_RING_INFO(mac, buf_index);
skb = info->skb;
prefetch(skb);
prefetch(&skb->data_len);
len = (macrx & XCT_MACRX_LLEN_M) >> XCT_MACRX_LLEN_S;
pci_unmap_single(mac->dma_pdev, dma, len, PCI_DMA_FROMDEVICE);
if (macrx & XCT_MACRX_CRC) {
/* CRC error flagged */
mac->netdev->stats.rx_errors++;
mac->netdev->stats.rx_crc_errors++;
/* No need to free skb, it'll be reused */
goto next;
}
if (len < 256) {
struct sk_buff *new_skb;
new_skb = netdev_alloc_skb(mac->netdev,
len + LOCAL_SKB_ALIGN);
if (new_skb) {
skb_reserve(new_skb, LOCAL_SKB_ALIGN);
memcpy(new_skb->data, skb->data, len);
/* save the skb in buffer_info as good */
skb = new_skb;
}
/* else just continue with the old one */
} else
info->skb = NULL;
info->dma = 0;
/* Don't include CRC */
skb_put(skb, len-4);
if (likely((macrx & XCT_MACRX_HTY_M) == XCT_MACRX_HTY_IPV4_OK)) {
skb->ip_summed = CHECKSUM_UNNECESSARY;
skb->csum = (macrx & XCT_MACRX_CSUM_M) >>
XCT_MACRX_CSUM_S;
} else
skb->ip_summed = CHECKSUM_NONE;
mac->netdev->stats.rx_bytes += len;
mac->netdev->stats.rx_packets++;
skb->protocol = eth_type_trans(skb, mac->netdev);
netif_receive_skb(skb);
next:
RX_RING(mac, n) = 0;
RX_RING(mac, n+1) = 0;
/* Need to zero it out since hardware doesn't, since the
* replenish loop uses it to tell when it's done.
*/
RX_BUFF(mac, buf_index) = 0;
n += 4;
}
if (n > RX_RING_SIZE) {
/* Errata 5971 workaround: L2 target of headers */
write_iob_reg(mac, PAS_IOB_COM_PKTHDRCNT, 0);
n &= (RX_RING_SIZE-1);
}
mac->rx->next_to_clean = n;
/* Increase is in number of 16-byte entries, and since each descriptor
* with an 8BRES takes up 3x8 bytes (padded to 4x8), increase with
* count*2.
*/
write_dma_reg(mac, PAS_DMA_RXCHAN_INCR(mac->dma_rxch), count << 1);
pasemi_mac_replenish_rx_ring(mac->netdev, count);
spin_unlock(&mac->rx->lock);
return count;
}
/* Can't make this too large or we blow the kernel stack limits */
#define TX_CLEAN_BATCHSIZE (128/MAX_SKB_FRAGS)
static int pasemi_mac_clean_tx(struct pasemi_mac *mac)
{
int i, j;
unsigned int start, descr_count, buf_count, batch_limit;
unsigned int ring_limit;
unsigned int total_count;
unsigned long flags;
struct sk_buff *skbs[TX_CLEAN_BATCHSIZE];
dma_addr_t dmas[TX_CLEAN_BATCHSIZE][MAX_SKB_FRAGS+1];
total_count = 0;
batch_limit = TX_CLEAN_BATCHSIZE;
restart:
spin_lock_irqsave(&mac->tx->lock, flags);
start = mac->tx->next_to_clean;
ring_limit = mac->tx->next_to_fill;
/* Compensate for when fill has wrapped but clean has not */
if (start > ring_limit)
ring_limit += TX_RING_SIZE;
buf_count = 0;
descr_count = 0;
for (i = start;
descr_count < batch_limit && i < ring_limit;
i += buf_count) {
u64 mactx = TX_RING(mac, i);
struct sk_buff *skb;
if ((mactx & XCT_MACTX_E) ||
(*mac->tx_status & PAS_STATUS_ERROR))
pasemi_mac_tx_error(mac, mactx);
if (unlikely(mactx & XCT_MACTX_O))
/* Not yet transmitted */
break;
skb = TX_RING_INFO(mac, i+1).skb;
skbs[descr_count] = skb;
buf_count = 2 + skb_shinfo(skb)->nr_frags;
for (j = 0; j <= skb_shinfo(skb)->nr_frags; j++)
dmas[descr_count][j] = TX_RING_INFO(mac, i+1+j).dma;
TX_RING(mac, i) = 0;
TX_RING(mac, i+1) = 0;
/* Since we always fill with an even number of entries, make
* sure we skip any unused one at the end as well.
*/
if (buf_count & 1)
buf_count++;
descr_count++;
}
mac->tx->next_to_clean = i & (TX_RING_SIZE-1);
spin_unlock_irqrestore(&mac->tx->lock, flags);
netif_wake_queue(mac->netdev);
for (i = 0; i < descr_count; i++)
pasemi_mac_unmap_tx_skb(mac, skbs[i], dmas[i]);
total_count += descr_count;
/* If the batch was full, try to clean more */
if (descr_count == batch_limit)
goto restart;
return total_count;
}
static irqreturn_t pasemi_mac_rx_intr(int irq, void *data)
{
struct net_device *dev = data;
struct pasemi_mac *mac = netdev_priv(dev);
unsigned int reg;
if (!(*mac->rx_status & PAS_STATUS_CAUSE_M))
return IRQ_NONE;
/* Don't reset packet count so it won't fire again but clear
* all others.
*/
reg = 0;
if (*mac->rx_status & PAS_STATUS_SOFT)
reg |= PAS_IOB_DMA_RXCH_RESET_SINTC;
if (*mac->rx_status & PAS_STATUS_ERROR)
reg |= PAS_IOB_DMA_RXCH_RESET_DINTC;
if (*mac->rx_status & PAS_STATUS_TIMER)
reg |= PAS_IOB_DMA_RXCH_RESET_TINTC;
netif_rx_schedule(dev, &mac->napi);
write_iob_reg(mac, PAS_IOB_DMA_RXCH_RESET(mac->dma_rxch), reg);
return IRQ_HANDLED;
}
static irqreturn_t pasemi_mac_tx_intr(int irq, void *data)
{
struct net_device *dev = data;
struct pasemi_mac *mac = netdev_priv(dev);
unsigned int reg, pcnt;
if (!(*mac->tx_status & PAS_STATUS_CAUSE_M))
return IRQ_NONE;
pasemi_mac_clean_tx(mac);
pcnt = *mac->tx_status & PAS_STATUS_PCNT_M;
reg = PAS_IOB_DMA_TXCH_RESET_PCNT(pcnt) | PAS_IOB_DMA_TXCH_RESET_PINTC;
if (*mac->tx_status & PAS_STATUS_SOFT)
reg |= PAS_IOB_DMA_TXCH_RESET_SINTC;
if (*mac->tx_status & PAS_STATUS_ERROR)
reg |= PAS_IOB_DMA_TXCH_RESET_DINTC;
write_iob_reg(mac, PAS_IOB_DMA_TXCH_RESET(mac->dma_txch), reg);
return IRQ_HANDLED;
}
static void pasemi_adjust_link(struct net_device *dev)
{
struct pasemi_mac *mac = netdev_priv(dev);
int msg;
unsigned int flags;
unsigned int new_flags;
if (!mac->phydev->link) {
/* If no link, MAC speed settings don't matter. Just report
* link down and return.
*/
if (mac->link && netif_msg_link(mac))
printk(KERN_INFO "%s: Link is down.\n", dev->name);
netif_carrier_off(dev);
mac->link = 0;
return;
} else
netif_carrier_on(dev);
flags = read_mac_reg(mac, PAS_MAC_CFG_PCFG);
new_flags = flags & ~(PAS_MAC_CFG_PCFG_HD | PAS_MAC_CFG_PCFG_SPD_M |
PAS_MAC_CFG_PCFG_TSR_M);
if (!mac->phydev->duplex)
new_flags |= PAS_MAC_CFG_PCFG_HD;
switch (mac->phydev->speed) {
case 1000:
new_flags |= PAS_MAC_CFG_PCFG_SPD_1G |
PAS_MAC_CFG_PCFG_TSR_1G;
break;
case 100:
new_flags |= PAS_MAC_CFG_PCFG_SPD_100M |
PAS_MAC_CFG_PCFG_TSR_100M;
break;
case 10:
new_flags |= PAS_MAC_CFG_PCFG_SPD_10M |
PAS_MAC_CFG_PCFG_TSR_10M;
break;
default:
printk("Unsupported speed %d\n", mac->phydev->speed);
}
/* Print on link or speed/duplex change */
msg = mac->link != mac->phydev->link || flags != new_flags;
mac->duplex = mac->phydev->duplex;
mac->speed = mac->phydev->speed;
mac->link = mac->phydev->link;
if (new_flags != flags)
write_mac_reg(mac, PAS_MAC_CFG_PCFG, new_flags);
if (msg && netif_msg_link(mac))
printk(KERN_INFO "%s: Link is up at %d Mbps, %s duplex.\n",
dev->name, mac->speed, mac->duplex ? "full" : "half");
}
static int pasemi_mac_phy_init(struct net_device *dev)
{
struct pasemi_mac *mac = netdev_priv(dev);
struct device_node *dn, *phy_dn;
struct phy_device *phydev;
unsigned int phy_id;
const phandle *ph;
const unsigned int *prop;
struct resource r;
int ret;
dn = pci_device_to_OF_node(mac->pdev);
ph = of_get_property(dn, "phy-handle", NULL);
if (!ph)
return -ENODEV;
phy_dn = of_find_node_by_phandle(*ph);
prop = of_get_property(phy_dn, "reg", NULL);
ret = of_address_to_resource(phy_dn->parent, 0, &r);
if (ret)
goto err;
phy_id = *prop;
snprintf(mac->phy_id, BUS_ID_SIZE, PHY_ID_FMT, (int)r.start, phy_id);
of_node_put(phy_dn);
mac->link = 0;
mac->speed = 0;
mac->duplex = -1;
phydev = phy_connect(dev, mac->phy_id, &pasemi_adjust_link, 0, PHY_INTERFACE_MODE_SGMII);
if (IS_ERR(phydev)) {
printk(KERN_ERR "%s: Could not attach to phy\n", dev->name);
return PTR_ERR(phydev);
}
mac->phydev = phydev;
return 0;
err:
of_node_put(phy_dn);
return -ENODEV;
}
static int pasemi_mac_open(struct net_device *dev)
{
struct pasemi_mac *mac = netdev_priv(dev);
int base_irq;
unsigned int flags;
int ret;
/* enable rx section */
write_dma_reg(mac, PAS_DMA_COM_RXCMD, PAS_DMA_COM_RXCMD_EN);
/* enable tx section */
write_dma_reg(mac, PAS_DMA_COM_TXCMD, PAS_DMA_COM_TXCMD_EN);
flags = PAS_MAC_CFG_TXP_FCE | PAS_MAC_CFG_TXP_FPC(3) |
PAS_MAC_CFG_TXP_SL(3) | PAS_MAC_CFG_TXP_COB(0xf) |
PAS_MAC_CFG_TXP_TIFT(8) | PAS_MAC_CFG_TXP_TIFG(12);
write_mac_reg(mac, PAS_MAC_CFG_TXP, flags);
write_iob_reg(mac, PAS_IOB_DMA_RXCH_CFG(mac->dma_rxch),
PAS_IOB_DMA_RXCH_CFG_CNTTH(0));
write_iob_reg(mac, PAS_IOB_DMA_TXCH_CFG(mac->dma_txch),
PAS_IOB_DMA_TXCH_CFG_CNTTH(128));
/* Clear out any residual packet count state from firmware */
pasemi_mac_restart_rx_intr(mac);
pasemi_mac_restart_tx_intr(mac);
/* 0xffffff is max value, about 16ms */
write_iob_reg(mac, PAS_IOB_DMA_COM_TIMEOUTCFG,
PAS_IOB_DMA_COM_TIMEOUTCFG_TCNT(0xffffff));
ret = pasemi_mac_setup_rx_resources(dev);
if (ret)
goto out_rx_resources;
ret = pasemi_mac_setup_tx_resources(dev);
if (ret)
goto out_tx_resources;
write_mac_reg(mac, PAS_MAC_IPC_CHNL,
PAS_MAC_IPC_CHNL_DCHNO(mac->dma_rxch) |
PAS_MAC_IPC_CHNL_BCH(mac->dma_rxch));
/* enable rx if */
write_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if),
PAS_DMA_RXINT_RCMDSTA_EN |
PAS_DMA_RXINT_RCMDSTA_DROPS_M |
PAS_DMA_RXINT_RCMDSTA_BP |
PAS_DMA_RXINT_RCMDSTA_OO |
PAS_DMA_RXINT_RCMDSTA_BT);
/* enable rx channel */
write_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch),
PAS_DMA_RXCHAN_CCMDSTA_EN |
PAS_DMA_RXCHAN_CCMDSTA_DU |
PAS_DMA_RXCHAN_CCMDSTA_OD |
PAS_DMA_RXCHAN_CCMDSTA_FD |
PAS_DMA_RXCHAN_CCMDSTA_DT);
/* enable tx channel */
write_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch),
PAS_DMA_TXCHAN_TCMDSTA_EN |
PAS_DMA_TXCHAN_TCMDSTA_SZ |
PAS_DMA_TXCHAN_TCMDSTA_DB |
PAS_DMA_TXCHAN_TCMDSTA_DE |
PAS_DMA_TXCHAN_TCMDSTA_DA);
pasemi_mac_replenish_rx_ring(dev, RX_RING_SIZE);
write_dma_reg(mac, PAS_DMA_RXCHAN_INCR(mac->dma_rxch), RX_RING_SIZE>>1);
flags = PAS_MAC_CFG_PCFG_S1 | PAS_MAC_CFG_PCFG_PE |
PAS_MAC_CFG_PCFG_PR | PAS_MAC_CFG_PCFG_CE;
if (mac->type == MAC_TYPE_GMAC)
flags |= PAS_MAC_CFG_PCFG_TSR_1G | PAS_MAC_CFG_PCFG_SPD_1G;
else
flags |= PAS_MAC_CFG_PCFG_TSR_10G | PAS_MAC_CFG_PCFG_SPD_10G;
/* Enable interface in MAC */
write_mac_reg(mac, PAS_MAC_CFG_PCFG, flags);
ret = pasemi_mac_phy_init(dev);
/* Some configs don't have PHYs (XAUI etc), so don't complain about
* failed init due to -ENODEV.
*/
if (ret && ret != -ENODEV)
dev_warn(&mac->pdev->dev, "phy init failed: %d\n", ret);
netif_start_queue(dev);
napi_enable(&mac->napi);
/* Interrupts are a bit different for our DMA controller: While
* it's got one a regular PCI device header, the interrupt there
* is really the base of the range it's using. Each tx and rx
* channel has it's own interrupt source.
*/
base_irq = virq_to_hw(mac->dma_pdev->irq);
mac->tx_irq = irq_create_mapping(NULL, base_irq + mac->dma_txch);
mac->rx_irq = irq_create_mapping(NULL, base_irq + 20 + mac->dma_txch);
ret = request_irq(mac->tx_irq, &pasemi_mac_tx_intr, IRQF_DISABLED,
mac->tx->irq_name, dev);
if (ret) {
dev_err(&mac->pdev->dev, "request_irq of irq %d failed: %d\n",
base_irq + mac->dma_txch, ret);
goto out_tx_int;
}
ret = request_irq(mac->rx_irq, &pasemi_mac_rx_intr, IRQF_DISABLED,
mac->rx->irq_name, dev);
if (ret) {
dev_err(&mac->pdev->dev, "request_irq of irq %d failed: %d\n",
base_irq + 20 + mac->dma_rxch, ret);
goto out_rx_int;
}
if (mac->phydev)
phy_start(mac->phydev);
return 0;
out_rx_int:
free_irq(mac->tx_irq, dev);
out_tx_int:
napi_disable(&mac->napi);
netif_stop_queue(dev);
pasemi_mac_free_tx_resources(dev);
out_tx_resources:
pasemi_mac_free_rx_resources(dev);
out_rx_resources:
return ret;
}
#define MAX_RETRIES 5000
static int pasemi_mac_close(struct net_device *dev)
{
struct pasemi_mac *mac = netdev_priv(dev);
unsigned int sta;
int retries;
if (mac->phydev) {
phy_stop(mac->phydev);
phy_disconnect(mac->phydev);
}
netif_stop_queue(dev);
napi_disable(&mac->napi);
sta = read_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if));
if (sta & (PAS_DMA_RXINT_RCMDSTA_BP |
PAS_DMA_RXINT_RCMDSTA_OO |
PAS_DMA_RXINT_RCMDSTA_BT))
printk(KERN_DEBUG "pasemi_mac: rcmdsta error: 0x%08x\n", sta);
sta = read_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch));
if (sta & (PAS_DMA_RXCHAN_CCMDSTA_DU |
PAS_DMA_RXCHAN_CCMDSTA_OD |
PAS_DMA_RXCHAN_CCMDSTA_FD |
PAS_DMA_RXCHAN_CCMDSTA_DT))
printk(KERN_DEBUG "pasemi_mac: ccmdsta error: 0x%08x\n", sta);
sta = read_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch));
if (sta & (PAS_DMA_TXCHAN_TCMDSTA_SZ |
PAS_DMA_TXCHAN_TCMDSTA_DB |
PAS_DMA_TXCHAN_TCMDSTA_DE |
PAS_DMA_TXCHAN_TCMDSTA_DA))
printk(KERN_DEBUG "pasemi_mac: tcmdsta error: 0x%08x\n", sta);
/* Clean out any pending buffers */
pasemi_mac_clean_tx(mac);
pasemi_mac_clean_rx(mac, RX_RING_SIZE);
/* Disable interface */
write_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch), PAS_DMA_TXCHAN_TCMDSTA_ST);
write_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if), PAS_DMA_RXINT_RCMDSTA_ST);
write_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch), PAS_DMA_RXCHAN_CCMDSTA_ST);
for (retries = 0; retries < MAX_RETRIES; retries++) {
sta = read_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch));
if (!(sta & PAS_DMA_TXCHAN_TCMDSTA_ACT))
break;
cond_resched();
}
if (sta & PAS_DMA_TXCHAN_TCMDSTA_ACT)
dev_err(&mac->dma_pdev->dev, "Failed to stop tx channel\n");
for (retries = 0; retries < MAX_RETRIES; retries++) {
sta = read_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch));
if (!(sta & PAS_DMA_RXCHAN_CCMDSTA_ACT))
break;
cond_resched();
}
if (sta & PAS_DMA_RXCHAN_CCMDSTA_ACT)
dev_err(&mac->dma_pdev->dev, "Failed to stop rx channel\n");
for (retries = 0; retries < MAX_RETRIES; retries++) {
sta = read_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if));
if (!(sta & PAS_DMA_RXINT_RCMDSTA_ACT))
break;
cond_resched();
}
if (sta & PAS_DMA_RXINT_RCMDSTA_ACT)
dev_err(&mac->dma_pdev->dev, "Failed to stop rx interface\n");
/* Then, disable the channel. This must be done separately from
* stopping, since you can't disable when active.
*/
write_dma_reg(mac, PAS_DMA_TXCHAN_TCMDSTA(mac->dma_txch), 0);
write_dma_reg(mac, PAS_DMA_RXCHAN_CCMDSTA(mac->dma_rxch), 0);
write_dma_reg(mac, PAS_DMA_RXINT_RCMDSTA(mac->dma_if), 0);
free_irq(mac->tx_irq, dev);
free_irq(mac->rx_irq, dev);
/* Free resources */
pasemi_mac_free_rx_resources(dev);
pasemi_mac_free_tx_resources(dev);
return 0;
}
static int pasemi_mac_start_tx(struct sk_buff *skb, struct net_device *dev)
{
struct pasemi_mac *mac = netdev_priv(dev);
struct pasemi_mac_txring *txring;
u64 dflags, mactx;
dma_addr_t map[MAX_SKB_FRAGS+1];
unsigned int map_size[MAX_SKB_FRAGS+1];
unsigned long flags;
int i, nfrags;
dflags = XCT_MACTX_O | XCT_MACTX_ST | XCT_MACTX_CRC_PAD;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
const unsigned char *nh = skb_network_header(skb);
switch (ip_hdr(skb)->protocol) {
case IPPROTO_TCP:
dflags |= XCT_MACTX_CSUM_TCP;
dflags |= XCT_MACTX_IPH(skb_network_header_len(skb) >> 2);
dflags |= XCT_MACTX_IPO(nh - skb->data);
break;
case IPPROTO_UDP:
dflags |= XCT_MACTX_CSUM_UDP;
dflags |= XCT_MACTX_IPH(skb_network_header_len(skb) >> 2);
dflags |= XCT_MACTX_IPO(nh - skb->data);
break;
}
}
nfrags = skb_shinfo(skb)->nr_frags;
map[0] = pci_map_single(mac->dma_pdev, skb->data, skb_headlen(skb),
PCI_DMA_TODEVICE);
map_size[0] = skb_headlen(skb);
if (dma_mapping_error(map[0]))
goto out_err_nolock;
for (i = 0; i < nfrags; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
map[i+1] = pci_map_page(mac->dma_pdev, frag->page,
frag->page_offset, frag->size,
PCI_DMA_TODEVICE);
map_size[i+1] = frag->size;
if (dma_mapping_error(map[i+1])) {
nfrags = i;
goto out_err_nolock;
}
}
mactx = dflags | XCT_MACTX_LLEN(skb->len);
txring = mac->tx;
spin_lock_irqsave(&txring->lock, flags);
/* Avoid stepping on the same cache line that the DMA controller
* is currently about to send, so leave at least 8 words available.
* Total free space needed is mactx + fragments + 8
*/
if (RING_AVAIL(txring) < nfrags + 10) {
/* no room -- stop the queue and wait for tx intr */
netif_stop_queue(dev);
goto out_err;
}
TX_RING(mac, txring->next_to_fill) = mactx;
txring->next_to_fill++;
TX_RING_INFO(mac, txring->next_to_fill).skb = skb;
for (i = 0; i <= nfrags; i++) {
TX_RING(mac, txring->next_to_fill+i) =
XCT_PTR_LEN(map_size[i]) | XCT_PTR_ADDR(map[i]);
TX_RING_INFO(mac, txring->next_to_fill+i).dma = map[i];
}
/* We have to add an even number of 8-byte entries to the ring
* even if the last one is unused. That means always an odd number
* of pointers + one mactx descriptor.
*/
if (nfrags & 1)
nfrags++;
txring->next_to_fill = (txring->next_to_fill + nfrags + 1) &
(TX_RING_SIZE-1);
dev->stats.tx_packets++;
dev->stats.tx_bytes += skb->len;
spin_unlock_irqrestore(&txring->lock, flags);
write_dma_reg(mac, PAS_DMA_TXCHAN_INCR(mac->dma_txch), (nfrags+2) >> 1);
return NETDEV_TX_OK;
out_err:
spin_unlock_irqrestore(&txring->lock, flags);
out_err_nolock:
while (nfrags--)
pci_unmap_single(mac->dma_pdev, map[nfrags], map_size[nfrags],
PCI_DMA_TODEVICE);
return NETDEV_TX_BUSY;
}
static void pasemi_mac_set_rx_mode(struct net_device *dev)
{
struct pasemi_mac *mac = netdev_priv(dev);
unsigned int flags;
flags = read_mac_reg(mac, PAS_MAC_CFG_PCFG);
/* Set promiscuous */
if (dev->flags & IFF_PROMISC)
flags |= PAS_MAC_CFG_PCFG_PR;
else
flags &= ~PAS_MAC_CFG_PCFG_PR;
write_mac_reg(mac, PAS_MAC_CFG_PCFG, flags);
}
static int pasemi_mac_poll(struct napi_struct *napi, int budget)
{
struct pasemi_mac *mac = container_of(napi, struct pasemi_mac, napi);
struct net_device *dev = mac->netdev;
int pkts;
pasemi_mac_clean_tx(mac);
pkts = pasemi_mac_clean_rx(mac, budget);
if (pkts < budget) {
/* all done, no more packets present */
netif_rx_complete(dev, napi);
pasemi_mac_restart_rx_intr(mac);
}
return pkts;
}
static void __iomem * __devinit map_onedev(struct pci_dev *p, int index)
{
struct device_node *dn;
void __iomem *ret;
dn = pci_device_to_OF_node(p);
if (!dn)
goto fallback;
ret = of_iomap(dn, index);
if (!ret)
goto fallback;
return ret;
fallback:
/* This is hardcoded and ugly, but we have some firmware versions
* that don't provide the register space in the device tree. Luckily
* they are at well-known locations so we can just do the math here.
*/
return ioremap(0xe0000000 + (p->devfn << 12), 0x2000);
}
static int __devinit pasemi_mac_map_regs(struct pasemi_mac *mac)
{
struct resource res;
struct device_node *dn;
int err;
mac->dma_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa007, NULL);
if (!mac->dma_pdev) {
dev_err(&mac->pdev->dev, "Can't find DMA Controller\n");
return -ENODEV;
}
mac->iob_pdev = pci_get_device(PCI_VENDOR_ID_PASEMI, 0xa001, NULL);
if (!mac->iob_pdev) {
dev_err(&mac->pdev->dev, "Can't find I/O Bridge\n");
return -ENODEV;
}
mac->regs = map_onedev(mac->pdev, 0);
mac->dma_regs = map_onedev(mac->dma_pdev, 0);
mac->iob_regs = map_onedev(mac->iob_pdev, 0);
if (!mac->regs || !mac->dma_regs || !mac->iob_regs) {
dev_err(&mac->pdev->dev, "Can't map registers\n");
return -ENODEV;
}
/* The dma status structure is located in the I/O bridge, and
* is cache coherent.
*/
if (!dma_status) {
dn = pci_device_to_OF_node(mac->iob_pdev);
if (dn)
err = of_address_to_resource(dn, 1, &res);
if (!dn || err) {
/* Fallback for old firmware */
res.start = 0xfd800000;
res.end = res.start + 0x1000;
}
dma_status = __ioremap(res.start, res.end-res.start, 0);
}
return 0;
}
static int __devinit
pasemi_mac_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int index = 0;
struct net_device *dev;
struct pasemi_mac *mac;
int err;
DECLARE_MAC_BUF(mac_buf);
err = pci_enable_device(pdev);
if (err)
return err;
dev = alloc_etherdev(sizeof(struct pasemi_mac));
if (dev == NULL) {
dev_err(&pdev->dev,
"pasemi_mac: Could not allocate ethernet device.\n");
err = -ENOMEM;
goto out_disable_device;
}
pci_set_drvdata(pdev, dev);
SET_NETDEV_DEV(dev, &pdev->dev);
mac = netdev_priv(dev);
mac->pdev = pdev;
mac->netdev = dev;
netif_napi_add(dev, &mac->napi, pasemi_mac_poll, 64);
dev->features = NETIF_F_IP_CSUM | NETIF_F_LLTX | NETIF_F_SG;
/* These should come out of the device tree eventually */
mac->dma_txch = index;
mac->dma_rxch = index;
/* We probe GMAC before XAUI, but the DMA interfaces are
* in XAUI, GMAC order.
*/
if (index < 4)
mac->dma_if = index + 2;
else
mac->dma_if = index - 4;
index++;
switch (pdev->device) {
case 0xa005:
mac->type = MAC_TYPE_GMAC;
break;
case 0xa006:
mac->type = MAC_TYPE_XAUI;
break;
default:
err = -ENODEV;
goto out;
}
/* get mac addr from device tree */
if (pasemi_get_mac_addr(mac) || !is_valid_ether_addr(mac->mac_addr)) {
err = -ENODEV;
goto out;
}
memcpy(dev->dev_addr, mac->mac_addr, sizeof(mac->mac_addr));
dev->open = pasemi_mac_open;
dev->stop = pasemi_mac_close;
dev->hard_start_xmit = pasemi_mac_start_tx;
dev->set_multicast_list = pasemi_mac_set_rx_mode;
err = pasemi_mac_map_regs(mac);
if (err)
goto out;
mac->rx_status = &dma_status->rx_sta[mac->dma_rxch];
mac->tx_status = &dma_status->tx_sta[mac->dma_txch];
mac->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
/* Enable most messages by default */
mac->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
err = register_netdev(dev);
if (err) {
dev_err(&mac->pdev->dev, "register_netdev failed with error %d\n",
err);
goto out;
} else if netif_msg_probe(mac)
printk(KERN_INFO "%s: PA Semi %s: intf %d, txch %d, rxch %d, "
"hw addr %s\n",
dev->name, mac->type == MAC_TYPE_GMAC ? "GMAC" : "XAUI",
mac->dma_if, mac->dma_txch, mac->dma_rxch,
print_mac(mac_buf, dev->dev_addr));
return err;
out:
if (mac->iob_pdev)
pci_dev_put(mac->iob_pdev);
if (mac->dma_pdev)
pci_dev_put(mac->dma_pdev);
if (mac->dma_regs)
iounmap(mac->dma_regs);
if (mac->iob_regs)
iounmap(mac->iob_regs);
if (mac->regs)
iounmap(mac->regs);
free_netdev(dev);
out_disable_device:
pci_disable_device(pdev);
return err;
}
static void __devexit pasemi_mac_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct pasemi_mac *mac;
if (!netdev)
return;
mac = netdev_priv(netdev);
unregister_netdev(netdev);
pci_disable_device(pdev);
pci_dev_put(mac->dma_pdev);
pci_dev_put(mac->iob_pdev);
iounmap(mac->regs);
iounmap(mac->dma_regs);
iounmap(mac->iob_regs);
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
}
static struct pci_device_id pasemi_mac_pci_tbl[] = {
{ PCI_DEVICE(PCI_VENDOR_ID_PASEMI, 0xa005) },
{ PCI_DEVICE(PCI_VENDOR_ID_PASEMI, 0xa006) },
{ },
};
MODULE_DEVICE_TABLE(pci, pasemi_mac_pci_tbl);
static struct pci_driver pasemi_mac_driver = {
.name = "pasemi_mac",
.id_table = pasemi_mac_pci_tbl,
.probe = pasemi_mac_probe,
.remove = __devexit_p(pasemi_mac_remove),
};
static void __exit pasemi_mac_cleanup_module(void)
{
pci_unregister_driver(&pasemi_mac_driver);
__iounmap(dma_status);
dma_status = NULL;
}
int pasemi_mac_init_module(void)
{
return pci_register_driver(&pasemi_mac_driver);
}
module_init(pasemi_mac_init_module);
module_exit(pasemi_mac_cleanup_module);