linux_dsm_epyc7002/include/linux/fpga/fpga-mgr.h
Alan Tull 42d5ec9547 fpga: add config complete timeout
Adding timeout for maximum allowed time for FPGA to go to
operating mode after a FPGA region has been programmed.

Signed-off-by: Alan Tull <atull@opensource.altera.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-04-08 17:45:28 +02:00

158 lines
5.4 KiB
C

/*
* FPGA Framework
*
* Copyright (C) 2013-2015 Altera Corporation
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/mutex.h>
#include <linux/platform_device.h>
#ifndef _LINUX_FPGA_MGR_H
#define _LINUX_FPGA_MGR_H
struct fpga_manager;
struct sg_table;
/**
* enum fpga_mgr_states - fpga framework states
* @FPGA_MGR_STATE_UNKNOWN: can't determine state
* @FPGA_MGR_STATE_POWER_OFF: FPGA power is off
* @FPGA_MGR_STATE_POWER_UP: FPGA reports power is up
* @FPGA_MGR_STATE_RESET: FPGA in reset state
* @FPGA_MGR_STATE_FIRMWARE_REQ: firmware request in progress
* @FPGA_MGR_STATE_FIRMWARE_REQ_ERR: firmware request failed
* @FPGA_MGR_STATE_WRITE_INIT: preparing FPGA for programming
* @FPGA_MGR_STATE_WRITE_INIT_ERR: Error during WRITE_INIT stage
* @FPGA_MGR_STATE_WRITE: writing image to FPGA
* @FPGA_MGR_STATE_WRITE_ERR: Error while writing FPGA
* @FPGA_MGR_STATE_WRITE_COMPLETE: Doing post programming steps
* @FPGA_MGR_STATE_WRITE_COMPLETE_ERR: Error during WRITE_COMPLETE
* @FPGA_MGR_STATE_OPERATING: FPGA is programmed and operating
*/
enum fpga_mgr_states {
/* default FPGA states */
FPGA_MGR_STATE_UNKNOWN,
FPGA_MGR_STATE_POWER_OFF,
FPGA_MGR_STATE_POWER_UP,
FPGA_MGR_STATE_RESET,
/* getting an image for loading */
FPGA_MGR_STATE_FIRMWARE_REQ,
FPGA_MGR_STATE_FIRMWARE_REQ_ERR,
/* write sequence: init, write, complete */
FPGA_MGR_STATE_WRITE_INIT,
FPGA_MGR_STATE_WRITE_INIT_ERR,
FPGA_MGR_STATE_WRITE,
FPGA_MGR_STATE_WRITE_ERR,
FPGA_MGR_STATE_WRITE_COMPLETE,
FPGA_MGR_STATE_WRITE_COMPLETE_ERR,
/* fpga is programmed and operating */
FPGA_MGR_STATE_OPERATING,
};
/*
* FPGA Manager flags
* FPGA_MGR_PARTIAL_RECONFIG: do partial reconfiguration if supported
* FPGA_MGR_EXTERNAL_CONFIG: FPGA has been configured prior to Linux booting
*/
#define FPGA_MGR_PARTIAL_RECONFIG BIT(0)
#define FPGA_MGR_EXTERNAL_CONFIG BIT(1)
#define FPGA_MGR_ENCRYPTED_BITSTREAM BIT(2)
/**
* struct fpga_image_info - information specific to a FPGA image
* @flags: boolean flags as defined above
* @enable_timeout_us: maximum time to enable traffic through bridge (uSec)
* @disable_timeout_us: maximum time to disable traffic through bridge (uSec)
* @config_complete_timeout_us: maximum time for FPGA to switch to operating
* status in the write_complete op.
*/
struct fpga_image_info {
u32 flags;
u32 enable_timeout_us;
u32 disable_timeout_us;
u32 config_complete_timeout_us;
};
/**
* struct fpga_manager_ops - ops for low level fpga manager drivers
* @initial_header_size: Maximum number of bytes that should be passed into write_init
* @state: returns an enum value of the FPGA's state
* @write_init: prepare the FPGA to receive confuration data
* @write: write count bytes of configuration data to the FPGA
* @write_sg: write the scatter list of configuration data to the FPGA
* @write_complete: set FPGA to operating state after writing is done
* @fpga_remove: optional: Set FPGA into a specific state during driver remove
*
* fpga_manager_ops are the low level functions implemented by a specific
* fpga manager driver. The optional ones are tested for NULL before being
* called, so leaving them out is fine.
*/
struct fpga_manager_ops {
size_t initial_header_size;
enum fpga_mgr_states (*state)(struct fpga_manager *mgr);
int (*write_init)(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *buf, size_t count);
int (*write)(struct fpga_manager *mgr, const char *buf, size_t count);
int (*write_sg)(struct fpga_manager *mgr, struct sg_table *sgt);
int (*write_complete)(struct fpga_manager *mgr,
struct fpga_image_info *info);
void (*fpga_remove)(struct fpga_manager *mgr);
};
/**
* struct fpga_manager - fpga manager structure
* @name: name of low level fpga manager
* @dev: fpga manager device
* @ref_mutex: only allows one reference to fpga manager
* @state: state of fpga manager
* @mops: pointer to struct of fpga manager ops
* @priv: low level driver private date
*/
struct fpga_manager {
const char *name;
struct device dev;
struct mutex ref_mutex;
enum fpga_mgr_states state;
const struct fpga_manager_ops *mops;
void *priv;
};
#define to_fpga_manager(d) container_of(d, struct fpga_manager, dev)
int fpga_mgr_buf_load(struct fpga_manager *mgr, struct fpga_image_info *info,
const char *buf, size_t count);
int fpga_mgr_buf_load_sg(struct fpga_manager *mgr, struct fpga_image_info *info,
struct sg_table *sgt);
int fpga_mgr_firmware_load(struct fpga_manager *mgr,
struct fpga_image_info *info,
const char *image_name);
struct fpga_manager *of_fpga_mgr_get(struct device_node *node);
struct fpga_manager *fpga_mgr_get(struct device *dev);
void fpga_mgr_put(struct fpga_manager *mgr);
int fpga_mgr_register(struct device *dev, const char *name,
const struct fpga_manager_ops *mops, void *priv);
void fpga_mgr_unregister(struct device *dev);
#endif /*_LINUX_FPGA_MGR_H */