mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 04:06:37 +07:00
9d22167f34
Pull capabilities update from James Morris: "Minor fixes for capabilities: - Update the commoncap.c code to utilize XATTR_SECURITY_PREFIX_LEN, from Carmeli tamir. - Make the capability hooks static, from Yue Haibing" * 'next-lsm' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: security/commoncap: Use xattr security prefix len security: Make capability_hooks static
1377 lines
39 KiB
C
1377 lines
39 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Common capabilities, needed by capability.o.
|
|
*/
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/lsm_hooks.h>
|
|
#include <linux/file.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/netlink.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/xattr.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/prctl.h>
|
|
#include <linux/securebits.h>
|
|
#include <linux/user_namespace.h>
|
|
#include <linux/binfmts.h>
|
|
#include <linux/personality.h>
|
|
|
|
/*
|
|
* If a non-root user executes a setuid-root binary in
|
|
* !secure(SECURE_NOROOT) mode, then we raise capabilities.
|
|
* However if fE is also set, then the intent is for only
|
|
* the file capabilities to be applied, and the setuid-root
|
|
* bit is left on either to change the uid (plausible) or
|
|
* to get full privilege on a kernel without file capabilities
|
|
* support. So in that case we do not raise capabilities.
|
|
*
|
|
* Warn if that happens, once per boot.
|
|
*/
|
|
static void warn_setuid_and_fcaps_mixed(const char *fname)
|
|
{
|
|
static int warned;
|
|
if (!warned) {
|
|
printk(KERN_INFO "warning: `%s' has both setuid-root and"
|
|
" effective capabilities. Therefore not raising all"
|
|
" capabilities.\n", fname);
|
|
warned = 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cap_capable - Determine whether a task has a particular effective capability
|
|
* @cred: The credentials to use
|
|
* @ns: The user namespace in which we need the capability
|
|
* @cap: The capability to check for
|
|
* @opts: Bitmask of options defined in include/linux/security.h
|
|
*
|
|
* Determine whether the nominated task has the specified capability amongst
|
|
* its effective set, returning 0 if it does, -ve if it does not.
|
|
*
|
|
* NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
|
|
* and has_capability() functions. That is, it has the reverse semantics:
|
|
* cap_has_capability() returns 0 when a task has a capability, but the
|
|
* kernel's capable() and has_capability() returns 1 for this case.
|
|
*/
|
|
int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
|
|
int cap, unsigned int opts)
|
|
{
|
|
struct user_namespace *ns = targ_ns;
|
|
|
|
/* See if cred has the capability in the target user namespace
|
|
* by examining the target user namespace and all of the target
|
|
* user namespace's parents.
|
|
*/
|
|
for (;;) {
|
|
/* Do we have the necessary capabilities? */
|
|
if (ns == cred->user_ns)
|
|
return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
|
|
|
|
/*
|
|
* If we're already at a lower level than we're looking for,
|
|
* we're done searching.
|
|
*/
|
|
if (ns->level <= cred->user_ns->level)
|
|
return -EPERM;
|
|
|
|
/*
|
|
* The owner of the user namespace in the parent of the
|
|
* user namespace has all caps.
|
|
*/
|
|
if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
|
|
return 0;
|
|
|
|
/*
|
|
* If you have a capability in a parent user ns, then you have
|
|
* it over all children user namespaces as well.
|
|
*/
|
|
ns = ns->parent;
|
|
}
|
|
|
|
/* We never get here */
|
|
}
|
|
|
|
/**
|
|
* cap_settime - Determine whether the current process may set the system clock
|
|
* @ts: The time to set
|
|
* @tz: The timezone to set
|
|
*
|
|
* Determine whether the current process may set the system clock and timezone
|
|
* information, returning 0 if permission granted, -ve if denied.
|
|
*/
|
|
int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
|
|
{
|
|
if (!capable(CAP_SYS_TIME))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cap_ptrace_access_check - Determine whether the current process may access
|
|
* another
|
|
* @child: The process to be accessed
|
|
* @mode: The mode of attachment.
|
|
*
|
|
* If we are in the same or an ancestor user_ns and have all the target
|
|
* task's capabilities, then ptrace access is allowed.
|
|
* If we have the ptrace capability to the target user_ns, then ptrace
|
|
* access is allowed.
|
|
* Else denied.
|
|
*
|
|
* Determine whether a process may access another, returning 0 if permission
|
|
* granted, -ve if denied.
|
|
*/
|
|
int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
|
|
{
|
|
int ret = 0;
|
|
const struct cred *cred, *child_cred;
|
|
const kernel_cap_t *caller_caps;
|
|
|
|
rcu_read_lock();
|
|
cred = current_cred();
|
|
child_cred = __task_cred(child);
|
|
if (mode & PTRACE_MODE_FSCREDS)
|
|
caller_caps = &cred->cap_effective;
|
|
else
|
|
caller_caps = &cred->cap_permitted;
|
|
if (cred->user_ns == child_cred->user_ns &&
|
|
cap_issubset(child_cred->cap_permitted, *caller_caps))
|
|
goto out;
|
|
if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
|
|
goto out;
|
|
ret = -EPERM;
|
|
out:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cap_ptrace_traceme - Determine whether another process may trace the current
|
|
* @parent: The task proposed to be the tracer
|
|
*
|
|
* If parent is in the same or an ancestor user_ns and has all current's
|
|
* capabilities, then ptrace access is allowed.
|
|
* If parent has the ptrace capability to current's user_ns, then ptrace
|
|
* access is allowed.
|
|
* Else denied.
|
|
*
|
|
* Determine whether the nominated task is permitted to trace the current
|
|
* process, returning 0 if permission is granted, -ve if denied.
|
|
*/
|
|
int cap_ptrace_traceme(struct task_struct *parent)
|
|
{
|
|
int ret = 0;
|
|
const struct cred *cred, *child_cred;
|
|
|
|
rcu_read_lock();
|
|
cred = __task_cred(parent);
|
|
child_cred = current_cred();
|
|
if (cred->user_ns == child_cred->user_ns &&
|
|
cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
|
|
goto out;
|
|
if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
|
|
goto out;
|
|
ret = -EPERM;
|
|
out:
|
|
rcu_read_unlock();
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cap_capget - Retrieve a task's capability sets
|
|
* @target: The task from which to retrieve the capability sets
|
|
* @effective: The place to record the effective set
|
|
* @inheritable: The place to record the inheritable set
|
|
* @permitted: The place to record the permitted set
|
|
*
|
|
* This function retrieves the capabilities of the nominated task and returns
|
|
* them to the caller.
|
|
*/
|
|
int cap_capget(struct task_struct *target, kernel_cap_t *effective,
|
|
kernel_cap_t *inheritable, kernel_cap_t *permitted)
|
|
{
|
|
const struct cred *cred;
|
|
|
|
/* Derived from kernel/capability.c:sys_capget. */
|
|
rcu_read_lock();
|
|
cred = __task_cred(target);
|
|
*effective = cred->cap_effective;
|
|
*inheritable = cred->cap_inheritable;
|
|
*permitted = cred->cap_permitted;
|
|
rcu_read_unlock();
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Determine whether the inheritable capabilities are limited to the old
|
|
* permitted set. Returns 1 if they are limited, 0 if they are not.
|
|
*/
|
|
static inline int cap_inh_is_capped(void)
|
|
{
|
|
/* they are so limited unless the current task has the CAP_SETPCAP
|
|
* capability
|
|
*/
|
|
if (cap_capable(current_cred(), current_cred()->user_ns,
|
|
CAP_SETPCAP, CAP_OPT_NONE) == 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* cap_capset - Validate and apply proposed changes to current's capabilities
|
|
* @new: The proposed new credentials; alterations should be made here
|
|
* @old: The current task's current credentials
|
|
* @effective: A pointer to the proposed new effective capabilities set
|
|
* @inheritable: A pointer to the proposed new inheritable capabilities set
|
|
* @permitted: A pointer to the proposed new permitted capabilities set
|
|
*
|
|
* This function validates and applies a proposed mass change to the current
|
|
* process's capability sets. The changes are made to the proposed new
|
|
* credentials, and assuming no error, will be committed by the caller of LSM.
|
|
*/
|
|
int cap_capset(struct cred *new,
|
|
const struct cred *old,
|
|
const kernel_cap_t *effective,
|
|
const kernel_cap_t *inheritable,
|
|
const kernel_cap_t *permitted)
|
|
{
|
|
if (cap_inh_is_capped() &&
|
|
!cap_issubset(*inheritable,
|
|
cap_combine(old->cap_inheritable,
|
|
old->cap_permitted)))
|
|
/* incapable of using this inheritable set */
|
|
return -EPERM;
|
|
|
|
if (!cap_issubset(*inheritable,
|
|
cap_combine(old->cap_inheritable,
|
|
old->cap_bset)))
|
|
/* no new pI capabilities outside bounding set */
|
|
return -EPERM;
|
|
|
|
/* verify restrictions on target's new Permitted set */
|
|
if (!cap_issubset(*permitted, old->cap_permitted))
|
|
return -EPERM;
|
|
|
|
/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
|
|
if (!cap_issubset(*effective, *permitted))
|
|
return -EPERM;
|
|
|
|
new->cap_effective = *effective;
|
|
new->cap_inheritable = *inheritable;
|
|
new->cap_permitted = *permitted;
|
|
|
|
/*
|
|
* Mask off ambient bits that are no longer both permitted and
|
|
* inheritable.
|
|
*/
|
|
new->cap_ambient = cap_intersect(new->cap_ambient,
|
|
cap_intersect(*permitted,
|
|
*inheritable));
|
|
if (WARN_ON(!cap_ambient_invariant_ok(new)))
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cap_inode_need_killpriv - Determine if inode change affects privileges
|
|
* @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
|
|
*
|
|
* Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
|
|
* affects the security markings on that inode, and if it is, should
|
|
* inode_killpriv() be invoked or the change rejected.
|
|
*
|
|
* Returns 1 if security.capability has a value, meaning inode_killpriv()
|
|
* is required, 0 otherwise, meaning inode_killpriv() is not required.
|
|
*/
|
|
int cap_inode_need_killpriv(struct dentry *dentry)
|
|
{
|
|
struct inode *inode = d_backing_inode(dentry);
|
|
int error;
|
|
|
|
error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
|
|
return error > 0;
|
|
}
|
|
|
|
/**
|
|
* cap_inode_killpriv - Erase the security markings on an inode
|
|
* @dentry: The inode/dentry to alter
|
|
*
|
|
* Erase the privilege-enhancing security markings on an inode.
|
|
*
|
|
* Returns 0 if successful, -ve on error.
|
|
*/
|
|
int cap_inode_killpriv(struct dentry *dentry)
|
|
{
|
|
int error;
|
|
|
|
error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
|
|
if (error == -EOPNOTSUPP)
|
|
error = 0;
|
|
return error;
|
|
}
|
|
|
|
static bool rootid_owns_currentns(kuid_t kroot)
|
|
{
|
|
struct user_namespace *ns;
|
|
|
|
if (!uid_valid(kroot))
|
|
return false;
|
|
|
|
for (ns = current_user_ns(); ; ns = ns->parent) {
|
|
if (from_kuid(ns, kroot) == 0)
|
|
return true;
|
|
if (ns == &init_user_ns)
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static __u32 sansflags(__u32 m)
|
|
{
|
|
return m & ~VFS_CAP_FLAGS_EFFECTIVE;
|
|
}
|
|
|
|
static bool is_v2header(size_t size, const struct vfs_cap_data *cap)
|
|
{
|
|
if (size != XATTR_CAPS_SZ_2)
|
|
return false;
|
|
return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_2;
|
|
}
|
|
|
|
static bool is_v3header(size_t size, const struct vfs_cap_data *cap)
|
|
{
|
|
if (size != XATTR_CAPS_SZ_3)
|
|
return false;
|
|
return sansflags(le32_to_cpu(cap->magic_etc)) == VFS_CAP_REVISION_3;
|
|
}
|
|
|
|
/*
|
|
* getsecurity: We are called for security.* before any attempt to read the
|
|
* xattr from the inode itself.
|
|
*
|
|
* This gives us a chance to read the on-disk value and convert it. If we
|
|
* return -EOPNOTSUPP, then vfs_getxattr() will call the i_op handler.
|
|
*
|
|
* Note we are not called by vfs_getxattr_alloc(), but that is only called
|
|
* by the integrity subsystem, which really wants the unconverted values -
|
|
* so that's good.
|
|
*/
|
|
int cap_inode_getsecurity(struct inode *inode, const char *name, void **buffer,
|
|
bool alloc)
|
|
{
|
|
int size, ret;
|
|
kuid_t kroot;
|
|
uid_t root, mappedroot;
|
|
char *tmpbuf = NULL;
|
|
struct vfs_cap_data *cap;
|
|
struct vfs_ns_cap_data *nscap;
|
|
struct dentry *dentry;
|
|
struct user_namespace *fs_ns;
|
|
|
|
if (strcmp(name, "capability") != 0)
|
|
return -EOPNOTSUPP;
|
|
|
|
dentry = d_find_any_alias(inode);
|
|
if (!dentry)
|
|
return -EINVAL;
|
|
|
|
size = sizeof(struct vfs_ns_cap_data);
|
|
ret = (int) vfs_getxattr_alloc(dentry, XATTR_NAME_CAPS,
|
|
&tmpbuf, size, GFP_NOFS);
|
|
dput(dentry);
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
fs_ns = inode->i_sb->s_user_ns;
|
|
cap = (struct vfs_cap_data *) tmpbuf;
|
|
if (is_v2header((size_t) ret, cap)) {
|
|
/* If this is sizeof(vfs_cap_data) then we're ok with the
|
|
* on-disk value, so return that. */
|
|
if (alloc)
|
|
*buffer = tmpbuf;
|
|
else
|
|
kfree(tmpbuf);
|
|
return ret;
|
|
} else if (!is_v3header((size_t) ret, cap)) {
|
|
kfree(tmpbuf);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nscap = (struct vfs_ns_cap_data *) tmpbuf;
|
|
root = le32_to_cpu(nscap->rootid);
|
|
kroot = make_kuid(fs_ns, root);
|
|
|
|
/* If the root kuid maps to a valid uid in current ns, then return
|
|
* this as a nscap. */
|
|
mappedroot = from_kuid(current_user_ns(), kroot);
|
|
if (mappedroot != (uid_t)-1 && mappedroot != (uid_t)0) {
|
|
if (alloc) {
|
|
*buffer = tmpbuf;
|
|
nscap->rootid = cpu_to_le32(mappedroot);
|
|
} else
|
|
kfree(tmpbuf);
|
|
return size;
|
|
}
|
|
|
|
if (!rootid_owns_currentns(kroot)) {
|
|
kfree(tmpbuf);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
/* This comes from a parent namespace. Return as a v2 capability */
|
|
size = sizeof(struct vfs_cap_data);
|
|
if (alloc) {
|
|
*buffer = kmalloc(size, GFP_ATOMIC);
|
|
if (*buffer) {
|
|
struct vfs_cap_data *cap = *buffer;
|
|
__le32 nsmagic, magic;
|
|
magic = VFS_CAP_REVISION_2;
|
|
nsmagic = le32_to_cpu(nscap->magic_etc);
|
|
if (nsmagic & VFS_CAP_FLAGS_EFFECTIVE)
|
|
magic |= VFS_CAP_FLAGS_EFFECTIVE;
|
|
memcpy(&cap->data, &nscap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
|
|
cap->magic_etc = cpu_to_le32(magic);
|
|
} else {
|
|
size = -ENOMEM;
|
|
}
|
|
}
|
|
kfree(tmpbuf);
|
|
return size;
|
|
}
|
|
|
|
static kuid_t rootid_from_xattr(const void *value, size_t size,
|
|
struct user_namespace *task_ns)
|
|
{
|
|
const struct vfs_ns_cap_data *nscap = value;
|
|
uid_t rootid = 0;
|
|
|
|
if (size == XATTR_CAPS_SZ_3)
|
|
rootid = le32_to_cpu(nscap->rootid);
|
|
|
|
return make_kuid(task_ns, rootid);
|
|
}
|
|
|
|
static bool validheader(size_t size, const struct vfs_cap_data *cap)
|
|
{
|
|
return is_v2header(size, cap) || is_v3header(size, cap);
|
|
}
|
|
|
|
/*
|
|
* User requested a write of security.capability. If needed, update the
|
|
* xattr to change from v2 to v3, or to fixup the v3 rootid.
|
|
*
|
|
* If all is ok, we return the new size, on error return < 0.
|
|
*/
|
|
int cap_convert_nscap(struct dentry *dentry, void **ivalue, size_t size)
|
|
{
|
|
struct vfs_ns_cap_data *nscap;
|
|
uid_t nsrootid;
|
|
const struct vfs_cap_data *cap = *ivalue;
|
|
__u32 magic, nsmagic;
|
|
struct inode *inode = d_backing_inode(dentry);
|
|
struct user_namespace *task_ns = current_user_ns(),
|
|
*fs_ns = inode->i_sb->s_user_ns;
|
|
kuid_t rootid;
|
|
size_t newsize;
|
|
|
|
if (!*ivalue)
|
|
return -EINVAL;
|
|
if (!validheader(size, cap))
|
|
return -EINVAL;
|
|
if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
|
|
return -EPERM;
|
|
if (size == XATTR_CAPS_SZ_2)
|
|
if (ns_capable(inode->i_sb->s_user_ns, CAP_SETFCAP))
|
|
/* user is privileged, just write the v2 */
|
|
return size;
|
|
|
|
rootid = rootid_from_xattr(*ivalue, size, task_ns);
|
|
if (!uid_valid(rootid))
|
|
return -EINVAL;
|
|
|
|
nsrootid = from_kuid(fs_ns, rootid);
|
|
if (nsrootid == -1)
|
|
return -EINVAL;
|
|
|
|
newsize = sizeof(struct vfs_ns_cap_data);
|
|
nscap = kmalloc(newsize, GFP_ATOMIC);
|
|
if (!nscap)
|
|
return -ENOMEM;
|
|
nscap->rootid = cpu_to_le32(nsrootid);
|
|
nsmagic = VFS_CAP_REVISION_3;
|
|
magic = le32_to_cpu(cap->magic_etc);
|
|
if (magic & VFS_CAP_FLAGS_EFFECTIVE)
|
|
nsmagic |= VFS_CAP_FLAGS_EFFECTIVE;
|
|
nscap->magic_etc = cpu_to_le32(nsmagic);
|
|
memcpy(&nscap->data, &cap->data, sizeof(__le32) * 2 * VFS_CAP_U32);
|
|
|
|
kvfree(*ivalue);
|
|
*ivalue = nscap;
|
|
return newsize;
|
|
}
|
|
|
|
/*
|
|
* Calculate the new process capability sets from the capability sets attached
|
|
* to a file.
|
|
*/
|
|
static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
|
|
struct linux_binprm *bprm,
|
|
bool *effective,
|
|
bool *has_fcap)
|
|
{
|
|
struct cred *new = bprm->cred;
|
|
unsigned i;
|
|
int ret = 0;
|
|
|
|
if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
|
|
*effective = true;
|
|
|
|
if (caps->magic_etc & VFS_CAP_REVISION_MASK)
|
|
*has_fcap = true;
|
|
|
|
CAP_FOR_EACH_U32(i) {
|
|
__u32 permitted = caps->permitted.cap[i];
|
|
__u32 inheritable = caps->inheritable.cap[i];
|
|
|
|
/*
|
|
* pP' = (X & fP) | (pI & fI)
|
|
* The addition of pA' is handled later.
|
|
*/
|
|
new->cap_permitted.cap[i] =
|
|
(new->cap_bset.cap[i] & permitted) |
|
|
(new->cap_inheritable.cap[i] & inheritable);
|
|
|
|
if (permitted & ~new->cap_permitted.cap[i])
|
|
/* insufficient to execute correctly */
|
|
ret = -EPERM;
|
|
}
|
|
|
|
/*
|
|
* For legacy apps, with no internal support for recognizing they
|
|
* do not have enough capabilities, we return an error if they are
|
|
* missing some "forced" (aka file-permitted) capabilities.
|
|
*/
|
|
return *effective ? ret : 0;
|
|
}
|
|
|
|
/*
|
|
* Extract the on-exec-apply capability sets for an executable file.
|
|
*/
|
|
int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
|
|
{
|
|
struct inode *inode = d_backing_inode(dentry);
|
|
__u32 magic_etc;
|
|
unsigned tocopy, i;
|
|
int size;
|
|
struct vfs_ns_cap_data data, *nscaps = &data;
|
|
struct vfs_cap_data *caps = (struct vfs_cap_data *) &data;
|
|
kuid_t rootkuid;
|
|
struct user_namespace *fs_ns;
|
|
|
|
memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
|
|
|
|
if (!inode)
|
|
return -ENODATA;
|
|
|
|
fs_ns = inode->i_sb->s_user_ns;
|
|
size = __vfs_getxattr((struct dentry *)dentry, inode,
|
|
XATTR_NAME_CAPS, &data, XATTR_CAPS_SZ);
|
|
if (size == -ENODATA || size == -EOPNOTSUPP)
|
|
/* no data, that's ok */
|
|
return -ENODATA;
|
|
|
|
if (size < 0)
|
|
return size;
|
|
|
|
if (size < sizeof(magic_etc))
|
|
return -EINVAL;
|
|
|
|
cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps->magic_etc);
|
|
|
|
rootkuid = make_kuid(fs_ns, 0);
|
|
switch (magic_etc & VFS_CAP_REVISION_MASK) {
|
|
case VFS_CAP_REVISION_1:
|
|
if (size != XATTR_CAPS_SZ_1)
|
|
return -EINVAL;
|
|
tocopy = VFS_CAP_U32_1;
|
|
break;
|
|
case VFS_CAP_REVISION_2:
|
|
if (size != XATTR_CAPS_SZ_2)
|
|
return -EINVAL;
|
|
tocopy = VFS_CAP_U32_2;
|
|
break;
|
|
case VFS_CAP_REVISION_3:
|
|
if (size != XATTR_CAPS_SZ_3)
|
|
return -EINVAL;
|
|
tocopy = VFS_CAP_U32_3;
|
|
rootkuid = make_kuid(fs_ns, le32_to_cpu(nscaps->rootid));
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
/* Limit the caps to the mounter of the filesystem
|
|
* or the more limited uid specified in the xattr.
|
|
*/
|
|
if (!rootid_owns_currentns(rootkuid))
|
|
return -ENODATA;
|
|
|
|
CAP_FOR_EACH_U32(i) {
|
|
if (i >= tocopy)
|
|
break;
|
|
cpu_caps->permitted.cap[i] = le32_to_cpu(caps->data[i].permitted);
|
|
cpu_caps->inheritable.cap[i] = le32_to_cpu(caps->data[i].inheritable);
|
|
}
|
|
|
|
cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
|
|
cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
|
|
|
|
cpu_caps->rootid = rootkuid;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Attempt to get the on-exec apply capability sets for an executable file from
|
|
* its xattrs and, if present, apply them to the proposed credentials being
|
|
* constructed by execve().
|
|
*/
|
|
static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_fcap)
|
|
{
|
|
int rc = 0;
|
|
struct cpu_vfs_cap_data vcaps;
|
|
|
|
cap_clear(bprm->cred->cap_permitted);
|
|
|
|
if (!file_caps_enabled)
|
|
return 0;
|
|
|
|
if (!mnt_may_suid(bprm->file->f_path.mnt))
|
|
return 0;
|
|
|
|
/*
|
|
* This check is redundant with mnt_may_suid() but is kept to make
|
|
* explicit that capability bits are limited to s_user_ns and its
|
|
* descendants.
|
|
*/
|
|
if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
|
|
return 0;
|
|
|
|
rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
|
|
if (rc < 0) {
|
|
if (rc == -EINVAL)
|
|
printk(KERN_NOTICE "Invalid argument reading file caps for %s\n",
|
|
bprm->filename);
|
|
else if (rc == -ENODATA)
|
|
rc = 0;
|
|
goto out;
|
|
}
|
|
|
|
rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_fcap);
|
|
|
|
out:
|
|
if (rc)
|
|
cap_clear(bprm->cred->cap_permitted);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static inline bool root_privileged(void) { return !issecure(SECURE_NOROOT); }
|
|
|
|
static inline bool __is_real(kuid_t uid, struct cred *cred)
|
|
{ return uid_eq(cred->uid, uid); }
|
|
|
|
static inline bool __is_eff(kuid_t uid, struct cred *cred)
|
|
{ return uid_eq(cred->euid, uid); }
|
|
|
|
static inline bool __is_suid(kuid_t uid, struct cred *cred)
|
|
{ return !__is_real(uid, cred) && __is_eff(uid, cred); }
|
|
|
|
/*
|
|
* handle_privileged_root - Handle case of privileged root
|
|
* @bprm: The execution parameters, including the proposed creds
|
|
* @has_fcap: Are any file capabilities set?
|
|
* @effective: Do we have effective root privilege?
|
|
* @root_uid: This namespace' root UID WRT initial USER namespace
|
|
*
|
|
* Handle the case where root is privileged and hasn't been neutered by
|
|
* SECURE_NOROOT. If file capabilities are set, they won't be combined with
|
|
* set UID root and nothing is changed. If we are root, cap_permitted is
|
|
* updated. If we have become set UID root, the effective bit is set.
|
|
*/
|
|
static void handle_privileged_root(struct linux_binprm *bprm, bool has_fcap,
|
|
bool *effective, kuid_t root_uid)
|
|
{
|
|
const struct cred *old = current_cred();
|
|
struct cred *new = bprm->cred;
|
|
|
|
if (!root_privileged())
|
|
return;
|
|
/*
|
|
* If the legacy file capability is set, then don't set privs
|
|
* for a setuid root binary run by a non-root user. Do set it
|
|
* for a root user just to cause least surprise to an admin.
|
|
*/
|
|
if (has_fcap && __is_suid(root_uid, new)) {
|
|
warn_setuid_and_fcaps_mixed(bprm->filename);
|
|
return;
|
|
}
|
|
/*
|
|
* To support inheritance of root-permissions and suid-root
|
|
* executables under compatibility mode, we override the
|
|
* capability sets for the file.
|
|
*/
|
|
if (__is_eff(root_uid, new) || __is_real(root_uid, new)) {
|
|
/* pP' = (cap_bset & ~0) | (pI & ~0) */
|
|
new->cap_permitted = cap_combine(old->cap_bset,
|
|
old->cap_inheritable);
|
|
}
|
|
/*
|
|
* If only the real uid is 0, we do not set the effective bit.
|
|
*/
|
|
if (__is_eff(root_uid, new))
|
|
*effective = true;
|
|
}
|
|
|
|
#define __cap_gained(field, target, source) \
|
|
!cap_issubset(target->cap_##field, source->cap_##field)
|
|
#define __cap_grew(target, source, cred) \
|
|
!cap_issubset(cred->cap_##target, cred->cap_##source)
|
|
#define __cap_full(field, cred) \
|
|
cap_issubset(CAP_FULL_SET, cred->cap_##field)
|
|
|
|
static inline bool __is_setuid(struct cred *new, const struct cred *old)
|
|
{ return !uid_eq(new->euid, old->uid); }
|
|
|
|
static inline bool __is_setgid(struct cred *new, const struct cred *old)
|
|
{ return !gid_eq(new->egid, old->gid); }
|
|
|
|
/*
|
|
* 1) Audit candidate if current->cap_effective is set
|
|
*
|
|
* We do not bother to audit if 3 things are true:
|
|
* 1) cap_effective has all caps
|
|
* 2) we became root *OR* are were already root
|
|
* 3) root is supposed to have all caps (SECURE_NOROOT)
|
|
* Since this is just a normal root execing a process.
|
|
*
|
|
* Number 1 above might fail if you don't have a full bset, but I think
|
|
* that is interesting information to audit.
|
|
*
|
|
* A number of other conditions require logging:
|
|
* 2) something prevented setuid root getting all caps
|
|
* 3) non-setuid root gets fcaps
|
|
* 4) non-setuid root gets ambient
|
|
*/
|
|
static inline bool nonroot_raised_pE(struct cred *new, const struct cred *old,
|
|
kuid_t root, bool has_fcap)
|
|
{
|
|
bool ret = false;
|
|
|
|
if ((__cap_grew(effective, ambient, new) &&
|
|
!(__cap_full(effective, new) &&
|
|
(__is_eff(root, new) || __is_real(root, new)) &&
|
|
root_privileged())) ||
|
|
(root_privileged() &&
|
|
__is_suid(root, new) &&
|
|
!__cap_full(effective, new)) ||
|
|
(!__is_setuid(new, old) &&
|
|
((has_fcap &&
|
|
__cap_gained(permitted, new, old)) ||
|
|
__cap_gained(ambient, new, old))))
|
|
|
|
ret = true;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cap_bprm_set_creds - Set up the proposed credentials for execve().
|
|
* @bprm: The execution parameters, including the proposed creds
|
|
*
|
|
* Set up the proposed credentials for a new execution context being
|
|
* constructed by execve(). The proposed creds in @bprm->cred is altered,
|
|
* which won't take effect immediately. Returns 0 if successful, -ve on error.
|
|
*/
|
|
int cap_bprm_set_creds(struct linux_binprm *bprm)
|
|
{
|
|
const struct cred *old = current_cred();
|
|
struct cred *new = bprm->cred;
|
|
bool effective = false, has_fcap = false, is_setid;
|
|
int ret;
|
|
kuid_t root_uid;
|
|
|
|
if (WARN_ON(!cap_ambient_invariant_ok(old)))
|
|
return -EPERM;
|
|
|
|
ret = get_file_caps(bprm, &effective, &has_fcap);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
root_uid = make_kuid(new->user_ns, 0);
|
|
|
|
handle_privileged_root(bprm, has_fcap, &effective, root_uid);
|
|
|
|
/* if we have fs caps, clear dangerous personality flags */
|
|
if (__cap_gained(permitted, new, old))
|
|
bprm->per_clear |= PER_CLEAR_ON_SETID;
|
|
|
|
/* Don't let someone trace a set[ug]id/setpcap binary with the revised
|
|
* credentials unless they have the appropriate permit.
|
|
*
|
|
* In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
|
|
*/
|
|
is_setid = __is_setuid(new, old) || __is_setgid(new, old);
|
|
|
|
if ((is_setid || __cap_gained(permitted, new, old)) &&
|
|
((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
|
|
!ptracer_capable(current, new->user_ns))) {
|
|
/* downgrade; they get no more than they had, and maybe less */
|
|
if (!ns_capable(new->user_ns, CAP_SETUID) ||
|
|
(bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
|
|
new->euid = new->uid;
|
|
new->egid = new->gid;
|
|
}
|
|
new->cap_permitted = cap_intersect(new->cap_permitted,
|
|
old->cap_permitted);
|
|
}
|
|
|
|
new->suid = new->fsuid = new->euid;
|
|
new->sgid = new->fsgid = new->egid;
|
|
|
|
/* File caps or setid cancels ambient. */
|
|
if (has_fcap || is_setid)
|
|
cap_clear(new->cap_ambient);
|
|
|
|
/*
|
|
* Now that we've computed pA', update pP' to give:
|
|
* pP' = (X & fP) | (pI & fI) | pA'
|
|
*/
|
|
new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);
|
|
|
|
/*
|
|
* Set pE' = (fE ? pP' : pA'). Because pA' is zero if fE is set,
|
|
* this is the same as pE' = (fE ? pP' : 0) | pA'.
|
|
*/
|
|
if (effective)
|
|
new->cap_effective = new->cap_permitted;
|
|
else
|
|
new->cap_effective = new->cap_ambient;
|
|
|
|
if (WARN_ON(!cap_ambient_invariant_ok(new)))
|
|
return -EPERM;
|
|
|
|
if (nonroot_raised_pE(new, old, root_uid, has_fcap)) {
|
|
ret = audit_log_bprm_fcaps(bprm, new, old);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
|
|
|
|
if (WARN_ON(!cap_ambient_invariant_ok(new)))
|
|
return -EPERM;
|
|
|
|
/* Check for privilege-elevated exec. */
|
|
bprm->cap_elevated = 0;
|
|
if (is_setid ||
|
|
(!__is_real(root_uid, new) &&
|
|
(effective ||
|
|
__cap_grew(permitted, ambient, new))))
|
|
bprm->cap_elevated = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cap_inode_setxattr - Determine whether an xattr may be altered
|
|
* @dentry: The inode/dentry being altered
|
|
* @name: The name of the xattr to be changed
|
|
* @value: The value that the xattr will be changed to
|
|
* @size: The size of value
|
|
* @flags: The replacement flag
|
|
*
|
|
* Determine whether an xattr may be altered or set on an inode, returning 0 if
|
|
* permission is granted, -ve if denied.
|
|
*
|
|
* This is used to make sure security xattrs don't get updated or set by those
|
|
* who aren't privileged to do so.
|
|
*/
|
|
int cap_inode_setxattr(struct dentry *dentry, const char *name,
|
|
const void *value, size_t size, int flags)
|
|
{
|
|
struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
|
|
|
|
/* Ignore non-security xattrs */
|
|
if (strncmp(name, XATTR_SECURITY_PREFIX,
|
|
XATTR_SECURITY_PREFIX_LEN) != 0)
|
|
return 0;
|
|
|
|
/*
|
|
* For XATTR_NAME_CAPS the check will be done in
|
|
* cap_convert_nscap(), called by setxattr()
|
|
*/
|
|
if (strcmp(name, XATTR_NAME_CAPS) == 0)
|
|
return 0;
|
|
|
|
if (!ns_capable(user_ns, CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* cap_inode_removexattr - Determine whether an xattr may be removed
|
|
* @dentry: The inode/dentry being altered
|
|
* @name: The name of the xattr to be changed
|
|
*
|
|
* Determine whether an xattr may be removed from an inode, returning 0 if
|
|
* permission is granted, -ve if denied.
|
|
*
|
|
* This is used to make sure security xattrs don't get removed by those who
|
|
* aren't privileged to remove them.
|
|
*/
|
|
int cap_inode_removexattr(struct dentry *dentry, const char *name)
|
|
{
|
|
struct user_namespace *user_ns = dentry->d_sb->s_user_ns;
|
|
|
|
/* Ignore non-security xattrs */
|
|
if (strncmp(name, XATTR_SECURITY_PREFIX,
|
|
XATTR_SECURITY_PREFIX_LEN) != 0)
|
|
return 0;
|
|
|
|
if (strcmp(name, XATTR_NAME_CAPS) == 0) {
|
|
/* security.capability gets namespaced */
|
|
struct inode *inode = d_backing_inode(dentry);
|
|
if (!inode)
|
|
return -EINVAL;
|
|
if (!capable_wrt_inode_uidgid(inode, CAP_SETFCAP))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
if (!ns_capable(user_ns, CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* cap_emulate_setxuid() fixes the effective / permitted capabilities of
|
|
* a process after a call to setuid, setreuid, or setresuid.
|
|
*
|
|
* 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
|
|
* {r,e,s}uid != 0, the permitted and effective capabilities are
|
|
* cleared.
|
|
*
|
|
* 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
|
|
* capabilities of the process are cleared.
|
|
*
|
|
* 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
|
|
* capabilities are set to the permitted capabilities.
|
|
*
|
|
* fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
|
|
* never happen.
|
|
*
|
|
* -astor
|
|
*
|
|
* cevans - New behaviour, Oct '99
|
|
* A process may, via prctl(), elect to keep its capabilities when it
|
|
* calls setuid() and switches away from uid==0. Both permitted and
|
|
* effective sets will be retained.
|
|
* Without this change, it was impossible for a daemon to drop only some
|
|
* of its privilege. The call to setuid(!=0) would drop all privileges!
|
|
* Keeping uid 0 is not an option because uid 0 owns too many vital
|
|
* files..
|
|
* Thanks to Olaf Kirch and Peter Benie for spotting this.
|
|
*/
|
|
static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
|
|
{
|
|
kuid_t root_uid = make_kuid(old->user_ns, 0);
|
|
|
|
if ((uid_eq(old->uid, root_uid) ||
|
|
uid_eq(old->euid, root_uid) ||
|
|
uid_eq(old->suid, root_uid)) &&
|
|
(!uid_eq(new->uid, root_uid) &&
|
|
!uid_eq(new->euid, root_uid) &&
|
|
!uid_eq(new->suid, root_uid))) {
|
|
if (!issecure(SECURE_KEEP_CAPS)) {
|
|
cap_clear(new->cap_permitted);
|
|
cap_clear(new->cap_effective);
|
|
}
|
|
|
|
/*
|
|
* Pre-ambient programs expect setresuid to nonroot followed
|
|
* by exec to drop capabilities. We should make sure that
|
|
* this remains the case.
|
|
*/
|
|
cap_clear(new->cap_ambient);
|
|
}
|
|
if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
|
|
cap_clear(new->cap_effective);
|
|
if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
|
|
new->cap_effective = new->cap_permitted;
|
|
}
|
|
|
|
/**
|
|
* cap_task_fix_setuid - Fix up the results of setuid() call
|
|
* @new: The proposed credentials
|
|
* @old: The current task's current credentials
|
|
* @flags: Indications of what has changed
|
|
*
|
|
* Fix up the results of setuid() call before the credential changes are
|
|
* actually applied, returning 0 to grant the changes, -ve to deny them.
|
|
*/
|
|
int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
|
|
{
|
|
switch (flags) {
|
|
case LSM_SETID_RE:
|
|
case LSM_SETID_ID:
|
|
case LSM_SETID_RES:
|
|
/* juggle the capabilities to follow [RES]UID changes unless
|
|
* otherwise suppressed */
|
|
if (!issecure(SECURE_NO_SETUID_FIXUP))
|
|
cap_emulate_setxuid(new, old);
|
|
break;
|
|
|
|
case LSM_SETID_FS:
|
|
/* juggle the capabilties to follow FSUID changes, unless
|
|
* otherwise suppressed
|
|
*
|
|
* FIXME - is fsuser used for all CAP_FS_MASK capabilities?
|
|
* if not, we might be a bit too harsh here.
|
|
*/
|
|
if (!issecure(SECURE_NO_SETUID_FIXUP)) {
|
|
kuid_t root_uid = make_kuid(old->user_ns, 0);
|
|
if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
|
|
new->cap_effective =
|
|
cap_drop_fs_set(new->cap_effective);
|
|
|
|
if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
|
|
new->cap_effective =
|
|
cap_raise_fs_set(new->cap_effective,
|
|
new->cap_permitted);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Rationale: code calling task_setscheduler, task_setioprio, and
|
|
* task_setnice, assumes that
|
|
* . if capable(cap_sys_nice), then those actions should be allowed
|
|
* . if not capable(cap_sys_nice), but acting on your own processes,
|
|
* then those actions should be allowed
|
|
* This is insufficient now since you can call code without suid, but
|
|
* yet with increased caps.
|
|
* So we check for increased caps on the target process.
|
|
*/
|
|
static int cap_safe_nice(struct task_struct *p)
|
|
{
|
|
int is_subset, ret = 0;
|
|
|
|
rcu_read_lock();
|
|
is_subset = cap_issubset(__task_cred(p)->cap_permitted,
|
|
current_cred()->cap_permitted);
|
|
if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
|
|
ret = -EPERM;
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* cap_task_setscheduler - Detemine if scheduler policy change is permitted
|
|
* @p: The task to affect
|
|
*
|
|
* Detemine if the requested scheduler policy change is permitted for the
|
|
* specified task, returning 0 if permission is granted, -ve if denied.
|
|
*/
|
|
int cap_task_setscheduler(struct task_struct *p)
|
|
{
|
|
return cap_safe_nice(p);
|
|
}
|
|
|
|
/**
|
|
* cap_task_ioprio - Detemine if I/O priority change is permitted
|
|
* @p: The task to affect
|
|
* @ioprio: The I/O priority to set
|
|
*
|
|
* Detemine if the requested I/O priority change is permitted for the specified
|
|
* task, returning 0 if permission is granted, -ve if denied.
|
|
*/
|
|
int cap_task_setioprio(struct task_struct *p, int ioprio)
|
|
{
|
|
return cap_safe_nice(p);
|
|
}
|
|
|
|
/**
|
|
* cap_task_ioprio - Detemine if task priority change is permitted
|
|
* @p: The task to affect
|
|
* @nice: The nice value to set
|
|
*
|
|
* Detemine if the requested task priority change is permitted for the
|
|
* specified task, returning 0 if permission is granted, -ve if denied.
|
|
*/
|
|
int cap_task_setnice(struct task_struct *p, int nice)
|
|
{
|
|
return cap_safe_nice(p);
|
|
}
|
|
|
|
/*
|
|
* Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
|
|
* the current task's bounding set. Returns 0 on success, -ve on error.
|
|
*/
|
|
static int cap_prctl_drop(unsigned long cap)
|
|
{
|
|
struct cred *new;
|
|
|
|
if (!ns_capable(current_user_ns(), CAP_SETPCAP))
|
|
return -EPERM;
|
|
if (!cap_valid(cap))
|
|
return -EINVAL;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
cap_lower(new->cap_bset, cap);
|
|
return commit_creds(new);
|
|
}
|
|
|
|
/**
|
|
* cap_task_prctl - Implement process control functions for this security module
|
|
* @option: The process control function requested
|
|
* @arg2, @arg3, @arg4, @arg5: The argument data for this function
|
|
*
|
|
* Allow process control functions (sys_prctl()) to alter capabilities; may
|
|
* also deny access to other functions not otherwise implemented here.
|
|
*
|
|
* Returns 0 or +ve on success, -ENOSYS if this function is not implemented
|
|
* here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
|
|
* modules will consider performing the function.
|
|
*/
|
|
int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
|
|
unsigned long arg4, unsigned long arg5)
|
|
{
|
|
const struct cred *old = current_cred();
|
|
struct cred *new;
|
|
|
|
switch (option) {
|
|
case PR_CAPBSET_READ:
|
|
if (!cap_valid(arg2))
|
|
return -EINVAL;
|
|
return !!cap_raised(old->cap_bset, arg2);
|
|
|
|
case PR_CAPBSET_DROP:
|
|
return cap_prctl_drop(arg2);
|
|
|
|
/*
|
|
* The next four prctl's remain to assist with transitioning a
|
|
* system from legacy UID=0 based privilege (when filesystem
|
|
* capabilities are not in use) to a system using filesystem
|
|
* capabilities only - as the POSIX.1e draft intended.
|
|
*
|
|
* Note:
|
|
*
|
|
* PR_SET_SECUREBITS =
|
|
* issecure_mask(SECURE_KEEP_CAPS_LOCKED)
|
|
* | issecure_mask(SECURE_NOROOT)
|
|
* | issecure_mask(SECURE_NOROOT_LOCKED)
|
|
* | issecure_mask(SECURE_NO_SETUID_FIXUP)
|
|
* | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
|
|
*
|
|
* will ensure that the current process and all of its
|
|
* children will be locked into a pure
|
|
* capability-based-privilege environment.
|
|
*/
|
|
case PR_SET_SECUREBITS:
|
|
if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
|
|
& (old->securebits ^ arg2)) /*[1]*/
|
|
|| ((old->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
|
|
|| (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
|
|
|| (cap_capable(current_cred(),
|
|
current_cred()->user_ns,
|
|
CAP_SETPCAP,
|
|
CAP_OPT_NONE) != 0) /*[4]*/
|
|
/*
|
|
* [1] no changing of bits that are locked
|
|
* [2] no unlocking of locks
|
|
* [3] no setting of unsupported bits
|
|
* [4] doing anything requires privilege (go read about
|
|
* the "sendmail capabilities bug")
|
|
*/
|
|
)
|
|
/* cannot change a locked bit */
|
|
return -EPERM;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
new->securebits = arg2;
|
|
return commit_creds(new);
|
|
|
|
case PR_GET_SECUREBITS:
|
|
return old->securebits;
|
|
|
|
case PR_GET_KEEPCAPS:
|
|
return !!issecure(SECURE_KEEP_CAPS);
|
|
|
|
case PR_SET_KEEPCAPS:
|
|
if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
|
|
return -EINVAL;
|
|
if (issecure(SECURE_KEEP_CAPS_LOCKED))
|
|
return -EPERM;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
if (arg2)
|
|
new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
|
|
else
|
|
new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
|
|
return commit_creds(new);
|
|
|
|
case PR_CAP_AMBIENT:
|
|
if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
|
|
if (arg3 | arg4 | arg5)
|
|
return -EINVAL;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
cap_clear(new->cap_ambient);
|
|
return commit_creds(new);
|
|
}
|
|
|
|
if (((!cap_valid(arg3)) | arg4 | arg5))
|
|
return -EINVAL;
|
|
|
|
if (arg2 == PR_CAP_AMBIENT_IS_SET) {
|
|
return !!cap_raised(current_cred()->cap_ambient, arg3);
|
|
} else if (arg2 != PR_CAP_AMBIENT_RAISE &&
|
|
arg2 != PR_CAP_AMBIENT_LOWER) {
|
|
return -EINVAL;
|
|
} else {
|
|
if (arg2 == PR_CAP_AMBIENT_RAISE &&
|
|
(!cap_raised(current_cred()->cap_permitted, arg3) ||
|
|
!cap_raised(current_cred()->cap_inheritable,
|
|
arg3) ||
|
|
issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
|
|
return -EPERM;
|
|
|
|
new = prepare_creds();
|
|
if (!new)
|
|
return -ENOMEM;
|
|
if (arg2 == PR_CAP_AMBIENT_RAISE)
|
|
cap_raise(new->cap_ambient, arg3);
|
|
else
|
|
cap_lower(new->cap_ambient, arg3);
|
|
return commit_creds(new);
|
|
}
|
|
|
|
default:
|
|
/* No functionality available - continue with default */
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
|
|
* @mm: The VM space in which the new mapping is to be made
|
|
* @pages: The size of the mapping
|
|
*
|
|
* Determine whether the allocation of a new virtual mapping by the current
|
|
* task is permitted, returning 1 if permission is granted, 0 if not.
|
|
*/
|
|
int cap_vm_enough_memory(struct mm_struct *mm, long pages)
|
|
{
|
|
int cap_sys_admin = 0;
|
|
|
|
if (cap_capable(current_cred(), &init_user_ns,
|
|
CAP_SYS_ADMIN, CAP_OPT_NOAUDIT) == 0)
|
|
cap_sys_admin = 1;
|
|
|
|
return cap_sys_admin;
|
|
}
|
|
|
|
/*
|
|
* cap_mmap_addr - check if able to map given addr
|
|
* @addr: address attempting to be mapped
|
|
*
|
|
* If the process is attempting to map memory below dac_mmap_min_addr they need
|
|
* CAP_SYS_RAWIO. The other parameters to this function are unused by the
|
|
* capability security module. Returns 0 if this mapping should be allowed
|
|
* -EPERM if not.
|
|
*/
|
|
int cap_mmap_addr(unsigned long addr)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (addr < dac_mmap_min_addr) {
|
|
ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
|
|
CAP_OPT_NONE);
|
|
/* set PF_SUPERPRIV if it turns out we allow the low mmap */
|
|
if (ret == 0)
|
|
current->flags |= PF_SUPERPRIV;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int cap_mmap_file(struct file *file, unsigned long reqprot,
|
|
unsigned long prot, unsigned long flags)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_SECURITY
|
|
|
|
static struct security_hook_list capability_hooks[] __lsm_ro_after_init = {
|
|
LSM_HOOK_INIT(capable, cap_capable),
|
|
LSM_HOOK_INIT(settime, cap_settime),
|
|
LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
|
|
LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
|
|
LSM_HOOK_INIT(capget, cap_capget),
|
|
LSM_HOOK_INIT(capset, cap_capset),
|
|
LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
|
|
LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
|
|
LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
|
|
LSM_HOOK_INIT(inode_getsecurity, cap_inode_getsecurity),
|
|
LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
|
|
LSM_HOOK_INIT(mmap_file, cap_mmap_file),
|
|
LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
|
|
LSM_HOOK_INIT(task_prctl, cap_task_prctl),
|
|
LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
|
|
LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
|
|
LSM_HOOK_INIT(task_setnice, cap_task_setnice),
|
|
LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
|
|
};
|
|
|
|
static int __init capability_init(void)
|
|
{
|
|
security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
|
|
"capability");
|
|
return 0;
|
|
}
|
|
|
|
DEFINE_LSM(capability) = {
|
|
.name = "capability",
|
|
.order = LSM_ORDER_FIRST,
|
|
.init = capability_init,
|
|
};
|
|
|
|
#endif /* CONFIG_SECURITY */
|