linux_dsm_epyc7002/arch/mips/kernel/ptrace.c
Linus Torvalds 96d4f267e4 Remove 'type' argument from access_ok() function
Nobody has actually used the type (VERIFY_READ vs VERIFY_WRITE) argument
of the user address range verification function since we got rid of the
old racy i386-only code to walk page tables by hand.

It existed because the original 80386 would not honor the write protect
bit when in kernel mode, so you had to do COW by hand before doing any
user access.  But we haven't supported that in a long time, and these
days the 'type' argument is a purely historical artifact.

A discussion about extending 'user_access_begin()' to do the range
checking resulted this patch, because there is no way we're going to
move the old VERIFY_xyz interface to that model.  And it's best done at
the end of the merge window when I've done most of my merges, so let's
just get this done once and for all.

This patch was mostly done with a sed-script, with manual fix-ups for
the cases that weren't of the trivial 'access_ok(VERIFY_xyz' form.

There were a couple of notable cases:

 - csky still had the old "verify_area()" name as an alias.

 - the iter_iov code had magical hardcoded knowledge of the actual
   values of VERIFY_{READ,WRITE} (not that they mattered, since nothing
   really used it)

 - microblaze used the type argument for a debug printout

but other than those oddities this should be a total no-op patch.

I tried to fix up all architectures, did fairly extensive grepping for
access_ok() uses, and the changes are trivial, but I may have missed
something.  Any missed conversion should be trivially fixable, though.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-03 18:57:57 -08:00

1472 lines
35 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1992 Ross Biro
* Copyright (C) Linus Torvalds
* Copyright (C) 1994, 95, 96, 97, 98, 2000 Ralf Baechle
* Copyright (C) 1996 David S. Miller
* Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
* Copyright (C) 1999 MIPS Technologies, Inc.
* Copyright (C) 2000 Ulf Carlsson
*
* At this time Linux/MIPS64 only supports syscall tracing, even for 32-bit
* binaries.
*/
#include <linux/compiler.h>
#include <linux/context_tracking.h>
#include <linux/elf.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/sched/task_stack.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/regset.h>
#include <linux/smp.h>
#include <linux/security.h>
#include <linux/stddef.h>
#include <linux/tracehook.h>
#include <linux/audit.h>
#include <linux/seccomp.h>
#include <linux/ftrace.h>
#include <asm/byteorder.h>
#include <asm/cpu.h>
#include <asm/cpu-info.h>
#include <asm/dsp.h>
#include <asm/fpu.h>
#include <asm/mipsregs.h>
#include <asm/mipsmtregs.h>
#include <asm/pgtable.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/syscall.h>
#include <linux/uaccess.h>
#include <asm/bootinfo.h>
#include <asm/reg.h>
#define CREATE_TRACE_POINTS
#include <trace/events/syscalls.h>
/*
* Called by kernel/ptrace.c when detaching..
*
* Make sure single step bits etc are not set.
*/
void ptrace_disable(struct task_struct *child)
{
/* Don't load the watchpoint registers for the ex-child. */
clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
}
/*
* Read a general register set. We always use the 64-bit format, even
* for 32-bit kernels and for 32-bit processes on a 64-bit kernel.
* Registers are sign extended to fill the available space.
*/
int ptrace_getregs(struct task_struct *child, struct user_pt_regs __user *data)
{
struct pt_regs *regs;
int i;
if (!access_ok(data, 38 * 8))
return -EIO;
regs = task_pt_regs(child);
for (i = 0; i < 32; i++)
__put_user((long)regs->regs[i], (__s64 __user *)&data->regs[i]);
__put_user((long)regs->lo, (__s64 __user *)&data->lo);
__put_user((long)regs->hi, (__s64 __user *)&data->hi);
__put_user((long)regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
__put_user((long)regs->cp0_badvaddr, (__s64 __user *)&data->cp0_badvaddr);
__put_user((long)regs->cp0_status, (__s64 __user *)&data->cp0_status);
__put_user((long)regs->cp0_cause, (__s64 __user *)&data->cp0_cause);
return 0;
}
/*
* Write a general register set. As for PTRACE_GETREGS, we always use
* the 64-bit format. On a 32-bit kernel only the lower order half
* (according to endianness) will be used.
*/
int ptrace_setregs(struct task_struct *child, struct user_pt_regs __user *data)
{
struct pt_regs *regs;
int i;
if (!access_ok(data, 38 * 8))
return -EIO;
regs = task_pt_regs(child);
for (i = 0; i < 32; i++)
__get_user(regs->regs[i], (__s64 __user *)&data->regs[i]);
__get_user(regs->lo, (__s64 __user *)&data->lo);
__get_user(regs->hi, (__s64 __user *)&data->hi);
__get_user(regs->cp0_epc, (__s64 __user *)&data->cp0_epc);
/* badvaddr, status, and cause may not be written. */
/* System call number may have been changed */
mips_syscall_update_nr(child, regs);
return 0;
}
int ptrace_get_watch_regs(struct task_struct *child,
struct pt_watch_regs __user *addr)
{
enum pt_watch_style style;
int i;
if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
return -EIO;
if (!access_ok(addr, sizeof(struct pt_watch_regs)))
return -EIO;
#ifdef CONFIG_32BIT
style = pt_watch_style_mips32;
#define WATCH_STYLE mips32
#else
style = pt_watch_style_mips64;
#define WATCH_STYLE mips64
#endif
__put_user(style, &addr->style);
__put_user(boot_cpu_data.watch_reg_use_cnt,
&addr->WATCH_STYLE.num_valid);
for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
__put_user(child->thread.watch.mips3264.watchlo[i],
&addr->WATCH_STYLE.watchlo[i]);
__put_user(child->thread.watch.mips3264.watchhi[i] &
(MIPS_WATCHHI_MASK | MIPS_WATCHHI_IRW),
&addr->WATCH_STYLE.watchhi[i]);
__put_user(boot_cpu_data.watch_reg_masks[i],
&addr->WATCH_STYLE.watch_masks[i]);
}
for (; i < 8; i++) {
__put_user(0, &addr->WATCH_STYLE.watchlo[i]);
__put_user(0, &addr->WATCH_STYLE.watchhi[i]);
__put_user(0, &addr->WATCH_STYLE.watch_masks[i]);
}
return 0;
}
int ptrace_set_watch_regs(struct task_struct *child,
struct pt_watch_regs __user *addr)
{
int i;
int watch_active = 0;
unsigned long lt[NUM_WATCH_REGS];
u16 ht[NUM_WATCH_REGS];
if (!cpu_has_watch || boot_cpu_data.watch_reg_use_cnt == 0)
return -EIO;
if (!access_ok(addr, sizeof(struct pt_watch_regs)))
return -EIO;
/* Check the values. */
for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
__get_user(lt[i], &addr->WATCH_STYLE.watchlo[i]);
#ifdef CONFIG_32BIT
if (lt[i] & __UA_LIMIT)
return -EINVAL;
#else
if (test_tsk_thread_flag(child, TIF_32BIT_ADDR)) {
if (lt[i] & 0xffffffff80000000UL)
return -EINVAL;
} else {
if (lt[i] & __UA_LIMIT)
return -EINVAL;
}
#endif
__get_user(ht[i], &addr->WATCH_STYLE.watchhi[i]);
if (ht[i] & ~MIPS_WATCHHI_MASK)
return -EINVAL;
}
/* Install them. */
for (i = 0; i < boot_cpu_data.watch_reg_use_cnt; i++) {
if (lt[i] & MIPS_WATCHLO_IRW)
watch_active = 1;
child->thread.watch.mips3264.watchlo[i] = lt[i];
/* Set the G bit. */
child->thread.watch.mips3264.watchhi[i] = ht[i];
}
if (watch_active)
set_tsk_thread_flag(child, TIF_LOAD_WATCH);
else
clear_tsk_thread_flag(child, TIF_LOAD_WATCH);
return 0;
}
/* regset get/set implementations */
#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
static int gpr32_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct pt_regs *regs = task_pt_regs(target);
u32 uregs[ELF_NGREG] = {};
mips_dump_regs32(uregs, regs);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
sizeof(uregs));
}
static int gpr32_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct pt_regs *regs = task_pt_regs(target);
u32 uregs[ELF_NGREG];
unsigned start, num_regs, i;
int err;
start = pos / sizeof(u32);
num_regs = count / sizeof(u32);
if (start + num_regs > ELF_NGREG)
return -EIO;
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
sizeof(uregs));
if (err)
return err;
for (i = start; i < num_regs; i++) {
/*
* Cast all values to signed here so that if this is a 64-bit
* kernel, the supplied 32-bit values will be sign extended.
*/
switch (i) {
case MIPS32_EF_R1 ... MIPS32_EF_R25:
/* k0/k1 are ignored. */
case MIPS32_EF_R28 ... MIPS32_EF_R31:
regs->regs[i - MIPS32_EF_R0] = (s32)uregs[i];
break;
case MIPS32_EF_LO:
regs->lo = (s32)uregs[i];
break;
case MIPS32_EF_HI:
regs->hi = (s32)uregs[i];
break;
case MIPS32_EF_CP0_EPC:
regs->cp0_epc = (s32)uregs[i];
break;
}
}
/* System call number may have been changed */
mips_syscall_update_nr(target, regs);
return 0;
}
#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
#ifdef CONFIG_64BIT
static int gpr64_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
struct pt_regs *regs = task_pt_regs(target);
u64 uregs[ELF_NGREG] = {};
mips_dump_regs64(uregs, regs);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, uregs, 0,
sizeof(uregs));
}
static int gpr64_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
struct pt_regs *regs = task_pt_regs(target);
u64 uregs[ELF_NGREG];
unsigned start, num_regs, i;
int err;
start = pos / sizeof(u64);
num_regs = count / sizeof(u64);
if (start + num_regs > ELF_NGREG)
return -EIO;
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, uregs, 0,
sizeof(uregs));
if (err)
return err;
for (i = start; i < num_regs; i++) {
switch (i) {
case MIPS64_EF_R1 ... MIPS64_EF_R25:
/* k0/k1 are ignored. */
case MIPS64_EF_R28 ... MIPS64_EF_R31:
regs->regs[i - MIPS64_EF_R0] = uregs[i];
break;
case MIPS64_EF_LO:
regs->lo = uregs[i];
break;
case MIPS64_EF_HI:
regs->hi = uregs[i];
break;
case MIPS64_EF_CP0_EPC:
regs->cp0_epc = uregs[i];
break;
}
}
/* System call number may have been changed */
mips_syscall_update_nr(target, regs);
return 0;
}
#endif /* CONFIG_64BIT */
#ifdef CONFIG_MIPS_FP_SUPPORT
/*
* Poke at FCSR according to its mask. Set the Cause bits even
* if a corresponding Enable bit is set. This will be noticed at
* the time the thread is switched to and SIGFPE thrown accordingly.
*/
static void ptrace_setfcr31(struct task_struct *child, u32 value)
{
u32 fcr31;
u32 mask;
fcr31 = child->thread.fpu.fcr31;
mask = boot_cpu_data.fpu_msk31;
child->thread.fpu.fcr31 = (value & ~mask) | (fcr31 & mask);
}
int ptrace_getfpregs(struct task_struct *child, __u32 __user *data)
{
int i;
if (!access_ok(data, 33 * 8))
return -EIO;
if (tsk_used_math(child)) {
union fpureg *fregs = get_fpu_regs(child);
for (i = 0; i < 32; i++)
__put_user(get_fpr64(&fregs[i], 0),
i + (__u64 __user *)data);
} else {
for (i = 0; i < 32; i++)
__put_user((__u64) -1, i + (__u64 __user *) data);
}
__put_user(child->thread.fpu.fcr31, data + 64);
__put_user(boot_cpu_data.fpu_id, data + 65);
return 0;
}
int ptrace_setfpregs(struct task_struct *child, __u32 __user *data)
{
union fpureg *fregs;
u64 fpr_val;
u32 value;
int i;
if (!access_ok(data, 33 * 8))
return -EIO;
init_fp_ctx(child);
fregs = get_fpu_regs(child);
for (i = 0; i < 32; i++) {
__get_user(fpr_val, i + (__u64 __user *)data);
set_fpr64(&fregs[i], 0, fpr_val);
}
__get_user(value, data + 64);
ptrace_setfcr31(child, value);
/* FIR may not be written. */
return 0;
}
/*
* Copy the floating-point context to the supplied NT_PRFPREG buffer,
* !CONFIG_CPU_HAS_MSA variant. FP context's general register slots
* correspond 1:1 to buffer slots. Only general registers are copied.
*/
static int fpr_get_fpa(struct task_struct *target,
unsigned int *pos, unsigned int *count,
void **kbuf, void __user **ubuf)
{
return user_regset_copyout(pos, count, kbuf, ubuf,
&target->thread.fpu,
0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
}
/*
* Copy the floating-point context to the supplied NT_PRFPREG buffer,
* CONFIG_CPU_HAS_MSA variant. Only lower 64 bits of FP context's
* general register slots are copied to buffer slots. Only general
* registers are copied.
*/
static int fpr_get_msa(struct task_struct *target,
unsigned int *pos, unsigned int *count,
void **kbuf, void __user **ubuf)
{
unsigned int i;
u64 fpr_val;
int err;
BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
for (i = 0; i < NUM_FPU_REGS; i++) {
fpr_val = get_fpr64(&target->thread.fpu.fpr[i], 0);
err = user_regset_copyout(pos, count, kbuf, ubuf,
&fpr_val, i * sizeof(elf_fpreg_t),
(i + 1) * sizeof(elf_fpreg_t));
if (err)
return err;
}
return 0;
}
/*
* Copy the floating-point context to the supplied NT_PRFPREG buffer.
* Choose the appropriate helper for general registers, and then copy
* the FCSR and FIR registers separately.
*/
static int fpr_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
const int fir_pos = fcr31_pos + sizeof(u32);
int err;
if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
err = fpr_get_fpa(target, &pos, &count, &kbuf, &ubuf);
else
err = fpr_get_msa(target, &pos, &count, &kbuf, &ubuf);
if (err)
return err;
err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.fcr31,
fcr31_pos, fcr31_pos + sizeof(u32));
if (err)
return err;
err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&boot_cpu_data.fpu_id,
fir_pos, fir_pos + sizeof(u32));
return err;
}
/*
* Copy the supplied NT_PRFPREG buffer to the floating-point context,
* !CONFIG_CPU_HAS_MSA variant. Buffer slots correspond 1:1 to FP
* context's general register slots. Only general registers are copied.
*/
static int fpr_set_fpa(struct task_struct *target,
unsigned int *pos, unsigned int *count,
const void **kbuf, const void __user **ubuf)
{
return user_regset_copyin(pos, count, kbuf, ubuf,
&target->thread.fpu,
0, NUM_FPU_REGS * sizeof(elf_fpreg_t));
}
/*
* Copy the supplied NT_PRFPREG buffer to the floating-point context,
* CONFIG_CPU_HAS_MSA variant. Buffer slots are copied to lower 64
* bits only of FP context's general register slots. Only general
* registers are copied.
*/
static int fpr_set_msa(struct task_struct *target,
unsigned int *pos, unsigned int *count,
const void **kbuf, const void __user **ubuf)
{
unsigned int i;
u64 fpr_val;
int err;
BUILD_BUG_ON(sizeof(fpr_val) != sizeof(elf_fpreg_t));
for (i = 0; i < NUM_FPU_REGS && *count > 0; i++) {
err = user_regset_copyin(pos, count, kbuf, ubuf,
&fpr_val, i * sizeof(elf_fpreg_t),
(i + 1) * sizeof(elf_fpreg_t));
if (err)
return err;
set_fpr64(&target->thread.fpu.fpr[i], 0, fpr_val);
}
return 0;
}
/*
* Copy the supplied NT_PRFPREG buffer to the floating-point context.
* Choose the appropriate helper for general registers, and then copy
* the FCSR register separately. Ignore the incoming FIR register
* contents though, as the register is read-only.
*
* We optimize for the case where `count % sizeof(elf_fpreg_t) == 0',
* which is supposed to have been guaranteed by the kernel before
* calling us, e.g. in `ptrace_regset'. We enforce that requirement,
* so that we can safely avoid preinitializing temporaries for
* partial register writes.
*/
static int fpr_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
const int fcr31_pos = NUM_FPU_REGS * sizeof(elf_fpreg_t);
const int fir_pos = fcr31_pos + sizeof(u32);
u32 fcr31;
int err;
BUG_ON(count % sizeof(elf_fpreg_t));
if (pos + count > sizeof(elf_fpregset_t))
return -EIO;
init_fp_ctx(target);
if (sizeof(target->thread.fpu.fpr[0]) == sizeof(elf_fpreg_t))
err = fpr_set_fpa(target, &pos, &count, &kbuf, &ubuf);
else
err = fpr_set_msa(target, &pos, &count, &kbuf, &ubuf);
if (err)
return err;
if (count > 0) {
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&fcr31,
fcr31_pos, fcr31_pos + sizeof(u32));
if (err)
return err;
ptrace_setfcr31(target, fcr31);
}
if (count > 0)
err = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
fir_pos,
fir_pos + sizeof(u32));
return err;
}
/* Copy the FP mode setting to the supplied NT_MIPS_FP_MODE buffer. */
static int fp_mode_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
int fp_mode;
fp_mode = mips_get_process_fp_mode(target);
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &fp_mode, 0,
sizeof(fp_mode));
}
/*
* Copy the supplied NT_MIPS_FP_MODE buffer to the FP mode setting.
*
* We optimize for the case where `count % sizeof(int) == 0', which
* is supposed to have been guaranteed by the kernel before calling
* us, e.g. in `ptrace_regset'. We enforce that requirement, so
* that we can safely avoid preinitializing temporaries for partial
* mode writes.
*/
static int fp_mode_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
int fp_mode;
int err;
BUG_ON(count % sizeof(int));
if (pos + count > sizeof(fp_mode))
return -EIO;
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fp_mode, 0,
sizeof(fp_mode));
if (err)
return err;
if (count > 0)
err = mips_set_process_fp_mode(target, fp_mode);
return err;
}
#endif /* CONFIG_MIPS_FP_SUPPORT */
#ifdef CONFIG_CPU_HAS_MSA
struct msa_control_regs {
unsigned int fir;
unsigned int fcsr;
unsigned int msair;
unsigned int msacsr;
};
static int copy_pad_fprs(struct task_struct *target,
const struct user_regset *regset,
unsigned int *ppos, unsigned int *pcount,
void **pkbuf, void __user **pubuf,
unsigned int live_sz)
{
int i, j, start, start_pad, err;
unsigned long long fill = ~0ull;
unsigned int cp_sz, pad_sz;
cp_sz = min(regset->size, live_sz);
pad_sz = regset->size - cp_sz;
WARN_ON(pad_sz % sizeof(fill));
i = start = err = 0;
for (; i < NUM_FPU_REGS; i++, start += regset->size) {
err |= user_regset_copyout(ppos, pcount, pkbuf, pubuf,
&target->thread.fpu.fpr[i],
start, start + cp_sz);
start_pad = start + cp_sz;
for (j = 0; j < (pad_sz / sizeof(fill)); j++) {
err |= user_regset_copyout(ppos, pcount, pkbuf, pubuf,
&fill, start_pad,
start_pad + sizeof(fill));
start_pad += sizeof(fill);
}
}
return err;
}
static int msa_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
const unsigned int wr_size = NUM_FPU_REGS * regset->size;
const struct msa_control_regs ctrl_regs = {
.fir = boot_cpu_data.fpu_id,
.fcsr = target->thread.fpu.fcr31,
.msair = boot_cpu_data.msa_id,
.msacsr = target->thread.fpu.msacsr,
};
int err;
if (!tsk_used_math(target)) {
/* The task hasn't used FP or MSA, fill with 0xff */
err = copy_pad_fprs(target, regset, &pos, &count,
&kbuf, &ubuf, 0);
} else if (!test_tsk_thread_flag(target, TIF_MSA_CTX_LIVE)) {
/* Copy scalar FP context, fill the rest with 0xff */
err = copy_pad_fprs(target, regset, &pos, &count,
&kbuf, &ubuf, 8);
} else if (sizeof(target->thread.fpu.fpr[0]) == regset->size) {
/* Trivially copy the vector registers */
err = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.fpr,
0, wr_size);
} else {
/* Copy as much context as possible, fill the rest with 0xff */
err = copy_pad_fprs(target, regset, &pos, &count,
&kbuf, &ubuf,
sizeof(target->thread.fpu.fpr[0]));
}
err |= user_regset_copyout(&pos, &count, &kbuf, &ubuf,
&ctrl_regs, wr_size,
wr_size + sizeof(ctrl_regs));
return err;
}
static int msa_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
const unsigned int wr_size = NUM_FPU_REGS * regset->size;
struct msa_control_regs ctrl_regs;
unsigned int cp_sz;
int i, err, start;
init_fp_ctx(target);
if (sizeof(target->thread.fpu.fpr[0]) == regset->size) {
/* Trivially copy the vector registers */
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.fpr,
0, wr_size);
} else {
/* Copy as much context as possible */
cp_sz = min_t(unsigned int, regset->size,
sizeof(target->thread.fpu.fpr[0]));
i = start = err = 0;
for (; i < NUM_FPU_REGS; i++, start += regset->size) {
err |= user_regset_copyin(&pos, &count, &kbuf, &ubuf,
&target->thread.fpu.fpr[i],
start, start + cp_sz);
}
}
if (!err)
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ctrl_regs,
wr_size, wr_size + sizeof(ctrl_regs));
if (!err) {
target->thread.fpu.fcr31 = ctrl_regs.fcsr & ~FPU_CSR_ALL_X;
target->thread.fpu.msacsr = ctrl_regs.msacsr & ~MSA_CSR_CAUSEF;
}
return err;
}
#endif /* CONFIG_CPU_HAS_MSA */
#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
/*
* Copy the DSP context to the supplied 32-bit NT_MIPS_DSP buffer.
*/
static int dsp32_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
unsigned int start, num_regs, i;
u32 dspregs[NUM_DSP_REGS + 1];
BUG_ON(count % sizeof(u32));
if (!cpu_has_dsp)
return -EIO;
start = pos / sizeof(u32);
num_regs = count / sizeof(u32);
if (start + num_regs > NUM_DSP_REGS + 1)
return -EIO;
for (i = start; i < num_regs; i++)
switch (i) {
case 0 ... NUM_DSP_REGS - 1:
dspregs[i] = target->thread.dsp.dspr[i];
break;
case NUM_DSP_REGS:
dspregs[i] = target->thread.dsp.dspcontrol;
break;
}
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, dspregs, 0,
sizeof(dspregs));
}
/*
* Copy the supplied 32-bit NT_MIPS_DSP buffer to the DSP context.
*/
static int dsp32_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
unsigned int start, num_regs, i;
u32 dspregs[NUM_DSP_REGS + 1];
int err;
BUG_ON(count % sizeof(u32));
if (!cpu_has_dsp)
return -EIO;
start = pos / sizeof(u32);
num_regs = count / sizeof(u32);
if (start + num_regs > NUM_DSP_REGS + 1)
return -EIO;
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, dspregs, 0,
sizeof(dspregs));
if (err)
return err;
for (i = start; i < num_regs; i++)
switch (i) {
case 0 ... NUM_DSP_REGS - 1:
target->thread.dsp.dspr[i] = (s32)dspregs[i];
break;
case NUM_DSP_REGS:
target->thread.dsp.dspcontrol = (s32)dspregs[i];
break;
}
return 0;
}
#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
#ifdef CONFIG_64BIT
/*
* Copy the DSP context to the supplied 64-bit NT_MIPS_DSP buffer.
*/
static int dsp64_get(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
void *kbuf, void __user *ubuf)
{
unsigned int start, num_regs, i;
u64 dspregs[NUM_DSP_REGS + 1];
BUG_ON(count % sizeof(u64));
if (!cpu_has_dsp)
return -EIO;
start = pos / sizeof(u64);
num_regs = count / sizeof(u64);
if (start + num_regs > NUM_DSP_REGS + 1)
return -EIO;
for (i = start; i < num_regs; i++)
switch (i) {
case 0 ... NUM_DSP_REGS - 1:
dspregs[i] = target->thread.dsp.dspr[i];
break;
case NUM_DSP_REGS:
dspregs[i] = target->thread.dsp.dspcontrol;
break;
}
return user_regset_copyout(&pos, &count, &kbuf, &ubuf, dspregs, 0,
sizeof(dspregs));
}
/*
* Copy the supplied 64-bit NT_MIPS_DSP buffer to the DSP context.
*/
static int dsp64_set(struct task_struct *target,
const struct user_regset *regset,
unsigned int pos, unsigned int count,
const void *kbuf, const void __user *ubuf)
{
unsigned int start, num_regs, i;
u64 dspregs[NUM_DSP_REGS + 1];
int err;
BUG_ON(count % sizeof(u64));
if (!cpu_has_dsp)
return -EIO;
start = pos / sizeof(u64);
num_regs = count / sizeof(u64);
if (start + num_regs > NUM_DSP_REGS + 1)
return -EIO;
err = user_regset_copyin(&pos, &count, &kbuf, &ubuf, dspregs, 0,
sizeof(dspregs));
if (err)
return err;
for (i = start; i < num_regs; i++)
switch (i) {
case 0 ... NUM_DSP_REGS - 1:
target->thread.dsp.dspr[i] = dspregs[i];
break;
case NUM_DSP_REGS:
target->thread.dsp.dspcontrol = dspregs[i];
break;
}
return 0;
}
#endif /* CONFIG_64BIT */
/*
* Determine whether the DSP context is present.
*/
static int dsp_active(struct task_struct *target,
const struct user_regset *regset)
{
return cpu_has_dsp ? NUM_DSP_REGS + 1 : -ENODEV;
}
enum mips_regset {
REGSET_GPR,
REGSET_DSP,
#ifdef CONFIG_MIPS_FP_SUPPORT
REGSET_FPR,
REGSET_FP_MODE,
#endif
#ifdef CONFIG_CPU_HAS_MSA
REGSET_MSA,
#endif
};
struct pt_regs_offset {
const char *name;
int offset;
};
#define REG_OFFSET_NAME(reg, r) { \
.name = #reg, \
.offset = offsetof(struct pt_regs, r) \
}
#define REG_OFFSET_END { \
.name = NULL, \
.offset = 0 \
}
static const struct pt_regs_offset regoffset_table[] = {
REG_OFFSET_NAME(r0, regs[0]),
REG_OFFSET_NAME(r1, regs[1]),
REG_OFFSET_NAME(r2, regs[2]),
REG_OFFSET_NAME(r3, regs[3]),
REG_OFFSET_NAME(r4, regs[4]),
REG_OFFSET_NAME(r5, regs[5]),
REG_OFFSET_NAME(r6, regs[6]),
REG_OFFSET_NAME(r7, regs[7]),
REG_OFFSET_NAME(r8, regs[8]),
REG_OFFSET_NAME(r9, regs[9]),
REG_OFFSET_NAME(r10, regs[10]),
REG_OFFSET_NAME(r11, regs[11]),
REG_OFFSET_NAME(r12, regs[12]),
REG_OFFSET_NAME(r13, regs[13]),
REG_OFFSET_NAME(r14, regs[14]),
REG_OFFSET_NAME(r15, regs[15]),
REG_OFFSET_NAME(r16, regs[16]),
REG_OFFSET_NAME(r17, regs[17]),
REG_OFFSET_NAME(r18, regs[18]),
REG_OFFSET_NAME(r19, regs[19]),
REG_OFFSET_NAME(r20, regs[20]),
REG_OFFSET_NAME(r21, regs[21]),
REG_OFFSET_NAME(r22, regs[22]),
REG_OFFSET_NAME(r23, regs[23]),
REG_OFFSET_NAME(r24, regs[24]),
REG_OFFSET_NAME(r25, regs[25]),
REG_OFFSET_NAME(r26, regs[26]),
REG_OFFSET_NAME(r27, regs[27]),
REG_OFFSET_NAME(r28, regs[28]),
REG_OFFSET_NAME(r29, regs[29]),
REG_OFFSET_NAME(r30, regs[30]),
REG_OFFSET_NAME(r31, regs[31]),
REG_OFFSET_NAME(c0_status, cp0_status),
REG_OFFSET_NAME(hi, hi),
REG_OFFSET_NAME(lo, lo),
#ifdef CONFIG_CPU_HAS_SMARTMIPS
REG_OFFSET_NAME(acx, acx),
#endif
REG_OFFSET_NAME(c0_badvaddr, cp0_badvaddr),
REG_OFFSET_NAME(c0_cause, cp0_cause),
REG_OFFSET_NAME(c0_epc, cp0_epc),
#ifdef CONFIG_CPU_CAVIUM_OCTEON
REG_OFFSET_NAME(mpl0, mpl[0]),
REG_OFFSET_NAME(mpl1, mpl[1]),
REG_OFFSET_NAME(mpl2, mpl[2]),
REG_OFFSET_NAME(mtp0, mtp[0]),
REG_OFFSET_NAME(mtp1, mtp[1]),
REG_OFFSET_NAME(mtp2, mtp[2]),
#endif
REG_OFFSET_END,
};
/**
* regs_query_register_offset() - query register offset from its name
* @name: the name of a register
*
* regs_query_register_offset() returns the offset of a register in struct
* pt_regs from its name. If the name is invalid, this returns -EINVAL;
*/
int regs_query_register_offset(const char *name)
{
const struct pt_regs_offset *roff;
for (roff = regoffset_table; roff->name != NULL; roff++)
if (!strcmp(roff->name, name))
return roff->offset;
return -EINVAL;
}
#if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
static const struct user_regset mips_regsets[] = {
[REGSET_GPR] = {
.core_note_type = NT_PRSTATUS,
.n = ELF_NGREG,
.size = sizeof(unsigned int),
.align = sizeof(unsigned int),
.get = gpr32_get,
.set = gpr32_set,
},
[REGSET_DSP] = {
.core_note_type = NT_MIPS_DSP,
.n = NUM_DSP_REGS + 1,
.size = sizeof(u32),
.align = sizeof(u32),
.get = dsp32_get,
.set = dsp32_set,
.active = dsp_active,
},
#ifdef CONFIG_MIPS_FP_SUPPORT
[REGSET_FPR] = {
.core_note_type = NT_PRFPREG,
.n = ELF_NFPREG,
.size = sizeof(elf_fpreg_t),
.align = sizeof(elf_fpreg_t),
.get = fpr_get,
.set = fpr_set,
},
[REGSET_FP_MODE] = {
.core_note_type = NT_MIPS_FP_MODE,
.n = 1,
.size = sizeof(int),
.align = sizeof(int),
.get = fp_mode_get,
.set = fp_mode_set,
},
#endif
#ifdef CONFIG_CPU_HAS_MSA
[REGSET_MSA] = {
.core_note_type = NT_MIPS_MSA,
.n = NUM_FPU_REGS + 1,
.size = 16,
.align = 16,
.get = msa_get,
.set = msa_set,
},
#endif
};
static const struct user_regset_view user_mips_view = {
.name = "mips",
.e_machine = ELF_ARCH,
.ei_osabi = ELF_OSABI,
.regsets = mips_regsets,
.n = ARRAY_SIZE(mips_regsets),
};
#endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
#ifdef CONFIG_64BIT
static const struct user_regset mips64_regsets[] = {
[REGSET_GPR] = {
.core_note_type = NT_PRSTATUS,
.n = ELF_NGREG,
.size = sizeof(unsigned long),
.align = sizeof(unsigned long),
.get = gpr64_get,
.set = gpr64_set,
},
[REGSET_DSP] = {
.core_note_type = NT_MIPS_DSP,
.n = NUM_DSP_REGS + 1,
.size = sizeof(u64),
.align = sizeof(u64),
.get = dsp64_get,
.set = dsp64_set,
.active = dsp_active,
},
#ifdef CONFIG_MIPS_FP_SUPPORT
[REGSET_FP_MODE] = {
.core_note_type = NT_MIPS_FP_MODE,
.n = 1,
.size = sizeof(int),
.align = sizeof(int),
.get = fp_mode_get,
.set = fp_mode_set,
},
[REGSET_FPR] = {
.core_note_type = NT_PRFPREG,
.n = ELF_NFPREG,
.size = sizeof(elf_fpreg_t),
.align = sizeof(elf_fpreg_t),
.get = fpr_get,
.set = fpr_set,
},
#endif
#ifdef CONFIG_CPU_HAS_MSA
[REGSET_MSA] = {
.core_note_type = NT_MIPS_MSA,
.n = NUM_FPU_REGS + 1,
.size = 16,
.align = 16,
.get = msa_get,
.set = msa_set,
},
#endif
};
static const struct user_regset_view user_mips64_view = {
.name = "mips64",
.e_machine = ELF_ARCH,
.ei_osabi = ELF_OSABI,
.regsets = mips64_regsets,
.n = ARRAY_SIZE(mips64_regsets),
};
#ifdef CONFIG_MIPS32_N32
static const struct user_regset_view user_mipsn32_view = {
.name = "mipsn32",
.e_flags = EF_MIPS_ABI2,
.e_machine = ELF_ARCH,
.ei_osabi = ELF_OSABI,
.regsets = mips64_regsets,
.n = ARRAY_SIZE(mips64_regsets),
};
#endif /* CONFIG_MIPS32_N32 */
#endif /* CONFIG_64BIT */
const struct user_regset_view *task_user_regset_view(struct task_struct *task)
{
#ifdef CONFIG_32BIT
return &user_mips_view;
#else
#ifdef CONFIG_MIPS32_O32
if (test_tsk_thread_flag(task, TIF_32BIT_REGS))
return &user_mips_view;
#endif
#ifdef CONFIG_MIPS32_N32
if (test_tsk_thread_flag(task, TIF_32BIT_ADDR))
return &user_mipsn32_view;
#endif
return &user_mips64_view;
#endif
}
long arch_ptrace(struct task_struct *child, long request,
unsigned long addr, unsigned long data)
{
int ret;
void __user *addrp = (void __user *) addr;
void __user *datavp = (void __user *) data;
unsigned long __user *datalp = (void __user *) data;
switch (request) {
/* when I and D space are separate, these will need to be fixed. */
case PTRACE_PEEKTEXT: /* read word at location addr. */
case PTRACE_PEEKDATA:
ret = generic_ptrace_peekdata(child, addr, data);
break;
/* Read the word at location addr in the USER area. */
case PTRACE_PEEKUSR: {
struct pt_regs *regs;
unsigned long tmp = 0;
regs = task_pt_regs(child);
ret = 0; /* Default return value. */
switch (addr) {
case 0 ... 31:
tmp = regs->regs[addr];
break;
#ifdef CONFIG_MIPS_FP_SUPPORT
case FPR_BASE ... FPR_BASE + 31: {
union fpureg *fregs;
if (!tsk_used_math(child)) {
/* FP not yet used */
tmp = -1;
break;
}
fregs = get_fpu_regs(child);
#ifdef CONFIG_32BIT
if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) {
/*
* The odd registers are actually the high
* order bits of the values stored in the even
* registers.
*/
tmp = get_fpr32(&fregs[(addr & ~1) - FPR_BASE],
addr & 1);
break;
}
#endif
tmp = get_fpr64(&fregs[addr - FPR_BASE], 0);
break;
}
case FPC_CSR:
tmp = child->thread.fpu.fcr31;
break;
case FPC_EIR:
/* implementation / version register */
tmp = boot_cpu_data.fpu_id;
break;
#endif
case PC:
tmp = regs->cp0_epc;
break;
case CAUSE:
tmp = regs->cp0_cause;
break;
case BADVADDR:
tmp = regs->cp0_badvaddr;
break;
case MMHI:
tmp = regs->hi;
break;
case MMLO:
tmp = regs->lo;
break;
#ifdef CONFIG_CPU_HAS_SMARTMIPS
case ACX:
tmp = regs->acx;
break;
#endif
case DSP_BASE ... DSP_BASE + 5: {
dspreg_t *dregs;
if (!cpu_has_dsp) {
tmp = 0;
ret = -EIO;
goto out;
}
dregs = __get_dsp_regs(child);
tmp = dregs[addr - DSP_BASE];
break;
}
case DSP_CONTROL:
if (!cpu_has_dsp) {
tmp = 0;
ret = -EIO;
goto out;
}
tmp = child->thread.dsp.dspcontrol;
break;
default:
tmp = 0;
ret = -EIO;
goto out;
}
ret = put_user(tmp, datalp);
break;
}
/* when I and D space are separate, this will have to be fixed. */
case PTRACE_POKETEXT: /* write the word at location addr. */
case PTRACE_POKEDATA:
ret = generic_ptrace_pokedata(child, addr, data);
break;
case PTRACE_POKEUSR: {
struct pt_regs *regs;
ret = 0;
regs = task_pt_regs(child);
switch (addr) {
case 0 ... 31:
regs->regs[addr] = data;
/* System call number may have been changed */
if (addr == 2)
mips_syscall_update_nr(child, regs);
else if (addr == 4 &&
mips_syscall_is_indirect(child, regs))
mips_syscall_update_nr(child, regs);
break;
#ifdef CONFIG_MIPS_FP_SUPPORT
case FPR_BASE ... FPR_BASE + 31: {
union fpureg *fregs = get_fpu_regs(child);
init_fp_ctx(child);
#ifdef CONFIG_32BIT
if (test_tsk_thread_flag(child, TIF_32BIT_FPREGS)) {
/*
* The odd registers are actually the high
* order bits of the values stored in the even
* registers.
*/
set_fpr32(&fregs[(addr & ~1) - FPR_BASE],
addr & 1, data);
break;
}
#endif
set_fpr64(&fregs[addr - FPR_BASE], 0, data);
break;
}
case FPC_CSR:
init_fp_ctx(child);
ptrace_setfcr31(child, data);
break;
#endif
case PC:
regs->cp0_epc = data;
break;
case MMHI:
regs->hi = data;
break;
case MMLO:
regs->lo = data;
break;
#ifdef CONFIG_CPU_HAS_SMARTMIPS
case ACX:
regs->acx = data;
break;
#endif
case DSP_BASE ... DSP_BASE + 5: {
dspreg_t *dregs;
if (!cpu_has_dsp) {
ret = -EIO;
break;
}
dregs = __get_dsp_regs(child);
dregs[addr - DSP_BASE] = data;
break;
}
case DSP_CONTROL:
if (!cpu_has_dsp) {
ret = -EIO;
break;
}
child->thread.dsp.dspcontrol = data;
break;
default:
/* The rest are not allowed. */
ret = -EIO;
break;
}
break;
}
case PTRACE_GETREGS:
ret = ptrace_getregs(child, datavp);
break;
case PTRACE_SETREGS:
ret = ptrace_setregs(child, datavp);
break;
#ifdef CONFIG_MIPS_FP_SUPPORT
case PTRACE_GETFPREGS:
ret = ptrace_getfpregs(child, datavp);
break;
case PTRACE_SETFPREGS:
ret = ptrace_setfpregs(child, datavp);
break;
#endif
case PTRACE_GET_THREAD_AREA:
ret = put_user(task_thread_info(child)->tp_value, datalp);
break;
case PTRACE_GET_WATCH_REGS:
ret = ptrace_get_watch_regs(child, addrp);
break;
case PTRACE_SET_WATCH_REGS:
ret = ptrace_set_watch_regs(child, addrp);
break;
default:
ret = ptrace_request(child, request, addr, data);
break;
}
out:
return ret;
}
/*
* Notification of system call entry/exit
* - triggered by current->work.syscall_trace
*/
asmlinkage long syscall_trace_enter(struct pt_regs *regs, long syscall)
{
user_exit();
current_thread_info()->syscall = syscall;
if (test_thread_flag(TIF_SYSCALL_TRACE)) {
if (tracehook_report_syscall_entry(regs))
return -1;
syscall = current_thread_info()->syscall;
}
#ifdef CONFIG_SECCOMP
if (unlikely(test_thread_flag(TIF_SECCOMP))) {
int ret, i;
struct seccomp_data sd;
unsigned long args[6];
sd.nr = syscall;
sd.arch = syscall_get_arch();
syscall_get_arguments(current, regs, 0, 6, args);
for (i = 0; i < 6; i++)
sd.args[i] = args[i];
sd.instruction_pointer = KSTK_EIP(current);
ret = __secure_computing(&sd);
if (ret == -1)
return ret;
syscall = current_thread_info()->syscall;
}
#endif
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
trace_sys_enter(regs, regs->regs[2]);
audit_syscall_entry(syscall, regs->regs[4], regs->regs[5],
regs->regs[6], regs->regs[7]);
/*
* Negative syscall numbers are mistaken for rejected syscalls, but
* won't have had the return value set appropriately, so we do so now.
*/
if (syscall < 0)
syscall_set_return_value(current, regs, -ENOSYS, 0);
return syscall;
}
/*
* Notification of system call entry/exit
* - triggered by current->work.syscall_trace
*/
asmlinkage void syscall_trace_leave(struct pt_regs *regs)
{
/*
* We may come here right after calling schedule_user()
* or do_notify_resume(), in which case we can be in RCU
* user mode.
*/
user_exit();
audit_syscall_exit(regs);
if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
trace_sys_exit(regs, regs_return_value(regs));
if (test_thread_flag(TIF_SYSCALL_TRACE))
tracehook_report_syscall_exit(regs, 0);
user_enter();
}