linux_dsm_epyc7002/drivers/infiniband/ulp/iser/iser_verbs.c
Sergey Gorenko 434dda422c IB/iser: Do not reduce max_sectors
The iSER driver reduces max_sectors. For example, if you load the
ib_iser module with max_sectors=1024, you will see that
/sys/class/block/<bdev>/queue/max_hw_sectors_kb is 508. It is an
incorrect value. The expected value is (max_sectors * sector_size) /
1024 = 512.

Reducing of max_sectors can cause performance degradation due to
unnecessary splitting of IO requests.

The number of pages per MR has been fixed here, so there is no longer
any need to reduce max_sectors.

Fixes: 9c674815d3 ("IB/iser: Fix max_sectors calculation")
Signed-off-by: Sergey Gorenko <sergeygo@mellanox.com>
Reviewed-by: Israel Rukshin <israelr@mellanox.com>
Reviewed-by: Max Gurtovoy <maxg@mellanox.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Sagi Grimberg <sagi@grimberg.me>
Acked-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2018-05-31 13:07:17 -04:00

1176 lines
30 KiB
C

/*
* Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
* Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include "iscsi_iser.h"
#define ISCSI_ISER_MAX_CONN 8
#define ISER_MAX_RX_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
#define ISER_MAX_TX_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN)
#define ISER_MAX_CQ_LEN (ISER_MAX_RX_LEN + ISER_MAX_TX_LEN + \
ISCSI_ISER_MAX_CONN)
static void iser_qp_event_callback(struct ib_event *cause, void *context)
{
iser_err("qp event %s (%d)\n",
ib_event_msg(cause->event), cause->event);
}
static void iser_event_handler(struct ib_event_handler *handler,
struct ib_event *event)
{
iser_err("async event %s (%d) on device %s port %d\n",
ib_event_msg(event->event), event->event,
event->device->name, event->element.port_num);
}
/**
* iser_create_device_ib_res - creates Protection Domain (PD), Completion
* Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
* the adapator.
*
* returns 0 on success, -1 on failure
*/
static int iser_create_device_ib_res(struct iser_device *device)
{
struct ib_device *ib_dev = device->ib_device;
int ret, i, max_cqe;
ret = iser_assign_reg_ops(device);
if (ret)
return ret;
device->comps_used = min_t(int, num_online_cpus(),
ib_dev->num_comp_vectors);
device->comps = kcalloc(device->comps_used, sizeof(*device->comps),
GFP_KERNEL);
if (!device->comps)
goto comps_err;
max_cqe = min(ISER_MAX_CQ_LEN, ib_dev->attrs.max_cqe);
iser_info("using %d CQs, device %s supports %d vectors max_cqe %d\n",
device->comps_used, ib_dev->name,
ib_dev->num_comp_vectors, max_cqe);
device->pd = ib_alloc_pd(ib_dev,
iser_always_reg ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
if (IS_ERR(device->pd))
goto pd_err;
for (i = 0; i < device->comps_used; i++) {
struct iser_comp *comp = &device->comps[i];
comp->cq = ib_alloc_cq(ib_dev, comp, max_cqe, i,
IB_POLL_SOFTIRQ);
if (IS_ERR(comp->cq)) {
comp->cq = NULL;
goto cq_err;
}
}
INIT_IB_EVENT_HANDLER(&device->event_handler, ib_dev,
iser_event_handler);
ib_register_event_handler(&device->event_handler);
return 0;
cq_err:
for (i = 0; i < device->comps_used; i++) {
struct iser_comp *comp = &device->comps[i];
if (comp->cq)
ib_free_cq(comp->cq);
}
ib_dealloc_pd(device->pd);
pd_err:
kfree(device->comps);
comps_err:
iser_err("failed to allocate an IB resource\n");
return -1;
}
/**
* iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
* CQ and PD created with the device associated with the adapator.
*/
static void iser_free_device_ib_res(struct iser_device *device)
{
int i;
for (i = 0; i < device->comps_used; i++) {
struct iser_comp *comp = &device->comps[i];
ib_free_cq(comp->cq);
comp->cq = NULL;
}
ib_unregister_event_handler(&device->event_handler);
ib_dealloc_pd(device->pd);
kfree(device->comps);
device->comps = NULL;
device->pd = NULL;
}
/**
* iser_alloc_fmr_pool - Creates FMR pool and page_vector
*
* returns 0 on success, or errno code on failure
*/
int iser_alloc_fmr_pool(struct ib_conn *ib_conn,
unsigned cmds_max,
unsigned int size)
{
struct iser_device *device = ib_conn->device;
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_page_vec *page_vec;
struct iser_fr_desc *desc;
struct ib_fmr_pool *fmr_pool;
struct ib_fmr_pool_param params;
int ret;
INIT_LIST_HEAD(&fr_pool->list);
spin_lock_init(&fr_pool->lock);
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return -ENOMEM;
page_vec = kmalloc(sizeof(*page_vec) + (sizeof(u64) * size),
GFP_KERNEL);
if (!page_vec) {
ret = -ENOMEM;
goto err_frpl;
}
page_vec->pages = (u64 *)(page_vec + 1);
params.page_shift = SHIFT_4K;
params.max_pages_per_fmr = size;
/* make the pool size twice the max number of SCSI commands *
* the ML is expected to queue, watermark for unmap at 50% */
params.pool_size = cmds_max * 2;
params.dirty_watermark = cmds_max;
params.cache = 0;
params.flush_function = NULL;
params.access = (IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ);
fmr_pool = ib_create_fmr_pool(device->pd, &params);
if (IS_ERR(fmr_pool)) {
ret = PTR_ERR(fmr_pool);
iser_err("FMR allocation failed, err %d\n", ret);
goto err_fmr;
}
desc->rsc.page_vec = page_vec;
desc->rsc.fmr_pool = fmr_pool;
list_add(&desc->list, &fr_pool->list);
return 0;
err_fmr:
kfree(page_vec);
err_frpl:
kfree(desc);
return ret;
}
/**
* iser_free_fmr_pool - releases the FMR pool and page vec
*/
void iser_free_fmr_pool(struct ib_conn *ib_conn)
{
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_fr_desc *desc;
desc = list_first_entry(&fr_pool->list,
struct iser_fr_desc, list);
list_del(&desc->list);
iser_info("freeing conn %p fmr pool %p\n",
ib_conn, desc->rsc.fmr_pool);
ib_destroy_fmr_pool(desc->rsc.fmr_pool);
kfree(desc->rsc.page_vec);
kfree(desc);
}
static int
iser_alloc_reg_res(struct iser_device *device,
struct ib_pd *pd,
struct iser_reg_resources *res,
unsigned int size)
{
struct ib_device *ib_dev = device->ib_device;
enum ib_mr_type mr_type;
int ret;
if (ib_dev->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
mr_type = IB_MR_TYPE_SG_GAPS;
else
mr_type = IB_MR_TYPE_MEM_REG;
res->mr = ib_alloc_mr(pd, mr_type, size);
if (IS_ERR(res->mr)) {
ret = PTR_ERR(res->mr);
iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret);
return ret;
}
res->mr_valid = 0;
return 0;
}
static void
iser_free_reg_res(struct iser_reg_resources *rsc)
{
ib_dereg_mr(rsc->mr);
}
static int
iser_alloc_pi_ctx(struct iser_device *device,
struct ib_pd *pd,
struct iser_fr_desc *desc,
unsigned int size)
{
struct iser_pi_context *pi_ctx = NULL;
int ret;
desc->pi_ctx = kzalloc(sizeof(*desc->pi_ctx), GFP_KERNEL);
if (!desc->pi_ctx)
return -ENOMEM;
pi_ctx = desc->pi_ctx;
ret = iser_alloc_reg_res(device, pd, &pi_ctx->rsc, size);
if (ret) {
iser_err("failed to allocate reg_resources\n");
goto alloc_reg_res_err;
}
pi_ctx->sig_mr = ib_alloc_mr(pd, IB_MR_TYPE_SIGNATURE, 2);
if (IS_ERR(pi_ctx->sig_mr)) {
ret = PTR_ERR(pi_ctx->sig_mr);
goto sig_mr_failure;
}
pi_ctx->sig_mr_valid = 0;
desc->pi_ctx->sig_protected = 0;
return 0;
sig_mr_failure:
iser_free_reg_res(&pi_ctx->rsc);
alloc_reg_res_err:
kfree(desc->pi_ctx);
return ret;
}
static void
iser_free_pi_ctx(struct iser_pi_context *pi_ctx)
{
iser_free_reg_res(&pi_ctx->rsc);
ib_dereg_mr(pi_ctx->sig_mr);
kfree(pi_ctx);
}
static struct iser_fr_desc *
iser_create_fastreg_desc(struct iser_device *device,
struct ib_pd *pd,
bool pi_enable,
unsigned int size)
{
struct iser_fr_desc *desc;
int ret;
desc = kzalloc(sizeof(*desc), GFP_KERNEL);
if (!desc)
return ERR_PTR(-ENOMEM);
ret = iser_alloc_reg_res(device, pd, &desc->rsc, size);
if (ret)
goto reg_res_alloc_failure;
if (pi_enable) {
ret = iser_alloc_pi_ctx(device, pd, desc, size);
if (ret)
goto pi_ctx_alloc_failure;
}
return desc;
pi_ctx_alloc_failure:
iser_free_reg_res(&desc->rsc);
reg_res_alloc_failure:
kfree(desc);
return ERR_PTR(ret);
}
/**
* iser_alloc_fastreg_pool - Creates pool of fast_reg descriptors
* for fast registration work requests.
* returns 0 on success, or errno code on failure
*/
int iser_alloc_fastreg_pool(struct ib_conn *ib_conn,
unsigned cmds_max,
unsigned int size)
{
struct iser_device *device = ib_conn->device;
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_fr_desc *desc;
int i, ret;
INIT_LIST_HEAD(&fr_pool->list);
INIT_LIST_HEAD(&fr_pool->all_list);
spin_lock_init(&fr_pool->lock);
fr_pool->size = 0;
for (i = 0; i < cmds_max; i++) {
desc = iser_create_fastreg_desc(device, device->pd,
ib_conn->pi_support, size);
if (IS_ERR(desc)) {
ret = PTR_ERR(desc);
goto err;
}
list_add_tail(&desc->list, &fr_pool->list);
list_add_tail(&desc->all_list, &fr_pool->all_list);
fr_pool->size++;
}
return 0;
err:
iser_free_fastreg_pool(ib_conn);
return ret;
}
/**
* iser_free_fastreg_pool - releases the pool of fast_reg descriptors
*/
void iser_free_fastreg_pool(struct ib_conn *ib_conn)
{
struct iser_fr_pool *fr_pool = &ib_conn->fr_pool;
struct iser_fr_desc *desc, *tmp;
int i = 0;
if (list_empty(&fr_pool->all_list))
return;
iser_info("freeing conn %p fr pool\n", ib_conn);
list_for_each_entry_safe(desc, tmp, &fr_pool->all_list, all_list) {
list_del(&desc->all_list);
iser_free_reg_res(&desc->rsc);
if (desc->pi_ctx)
iser_free_pi_ctx(desc->pi_ctx);
kfree(desc);
++i;
}
if (i < fr_pool->size)
iser_warn("pool still has %d regions registered\n",
fr_pool->size - i);
}
/**
* iser_create_ib_conn_res - Queue-Pair (QP)
*
* returns 0 on success, -1 on failure
*/
static int iser_create_ib_conn_res(struct ib_conn *ib_conn)
{
struct iser_conn *iser_conn = to_iser_conn(ib_conn);
struct iser_device *device;
struct ib_device *ib_dev;
struct ib_qp_init_attr init_attr;
int ret = -ENOMEM;
int index, min_index = 0;
BUG_ON(ib_conn->device == NULL);
device = ib_conn->device;
ib_dev = device->ib_device;
memset(&init_attr, 0, sizeof init_attr);
mutex_lock(&ig.connlist_mutex);
/* select the CQ with the minimal number of usages */
for (index = 0; index < device->comps_used; index++) {
if (device->comps[index].active_qps <
device->comps[min_index].active_qps)
min_index = index;
}
ib_conn->comp = &device->comps[min_index];
ib_conn->comp->active_qps++;
mutex_unlock(&ig.connlist_mutex);
iser_info("cq index %d used for ib_conn %p\n", min_index, ib_conn);
init_attr.event_handler = iser_qp_event_callback;
init_attr.qp_context = (void *)ib_conn;
init_attr.send_cq = ib_conn->comp->cq;
init_attr.recv_cq = ib_conn->comp->cq;
init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS;
init_attr.cap.max_send_sge = 2;
init_attr.cap.max_recv_sge = 1;
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
init_attr.qp_type = IB_QPT_RC;
if (ib_conn->pi_support) {
init_attr.cap.max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1;
init_attr.create_flags |= IB_QP_CREATE_SIGNATURE_EN;
iser_conn->max_cmds =
ISER_GET_MAX_XMIT_CMDS(ISER_QP_SIG_MAX_REQ_DTOS);
} else {
if (ib_dev->attrs.max_qp_wr > ISER_QP_MAX_REQ_DTOS) {
init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS + 1;
iser_conn->max_cmds =
ISER_GET_MAX_XMIT_CMDS(ISER_QP_MAX_REQ_DTOS);
} else {
init_attr.cap.max_send_wr = ib_dev->attrs.max_qp_wr;
iser_conn->max_cmds =
ISER_GET_MAX_XMIT_CMDS(ib_dev->attrs.max_qp_wr);
iser_dbg("device %s supports max_send_wr %d\n",
device->ib_device->name, ib_dev->attrs.max_qp_wr);
}
}
ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
if (ret)
goto out_err;
ib_conn->qp = ib_conn->cma_id->qp;
iser_info("setting conn %p cma_id %p qp %p\n",
ib_conn, ib_conn->cma_id,
ib_conn->cma_id->qp);
return ret;
out_err:
mutex_lock(&ig.connlist_mutex);
ib_conn->comp->active_qps--;
mutex_unlock(&ig.connlist_mutex);
iser_err("unable to alloc mem or create resource, err %d\n", ret);
return ret;
}
/**
* based on the resolved device node GUID see if there already allocated
* device for this device. If there's no such, create one.
*/
static
struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
{
struct iser_device *device;
mutex_lock(&ig.device_list_mutex);
list_for_each_entry(device, &ig.device_list, ig_list)
/* find if there's a match using the node GUID */
if (device->ib_device->node_guid == cma_id->device->node_guid)
goto inc_refcnt;
device = kzalloc(sizeof *device, GFP_KERNEL);
if (device == NULL)
goto out;
/* assign this device to the device */
device->ib_device = cma_id->device;
/* init the device and link it into ig device list */
if (iser_create_device_ib_res(device)) {
kfree(device);
device = NULL;
goto out;
}
list_add(&device->ig_list, &ig.device_list);
inc_refcnt:
device->refcount++;
out:
mutex_unlock(&ig.device_list_mutex);
return device;
}
/* if there's no demand for this device, release it */
static void iser_device_try_release(struct iser_device *device)
{
mutex_lock(&ig.device_list_mutex);
device->refcount--;
iser_info("device %p refcount %d\n", device, device->refcount);
if (!device->refcount) {
iser_free_device_ib_res(device);
list_del(&device->ig_list);
kfree(device);
}
mutex_unlock(&ig.device_list_mutex);
}
/**
* Called with state mutex held
**/
static int iser_conn_state_comp_exch(struct iser_conn *iser_conn,
enum iser_conn_state comp,
enum iser_conn_state exch)
{
int ret;
ret = (iser_conn->state == comp);
if (ret)
iser_conn->state = exch;
return ret;
}
void iser_release_work(struct work_struct *work)
{
struct iser_conn *iser_conn;
iser_conn = container_of(work, struct iser_conn, release_work);
/* Wait for conn_stop to complete */
wait_for_completion(&iser_conn->stop_completion);
/* Wait for IB resouces cleanup to complete */
wait_for_completion(&iser_conn->ib_completion);
mutex_lock(&iser_conn->state_mutex);
iser_conn->state = ISER_CONN_DOWN;
mutex_unlock(&iser_conn->state_mutex);
iser_conn_release(iser_conn);
}
/**
* iser_free_ib_conn_res - release IB related resources
* @iser_conn: iser connection struct
* @destroy: indicator if we need to try to release the
* iser device and memory regoins pool (only iscsi
* shutdown and DEVICE_REMOVAL will use this).
*
* This routine is called with the iser state mutex held
* so the cm_id removal is out of here. It is Safe to
* be invoked multiple times.
*/
static void iser_free_ib_conn_res(struct iser_conn *iser_conn,
bool destroy)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
struct iser_device *device = ib_conn->device;
iser_info("freeing conn %p cma_id %p qp %p\n",
iser_conn, ib_conn->cma_id, ib_conn->qp);
if (ib_conn->qp != NULL) {
mutex_lock(&ig.connlist_mutex);
ib_conn->comp->active_qps--;
mutex_unlock(&ig.connlist_mutex);
rdma_destroy_qp(ib_conn->cma_id);
ib_conn->qp = NULL;
}
if (destroy) {
if (iser_conn->rx_descs)
iser_free_rx_descriptors(iser_conn);
if (device != NULL) {
iser_device_try_release(device);
ib_conn->device = NULL;
}
}
}
/**
* Frees all conn objects and deallocs conn descriptor
*/
void iser_conn_release(struct iser_conn *iser_conn)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
mutex_lock(&ig.connlist_mutex);
list_del(&iser_conn->conn_list);
mutex_unlock(&ig.connlist_mutex);
mutex_lock(&iser_conn->state_mutex);
/* In case we endup here without ep_disconnect being invoked. */
if (iser_conn->state != ISER_CONN_DOWN) {
iser_warn("iser conn %p state %d, expected state down.\n",
iser_conn, iser_conn->state);
iscsi_destroy_endpoint(iser_conn->ep);
iser_conn->state = ISER_CONN_DOWN;
}
/*
* In case we never got to bind stage, we still need to
* release IB resources (which is safe to call more than once).
*/
iser_free_ib_conn_res(iser_conn, true);
mutex_unlock(&iser_conn->state_mutex);
if (ib_conn->cma_id != NULL) {
rdma_destroy_id(ib_conn->cma_id);
ib_conn->cma_id = NULL;
}
kfree(iser_conn);
}
/**
* triggers start of the disconnect procedures and wait for them to be done
* Called with state mutex held
*/
int iser_conn_terminate(struct iser_conn *iser_conn)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
int err = 0;
/* terminate the iser conn only if the conn state is UP */
if (!iser_conn_state_comp_exch(iser_conn, ISER_CONN_UP,
ISER_CONN_TERMINATING))
return 0;
iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state);
/* suspend queuing of new iscsi commands */
if (iser_conn->iscsi_conn)
iscsi_suspend_queue(iser_conn->iscsi_conn);
/*
* In case we didn't already clean up the cma_id (peer initiated
* a disconnection), we need to Cause the CMA to change the QP
* state to ERROR.
*/
if (ib_conn->cma_id) {
err = rdma_disconnect(ib_conn->cma_id);
if (err)
iser_err("Failed to disconnect, conn: 0x%p err %d\n",
iser_conn, err);
/* block until all flush errors are consumed */
ib_drain_sq(ib_conn->qp);
}
return 1;
}
/**
* Called with state mutex held
**/
static void iser_connect_error(struct rdma_cm_id *cma_id)
{
struct iser_conn *iser_conn;
iser_conn = (struct iser_conn *)cma_id->context;
iser_conn->state = ISER_CONN_TERMINATING;
}
static void
iser_calc_scsi_params(struct iser_conn *iser_conn,
unsigned int max_sectors)
{
struct iser_device *device = iser_conn->ib_conn.device;
struct ib_device_attr *attr = &device->ib_device->attrs;
unsigned short sg_tablesize, sup_sg_tablesize;
unsigned short reserved_mr_pages;
/*
* FRs without SG_GAPS or FMRs can only map up to a (device) page per
* entry, but if the first entry is misaligned we'll end up using two
* entries (head and tail) for a single page worth data, so one
* additional entry is required.
*/
if ((attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS) &&
(attr->device_cap_flags & IB_DEVICE_SG_GAPS_REG))
reserved_mr_pages = 0;
else
reserved_mr_pages = 1;
sg_tablesize = DIV_ROUND_UP(max_sectors * 512, SIZE_4K);
if (attr->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)
sup_sg_tablesize =
min_t(
uint, ISCSI_ISER_MAX_SG_TABLESIZE,
attr->max_fast_reg_page_list_len - reserved_mr_pages);
else
sup_sg_tablesize = ISCSI_ISER_MAX_SG_TABLESIZE;
iser_conn->scsi_sg_tablesize = min(sg_tablesize, sup_sg_tablesize);
iser_conn->pages_per_mr =
iser_conn->scsi_sg_tablesize + reserved_mr_pages;
}
/**
* Called with state mutex held
**/
static void iser_addr_handler(struct rdma_cm_id *cma_id)
{
struct iser_device *device;
struct iser_conn *iser_conn;
struct ib_conn *ib_conn;
int ret;
iser_conn = (struct iser_conn *)cma_id->context;
if (iser_conn->state != ISER_CONN_PENDING)
/* bailout */
return;
ib_conn = &iser_conn->ib_conn;
device = iser_device_find_by_ib_device(cma_id);
if (!device) {
iser_err("device lookup/creation failed\n");
iser_connect_error(cma_id);
return;
}
ib_conn->device = device;
/* connection T10-PI support */
if (iser_pi_enable) {
if (!(device->ib_device->attrs.device_cap_flags &
IB_DEVICE_SIGNATURE_HANDOVER)) {
iser_warn("T10-PI requested but not supported on %s, "
"continue without T10-PI\n",
ib_conn->device->ib_device->name);
ib_conn->pi_support = false;
} else {
ib_conn->pi_support = true;
}
}
iser_calc_scsi_params(iser_conn, iser_max_sectors);
ret = rdma_resolve_route(cma_id, 1000);
if (ret) {
iser_err("resolve route failed: %d\n", ret);
iser_connect_error(cma_id);
return;
}
}
/**
* Called with state mutex held
**/
static void iser_route_handler(struct rdma_cm_id *cma_id)
{
struct rdma_conn_param conn_param;
int ret;
struct iser_cm_hdr req_hdr;
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
struct ib_conn *ib_conn = &iser_conn->ib_conn;
struct iser_device *device = ib_conn->device;
if (iser_conn->state != ISER_CONN_PENDING)
/* bailout */
return;
ret = iser_create_ib_conn_res(ib_conn);
if (ret)
goto failure;
memset(&conn_param, 0, sizeof conn_param);
conn_param.responder_resources = device->ib_device->attrs.max_qp_rd_atom;
conn_param.initiator_depth = 1;
conn_param.retry_count = 7;
conn_param.rnr_retry_count = 6;
memset(&req_hdr, 0, sizeof(req_hdr));
req_hdr.flags = ISER_ZBVA_NOT_SUP;
if (!device->remote_inv_sup)
req_hdr.flags |= ISER_SEND_W_INV_NOT_SUP;
conn_param.private_data = (void *)&req_hdr;
conn_param.private_data_len = sizeof(struct iser_cm_hdr);
ret = rdma_connect(cma_id, &conn_param);
if (ret) {
iser_err("failure connecting: %d\n", ret);
goto failure;
}
return;
failure:
iser_connect_error(cma_id);
}
static void iser_connected_handler(struct rdma_cm_id *cma_id,
const void *private_data)
{
struct iser_conn *iser_conn;
struct ib_qp_attr attr;
struct ib_qp_init_attr init_attr;
iser_conn = (struct iser_conn *)cma_id->context;
if (iser_conn->state != ISER_CONN_PENDING)
/* bailout */
return;
(void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr);
iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num);
if (private_data) {
u8 flags = *(u8 *)private_data;
iser_conn->snd_w_inv = !(flags & ISER_SEND_W_INV_NOT_SUP);
}
iser_info("conn %p: negotiated %s invalidation\n",
iser_conn, iser_conn->snd_w_inv ? "remote" : "local");
iser_conn->state = ISER_CONN_UP;
complete(&iser_conn->up_completion);
}
static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
{
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
if (iser_conn_terminate(iser_conn)) {
if (iser_conn->iscsi_conn)
iscsi_conn_failure(iser_conn->iscsi_conn,
ISCSI_ERR_CONN_FAILED);
else
iser_err("iscsi_iser connection isn't bound\n");
}
}
static void iser_cleanup_handler(struct rdma_cm_id *cma_id,
bool destroy)
{
struct iser_conn *iser_conn = (struct iser_conn *)cma_id->context;
/*
* We are not guaranteed that we visited disconnected_handler
* by now, call it here to be safe that we handle CM drep
* and flush errors.
*/
iser_disconnected_handler(cma_id);
iser_free_ib_conn_res(iser_conn, destroy);
complete(&iser_conn->ib_completion);
};
static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
{
struct iser_conn *iser_conn;
int ret = 0;
iser_conn = (struct iser_conn *)cma_id->context;
iser_info("%s (%d): status %d conn %p id %p\n",
rdma_event_msg(event->event), event->event,
event->status, cma_id->context, cma_id);
mutex_lock(&iser_conn->state_mutex);
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
iser_addr_handler(cma_id);
break;
case RDMA_CM_EVENT_ROUTE_RESOLVED:
iser_route_handler(cma_id);
break;
case RDMA_CM_EVENT_ESTABLISHED:
iser_connected_handler(cma_id, event->param.conn.private_data);
break;
case RDMA_CM_EVENT_REJECTED:
iser_info("Connection rejected: %s\n",
rdma_reject_msg(cma_id, event->status));
/* FALLTHROUGH */
case RDMA_CM_EVENT_ADDR_ERROR:
case RDMA_CM_EVENT_ROUTE_ERROR:
case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE:
iser_connect_error(cma_id);
break;
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_ADDR_CHANGE:
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
iser_cleanup_handler(cma_id, false);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
/*
* we *must* destroy the device as we cannot rely
* on iscsid to be around to initiate error handling.
* also if we are not in state DOWN implicitly destroy
* the cma_id.
*/
iser_cleanup_handler(cma_id, true);
if (iser_conn->state != ISER_CONN_DOWN) {
iser_conn->ib_conn.cma_id = NULL;
ret = 1;
}
break;
default:
iser_err("Unexpected RDMA CM event: %s (%d)\n",
rdma_event_msg(event->event), event->event);
break;
}
mutex_unlock(&iser_conn->state_mutex);
return ret;
}
void iser_conn_init(struct iser_conn *iser_conn)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
iser_conn->state = ISER_CONN_INIT;
init_completion(&iser_conn->stop_completion);
init_completion(&iser_conn->ib_completion);
init_completion(&iser_conn->up_completion);
INIT_LIST_HEAD(&iser_conn->conn_list);
mutex_init(&iser_conn->state_mutex);
ib_conn->post_recv_buf_count = 0;
ib_conn->reg_cqe.done = iser_reg_comp;
}
/**
* starts the process of connecting to the target
* sleeps until the connection is established or rejected
*/
int iser_connect(struct iser_conn *iser_conn,
struct sockaddr *src_addr,
struct sockaddr *dst_addr,
int non_blocking)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
int err = 0;
mutex_lock(&iser_conn->state_mutex);
sprintf(iser_conn->name, "%pISp", dst_addr);
iser_info("connecting to: %s\n", iser_conn->name);
/* the device is known only --after-- address resolution */
ib_conn->device = NULL;
iser_conn->state = ISER_CONN_PENDING;
ib_conn->cma_id = rdma_create_id(&init_net, iser_cma_handler,
(void *)iser_conn,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(ib_conn->cma_id)) {
err = PTR_ERR(ib_conn->cma_id);
iser_err("rdma_create_id failed: %d\n", err);
goto id_failure;
}
err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000);
if (err) {
iser_err("rdma_resolve_addr failed: %d\n", err);
goto addr_failure;
}
if (!non_blocking) {
wait_for_completion_interruptible(&iser_conn->up_completion);
if (iser_conn->state != ISER_CONN_UP) {
err = -EIO;
goto connect_failure;
}
}
mutex_unlock(&iser_conn->state_mutex);
mutex_lock(&ig.connlist_mutex);
list_add(&iser_conn->conn_list, &ig.connlist);
mutex_unlock(&ig.connlist_mutex);
return 0;
id_failure:
ib_conn->cma_id = NULL;
addr_failure:
iser_conn->state = ISER_CONN_DOWN;
connect_failure:
mutex_unlock(&iser_conn->state_mutex);
iser_conn_release(iser_conn);
return err;
}
int iser_post_recvl(struct iser_conn *iser_conn)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
struct iser_login_desc *desc = &iser_conn->login_desc;
struct ib_recv_wr wr, *wr_failed;
int ib_ret;
desc->sge.addr = desc->rsp_dma;
desc->sge.length = ISER_RX_LOGIN_SIZE;
desc->sge.lkey = ib_conn->device->pd->local_dma_lkey;
desc->cqe.done = iser_login_rsp;
wr.wr_cqe = &desc->cqe;
wr.sg_list = &desc->sge;
wr.num_sge = 1;
wr.next = NULL;
ib_conn->post_recv_buf_count++;
ib_ret = ib_post_recv(ib_conn->qp, &wr, &wr_failed);
if (ib_ret) {
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
ib_conn->post_recv_buf_count--;
}
return ib_ret;
}
int iser_post_recvm(struct iser_conn *iser_conn, int count)
{
struct ib_conn *ib_conn = &iser_conn->ib_conn;
unsigned int my_rx_head = iser_conn->rx_desc_head;
struct iser_rx_desc *rx_desc;
struct ib_recv_wr *wr, *wr_failed;
int i, ib_ret;
for (wr = ib_conn->rx_wr, i = 0; i < count; i++, wr++) {
rx_desc = &iser_conn->rx_descs[my_rx_head];
rx_desc->cqe.done = iser_task_rsp;
wr->wr_cqe = &rx_desc->cqe;
wr->sg_list = &rx_desc->rx_sg;
wr->num_sge = 1;
wr->next = wr + 1;
my_rx_head = (my_rx_head + 1) & iser_conn->qp_max_recv_dtos_mask;
}
wr--;
wr->next = NULL; /* mark end of work requests list */
ib_conn->post_recv_buf_count += count;
ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &wr_failed);
if (ib_ret) {
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
ib_conn->post_recv_buf_count -= count;
} else
iser_conn->rx_desc_head = my_rx_head;
return ib_ret;
}
/**
* iser_start_send - Initiate a Send DTO operation
*
* returns 0 on success, -1 on failure
*/
int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc,
bool signal)
{
struct ib_send_wr *bad_wr, *wr = iser_tx_next_wr(tx_desc);
int ib_ret;
ib_dma_sync_single_for_device(ib_conn->device->ib_device,
tx_desc->dma_addr, ISER_HEADERS_LEN,
DMA_TO_DEVICE);
wr->next = NULL;
wr->wr_cqe = &tx_desc->cqe;
wr->sg_list = tx_desc->tx_sg;
wr->num_sge = tx_desc->num_sge;
wr->opcode = IB_WR_SEND;
wr->send_flags = signal ? IB_SEND_SIGNALED : 0;
ib_ret = ib_post_send(ib_conn->qp, &tx_desc->wrs[0].send, &bad_wr);
if (ib_ret)
iser_err("ib_post_send failed, ret:%d opcode:%d\n",
ib_ret, bad_wr->opcode);
return ib_ret;
}
u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task,
enum iser_data_dir cmd_dir, sector_t *sector)
{
struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir];
struct iser_fr_desc *desc = reg->mem_h;
unsigned long sector_size = iser_task->sc->device->sector_size;
struct ib_mr_status mr_status;
int ret;
if (desc && desc->pi_ctx->sig_protected) {
desc->pi_ctx->sig_protected = 0;
ret = ib_check_mr_status(desc->pi_ctx->sig_mr,
IB_MR_CHECK_SIG_STATUS, &mr_status);
if (ret) {
pr_err("ib_check_mr_status failed, ret %d\n", ret);
goto err;
}
if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) {
sector_t sector_off = mr_status.sig_err.sig_err_offset;
sector_div(sector_off, sector_size + 8);
*sector = scsi_get_lba(iser_task->sc) + sector_off;
pr_err("PI error found type %d at sector %llx "
"expected %x vs actual %x\n",
mr_status.sig_err.err_type,
(unsigned long long)*sector,
mr_status.sig_err.expected,
mr_status.sig_err.actual);
switch (mr_status.sig_err.err_type) {
case IB_SIG_BAD_GUARD:
return 0x1;
case IB_SIG_BAD_REFTAG:
return 0x3;
case IB_SIG_BAD_APPTAG:
return 0x2;
}
}
}
return 0;
err:
/* Not alot we can do here, return ambiguous guard error */
return 0x1;
}
void iser_err_comp(struct ib_wc *wc, const char *type)
{
if (wc->status != IB_WC_WR_FLUSH_ERR) {
struct iser_conn *iser_conn = to_iser_conn(wc->qp->qp_context);
iser_err("%s failure: %s (%d) vend_err %#x\n", type,
ib_wc_status_msg(wc->status), wc->status,
wc->vendor_err);
if (iser_conn->iscsi_conn)
iscsi_conn_failure(iser_conn->iscsi_conn,
ISCSI_ERR_CONN_FAILED);
} else {
iser_dbg("%s failure: %s (%d)\n", type,
ib_wc_status_msg(wc->status), wc->status);
}
}