mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 21:36:57 +07:00
d6321d4933
This patch turns guest_cpuid_has_XYZ(cpuid) into guest_cpuid_has(cpuid, X86_FEATURE_XYZ), which gets rid of many very similar helpers. When seeing a X86_FEATURE_*, we can know which cpuid it belongs to, but this information isn't in common code, so we recreate it for KVM. Add some BUILD_BUG_ONs to make sure that it runs nicely. Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
732 lines
16 KiB
C
732 lines
16 KiB
C
/*
|
|
* vMTRR implementation
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
* Copyright(C) 2015 Intel Corporation.
|
|
*
|
|
* Authors:
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Avi Kivity <avi@qumranet.com>
|
|
* Marcelo Tosatti <mtosatti@redhat.com>
|
|
* Paolo Bonzini <pbonzini@redhat.com>
|
|
* Xiao Guangrong <guangrong.xiao@linux.intel.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include <linux/kvm_host.h>
|
|
#include <asm/mtrr.h>
|
|
|
|
#include "cpuid.h"
|
|
#include "mmu.h"
|
|
|
|
#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
|
|
#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
|
|
#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
|
|
|
|
static bool msr_mtrr_valid(unsigned msr)
|
|
{
|
|
switch (msr) {
|
|
case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
|
|
case MSR_MTRRfix64K_00000:
|
|
case MSR_MTRRfix16K_80000:
|
|
case MSR_MTRRfix16K_A0000:
|
|
case MSR_MTRRfix4K_C0000:
|
|
case MSR_MTRRfix4K_C8000:
|
|
case MSR_MTRRfix4K_D0000:
|
|
case MSR_MTRRfix4K_D8000:
|
|
case MSR_MTRRfix4K_E0000:
|
|
case MSR_MTRRfix4K_E8000:
|
|
case MSR_MTRRfix4K_F0000:
|
|
case MSR_MTRRfix4K_F8000:
|
|
case MSR_MTRRdefType:
|
|
case MSR_IA32_CR_PAT:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool valid_pat_type(unsigned t)
|
|
{
|
|
return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
|
|
}
|
|
|
|
static bool valid_mtrr_type(unsigned t)
|
|
{
|
|
return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
|
|
}
|
|
|
|
bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
int i;
|
|
u64 mask;
|
|
|
|
if (!msr_mtrr_valid(msr))
|
|
return false;
|
|
|
|
if (msr == MSR_IA32_CR_PAT) {
|
|
for (i = 0; i < 8; i++)
|
|
if (!valid_pat_type((data >> (i * 8)) & 0xff))
|
|
return false;
|
|
return true;
|
|
} else if (msr == MSR_MTRRdefType) {
|
|
if (data & ~0xcff)
|
|
return false;
|
|
return valid_mtrr_type(data & 0xff);
|
|
} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
|
|
for (i = 0; i < 8 ; i++)
|
|
if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* variable MTRRs */
|
|
WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
|
|
|
|
mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
|
|
if ((msr & 1) == 0) {
|
|
/* MTRR base */
|
|
if (!valid_mtrr_type(data & 0xff))
|
|
return false;
|
|
mask |= 0xf00;
|
|
} else
|
|
/* MTRR mask */
|
|
mask |= 0x7ff;
|
|
if (data & mask) {
|
|
kvm_inject_gp(vcpu, 0);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
|
|
|
|
static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
|
|
{
|
|
return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
|
|
}
|
|
|
|
static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
|
|
{
|
|
return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
|
|
}
|
|
|
|
static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
|
|
{
|
|
return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
|
|
}
|
|
|
|
static u8 mtrr_disabled_type(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Intel SDM 11.11.2.2: all MTRRs are disabled when
|
|
* IA32_MTRR_DEF_TYPE.E bit is cleared, and the UC
|
|
* memory type is applied to all of physical memory.
|
|
*
|
|
* However, virtual machines can be run with CPUID such that
|
|
* there are no MTRRs. In that case, the firmware will never
|
|
* enable MTRRs and it is obviously undesirable to run the
|
|
* guest entirely with UC memory and we use WB.
|
|
*/
|
|
if (guest_cpuid_has(vcpu, X86_FEATURE_MTRR))
|
|
return MTRR_TYPE_UNCACHABLE;
|
|
else
|
|
return MTRR_TYPE_WRBACK;
|
|
}
|
|
|
|
/*
|
|
* Three terms are used in the following code:
|
|
* - segment, it indicates the address segments covered by fixed MTRRs.
|
|
* - unit, it corresponds to the MSR entry in the segment.
|
|
* - range, a range is covered in one memory cache type.
|
|
*/
|
|
struct fixed_mtrr_segment {
|
|
u64 start;
|
|
u64 end;
|
|
|
|
int range_shift;
|
|
|
|
/* the start position in kvm_mtrr.fixed_ranges[]. */
|
|
int range_start;
|
|
};
|
|
|
|
static struct fixed_mtrr_segment fixed_seg_table[] = {
|
|
/* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
|
|
{
|
|
.start = 0x0,
|
|
.end = 0x80000,
|
|
.range_shift = 16, /* 64K */
|
|
.range_start = 0,
|
|
},
|
|
|
|
/*
|
|
* MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
|
|
* 16K fixed mtrr.
|
|
*/
|
|
{
|
|
.start = 0x80000,
|
|
.end = 0xc0000,
|
|
.range_shift = 14, /* 16K */
|
|
.range_start = 8,
|
|
},
|
|
|
|
/*
|
|
* MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
|
|
* 4K fixed mtrr.
|
|
*/
|
|
{
|
|
.start = 0xc0000,
|
|
.end = 0x100000,
|
|
.range_shift = 12, /* 12K */
|
|
.range_start = 24,
|
|
}
|
|
};
|
|
|
|
/*
|
|
* The size of unit is covered in one MSR, one MSR entry contains
|
|
* 8 ranges so that unit size is always 8 * 2^range_shift.
|
|
*/
|
|
static u64 fixed_mtrr_seg_unit_size(int seg)
|
|
{
|
|
return 8 << fixed_seg_table[seg].range_shift;
|
|
}
|
|
|
|
static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
|
|
{
|
|
switch (msr) {
|
|
case MSR_MTRRfix64K_00000:
|
|
*seg = 0;
|
|
*unit = 0;
|
|
break;
|
|
case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
|
|
*seg = 1;
|
|
*unit = msr - MSR_MTRRfix16K_80000;
|
|
break;
|
|
case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
|
|
*seg = 2;
|
|
*unit = msr - MSR_MTRRfix4K_C0000;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
|
|
{
|
|
struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
|
|
u64 unit_size = fixed_mtrr_seg_unit_size(seg);
|
|
|
|
*start = mtrr_seg->start + unit * unit_size;
|
|
*end = *start + unit_size;
|
|
WARN_ON(*end > mtrr_seg->end);
|
|
}
|
|
|
|
static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
|
|
{
|
|
struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
|
|
|
|
WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
|
|
> mtrr_seg->end);
|
|
|
|
/* each unit has 8 ranges. */
|
|
return mtrr_seg->range_start + 8 * unit;
|
|
}
|
|
|
|
static int fixed_mtrr_seg_end_range_index(int seg)
|
|
{
|
|
struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
|
|
int n;
|
|
|
|
n = (mtrr_seg->end - mtrr_seg->start) >> mtrr_seg->range_shift;
|
|
return mtrr_seg->range_start + n - 1;
|
|
}
|
|
|
|
static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
|
|
{
|
|
int seg, unit;
|
|
|
|
if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
|
|
return false;
|
|
|
|
fixed_mtrr_seg_unit_range(seg, unit, start, end);
|
|
return true;
|
|
}
|
|
|
|
static int fixed_msr_to_range_index(u32 msr)
|
|
{
|
|
int seg, unit;
|
|
|
|
if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
|
|
return -1;
|
|
|
|
return fixed_mtrr_seg_unit_range_index(seg, unit);
|
|
}
|
|
|
|
static int fixed_mtrr_addr_to_seg(u64 addr)
|
|
{
|
|
struct fixed_mtrr_segment *mtrr_seg;
|
|
int seg, seg_num = ARRAY_SIZE(fixed_seg_table);
|
|
|
|
for (seg = 0; seg < seg_num; seg++) {
|
|
mtrr_seg = &fixed_seg_table[seg];
|
|
if (mtrr_seg->start <= addr && addr < mtrr_seg->end)
|
|
return seg;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
static int fixed_mtrr_addr_seg_to_range_index(u64 addr, int seg)
|
|
{
|
|
struct fixed_mtrr_segment *mtrr_seg;
|
|
int index;
|
|
|
|
mtrr_seg = &fixed_seg_table[seg];
|
|
index = mtrr_seg->range_start;
|
|
index += (addr - mtrr_seg->start) >> mtrr_seg->range_shift;
|
|
return index;
|
|
}
|
|
|
|
static u64 fixed_mtrr_range_end_addr(int seg, int index)
|
|
{
|
|
struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
|
|
int pos = index - mtrr_seg->range_start;
|
|
|
|
return mtrr_seg->start + ((pos + 1) << mtrr_seg->range_shift);
|
|
}
|
|
|
|
static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
|
|
{
|
|
u64 mask;
|
|
|
|
*start = range->base & PAGE_MASK;
|
|
|
|
mask = range->mask & PAGE_MASK;
|
|
|
|
/* This cannot overflow because writing to the reserved bits of
|
|
* variable MTRRs causes a #GP.
|
|
*/
|
|
*end = (*start | ~mask) + 1;
|
|
}
|
|
|
|
static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
|
|
{
|
|
struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
|
|
gfn_t start, end;
|
|
int index;
|
|
|
|
if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
|
|
!kvm_arch_has_noncoherent_dma(vcpu->kvm))
|
|
return;
|
|
|
|
if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
|
|
return;
|
|
|
|
/* fixed MTRRs. */
|
|
if (fixed_msr_to_range(msr, &start, &end)) {
|
|
if (!fixed_mtrr_is_enabled(mtrr_state))
|
|
return;
|
|
} else if (msr == MSR_MTRRdefType) {
|
|
start = 0x0;
|
|
end = ~0ULL;
|
|
} else {
|
|
/* variable range MTRRs. */
|
|
index = (msr - 0x200) / 2;
|
|
var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
|
|
}
|
|
|
|
kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
|
|
}
|
|
|
|
static bool var_mtrr_range_is_valid(struct kvm_mtrr_range *range)
|
|
{
|
|
return (range->mask & (1 << 11)) != 0;
|
|
}
|
|
|
|
static void set_var_mtrr_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
|
|
struct kvm_mtrr_range *tmp, *cur;
|
|
int index, is_mtrr_mask;
|
|
|
|
index = (msr - 0x200) / 2;
|
|
is_mtrr_mask = msr - 0x200 - 2 * index;
|
|
cur = &mtrr_state->var_ranges[index];
|
|
|
|
/* remove the entry if it's in the list. */
|
|
if (var_mtrr_range_is_valid(cur))
|
|
list_del(&mtrr_state->var_ranges[index].node);
|
|
|
|
/* Extend the mask with all 1 bits to the left, since those
|
|
* bits must implicitly be 0. The bits are then cleared
|
|
* when reading them.
|
|
*/
|
|
if (!is_mtrr_mask)
|
|
cur->base = data;
|
|
else
|
|
cur->mask = data | (-1LL << cpuid_maxphyaddr(vcpu));
|
|
|
|
/* add it to the list if it's enabled. */
|
|
if (var_mtrr_range_is_valid(cur)) {
|
|
list_for_each_entry(tmp, &mtrr_state->head, node)
|
|
if (cur->base >= tmp->base)
|
|
break;
|
|
list_add_tail(&cur->node, &tmp->node);
|
|
}
|
|
}
|
|
|
|
int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
|
|
{
|
|
int index;
|
|
|
|
if (!kvm_mtrr_valid(vcpu, msr, data))
|
|
return 1;
|
|
|
|
index = fixed_msr_to_range_index(msr);
|
|
if (index >= 0)
|
|
*(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
|
|
else if (msr == MSR_MTRRdefType)
|
|
vcpu->arch.mtrr_state.deftype = data;
|
|
else if (msr == MSR_IA32_CR_PAT)
|
|
vcpu->arch.pat = data;
|
|
else
|
|
set_var_mtrr_msr(vcpu, msr, data);
|
|
|
|
update_mtrr(vcpu, msr);
|
|
return 0;
|
|
}
|
|
|
|
int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
|
|
{
|
|
int index;
|
|
|
|
/* MSR_MTRRcap is a readonly MSR. */
|
|
if (msr == MSR_MTRRcap) {
|
|
/*
|
|
* SMRR = 0
|
|
* WC = 1
|
|
* FIX = 1
|
|
* VCNT = KVM_NR_VAR_MTRR
|
|
*/
|
|
*pdata = 0x500 | KVM_NR_VAR_MTRR;
|
|
return 0;
|
|
}
|
|
|
|
if (!msr_mtrr_valid(msr))
|
|
return 1;
|
|
|
|
index = fixed_msr_to_range_index(msr);
|
|
if (index >= 0)
|
|
*pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
|
|
else if (msr == MSR_MTRRdefType)
|
|
*pdata = vcpu->arch.mtrr_state.deftype;
|
|
else if (msr == MSR_IA32_CR_PAT)
|
|
*pdata = vcpu->arch.pat;
|
|
else { /* Variable MTRRs */
|
|
int is_mtrr_mask;
|
|
|
|
index = (msr - 0x200) / 2;
|
|
is_mtrr_mask = msr - 0x200 - 2 * index;
|
|
if (!is_mtrr_mask)
|
|
*pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
|
|
else
|
|
*pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
|
|
|
|
*pdata &= (1ULL << cpuid_maxphyaddr(vcpu)) - 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void kvm_vcpu_mtrr_init(struct kvm_vcpu *vcpu)
|
|
{
|
|
INIT_LIST_HEAD(&vcpu->arch.mtrr_state.head);
|
|
}
|
|
|
|
struct mtrr_iter {
|
|
/* input fields. */
|
|
struct kvm_mtrr *mtrr_state;
|
|
u64 start;
|
|
u64 end;
|
|
|
|
/* output fields. */
|
|
int mem_type;
|
|
/* mtrr is completely disabled? */
|
|
bool mtrr_disabled;
|
|
/* [start, end) is not fully covered in MTRRs? */
|
|
bool partial_map;
|
|
|
|
/* private fields. */
|
|
union {
|
|
/* used for fixed MTRRs. */
|
|
struct {
|
|
int index;
|
|
int seg;
|
|
};
|
|
|
|
/* used for var MTRRs. */
|
|
struct {
|
|
struct kvm_mtrr_range *range;
|
|
/* max address has been covered in var MTRRs. */
|
|
u64 start_max;
|
|
};
|
|
};
|
|
|
|
bool fixed;
|
|
};
|
|
|
|
static bool mtrr_lookup_fixed_start(struct mtrr_iter *iter)
|
|
{
|
|
int seg, index;
|
|
|
|
if (!fixed_mtrr_is_enabled(iter->mtrr_state))
|
|
return false;
|
|
|
|
seg = fixed_mtrr_addr_to_seg(iter->start);
|
|
if (seg < 0)
|
|
return false;
|
|
|
|
iter->fixed = true;
|
|
index = fixed_mtrr_addr_seg_to_range_index(iter->start, seg);
|
|
iter->index = index;
|
|
iter->seg = seg;
|
|
return true;
|
|
}
|
|
|
|
static bool match_var_range(struct mtrr_iter *iter,
|
|
struct kvm_mtrr_range *range)
|
|
{
|
|
u64 start, end;
|
|
|
|
var_mtrr_range(range, &start, &end);
|
|
if (!(start >= iter->end || end <= iter->start)) {
|
|
iter->range = range;
|
|
|
|
/*
|
|
* the function is called when we do kvm_mtrr.head walking.
|
|
* Range has the minimum base address which interleaves
|
|
* [looker->start_max, looker->end).
|
|
*/
|
|
iter->partial_map |= iter->start_max < start;
|
|
|
|
/* update the max address has been covered. */
|
|
iter->start_max = max(iter->start_max, end);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void __mtrr_lookup_var_next(struct mtrr_iter *iter)
|
|
{
|
|
struct kvm_mtrr *mtrr_state = iter->mtrr_state;
|
|
|
|
list_for_each_entry_continue(iter->range, &mtrr_state->head, node)
|
|
if (match_var_range(iter, iter->range))
|
|
return;
|
|
|
|
iter->range = NULL;
|
|
iter->partial_map |= iter->start_max < iter->end;
|
|
}
|
|
|
|
static void mtrr_lookup_var_start(struct mtrr_iter *iter)
|
|
{
|
|
struct kvm_mtrr *mtrr_state = iter->mtrr_state;
|
|
|
|
iter->fixed = false;
|
|
iter->start_max = iter->start;
|
|
iter->range = NULL;
|
|
iter->range = list_prepare_entry(iter->range, &mtrr_state->head, node);
|
|
|
|
__mtrr_lookup_var_next(iter);
|
|
}
|
|
|
|
static void mtrr_lookup_fixed_next(struct mtrr_iter *iter)
|
|
{
|
|
/* terminate the lookup. */
|
|
if (fixed_mtrr_range_end_addr(iter->seg, iter->index) >= iter->end) {
|
|
iter->fixed = false;
|
|
iter->range = NULL;
|
|
return;
|
|
}
|
|
|
|
iter->index++;
|
|
|
|
/* have looked up for all fixed MTRRs. */
|
|
if (iter->index >= ARRAY_SIZE(iter->mtrr_state->fixed_ranges))
|
|
return mtrr_lookup_var_start(iter);
|
|
|
|
/* switch to next segment. */
|
|
if (iter->index > fixed_mtrr_seg_end_range_index(iter->seg))
|
|
iter->seg++;
|
|
}
|
|
|
|
static void mtrr_lookup_var_next(struct mtrr_iter *iter)
|
|
{
|
|
__mtrr_lookup_var_next(iter);
|
|
}
|
|
|
|
static void mtrr_lookup_start(struct mtrr_iter *iter)
|
|
{
|
|
if (!mtrr_is_enabled(iter->mtrr_state)) {
|
|
iter->mtrr_disabled = true;
|
|
return;
|
|
}
|
|
|
|
if (!mtrr_lookup_fixed_start(iter))
|
|
mtrr_lookup_var_start(iter);
|
|
}
|
|
|
|
static void mtrr_lookup_init(struct mtrr_iter *iter,
|
|
struct kvm_mtrr *mtrr_state, u64 start, u64 end)
|
|
{
|
|
iter->mtrr_state = mtrr_state;
|
|
iter->start = start;
|
|
iter->end = end;
|
|
iter->mtrr_disabled = false;
|
|
iter->partial_map = false;
|
|
iter->fixed = false;
|
|
iter->range = NULL;
|
|
|
|
mtrr_lookup_start(iter);
|
|
}
|
|
|
|
static bool mtrr_lookup_okay(struct mtrr_iter *iter)
|
|
{
|
|
if (iter->fixed) {
|
|
iter->mem_type = iter->mtrr_state->fixed_ranges[iter->index];
|
|
return true;
|
|
}
|
|
|
|
if (iter->range) {
|
|
iter->mem_type = iter->range->base & 0xff;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void mtrr_lookup_next(struct mtrr_iter *iter)
|
|
{
|
|
if (iter->fixed)
|
|
mtrr_lookup_fixed_next(iter);
|
|
else
|
|
mtrr_lookup_var_next(iter);
|
|
}
|
|
|
|
#define mtrr_for_each_mem_type(_iter_, _mtrr_, _gpa_start_, _gpa_end_) \
|
|
for (mtrr_lookup_init(_iter_, _mtrr_, _gpa_start_, _gpa_end_); \
|
|
mtrr_lookup_okay(_iter_); mtrr_lookup_next(_iter_))
|
|
|
|
u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
|
|
{
|
|
struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
|
|
struct mtrr_iter iter;
|
|
u64 start, end;
|
|
int type = -1;
|
|
const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
|
|
| (1 << MTRR_TYPE_WRTHROUGH);
|
|
|
|
start = gfn_to_gpa(gfn);
|
|
end = start + PAGE_SIZE;
|
|
|
|
mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
|
|
int curr_type = iter.mem_type;
|
|
|
|
/*
|
|
* Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
|
|
* Precedences.
|
|
*/
|
|
|
|
if (type == -1) {
|
|
type = curr_type;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If two or more variable memory ranges match and the
|
|
* memory types are identical, then that memory type is
|
|
* used.
|
|
*/
|
|
if (type == curr_type)
|
|
continue;
|
|
|
|
/*
|
|
* If two or more variable memory ranges match and one of
|
|
* the memory types is UC, the UC memory type used.
|
|
*/
|
|
if (curr_type == MTRR_TYPE_UNCACHABLE)
|
|
return MTRR_TYPE_UNCACHABLE;
|
|
|
|
/*
|
|
* If two or more variable memory ranges match and the
|
|
* memory types are WT and WB, the WT memory type is used.
|
|
*/
|
|
if (((1 << type) & wt_wb_mask) &&
|
|
((1 << curr_type) & wt_wb_mask)) {
|
|
type = MTRR_TYPE_WRTHROUGH;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* For overlaps not defined by the above rules, processor
|
|
* behavior is undefined.
|
|
*/
|
|
|
|
/* We use WB for this undefined behavior. :( */
|
|
return MTRR_TYPE_WRBACK;
|
|
}
|
|
|
|
if (iter.mtrr_disabled)
|
|
return mtrr_disabled_type(vcpu);
|
|
|
|
/* not contained in any MTRRs. */
|
|
if (type == -1)
|
|
return mtrr_default_type(mtrr_state);
|
|
|
|
/*
|
|
* We just check one page, partially covered by MTRRs is
|
|
* impossible.
|
|
*/
|
|
WARN_ON(iter.partial_map);
|
|
|
|
return type;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);
|
|
|
|
bool kvm_mtrr_check_gfn_range_consistency(struct kvm_vcpu *vcpu, gfn_t gfn,
|
|
int page_num)
|
|
{
|
|
struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
|
|
struct mtrr_iter iter;
|
|
u64 start, end;
|
|
int type = -1;
|
|
|
|
start = gfn_to_gpa(gfn);
|
|
end = gfn_to_gpa(gfn + page_num);
|
|
mtrr_for_each_mem_type(&iter, mtrr_state, start, end) {
|
|
if (type == -1) {
|
|
type = iter.mem_type;
|
|
continue;
|
|
}
|
|
|
|
if (type != iter.mem_type)
|
|
return false;
|
|
}
|
|
|
|
if (iter.mtrr_disabled)
|
|
return true;
|
|
|
|
if (!iter.partial_map)
|
|
return true;
|
|
|
|
if (type == -1)
|
|
return true;
|
|
|
|
return type == mtrr_default_type(mtrr_state);
|
|
}
|