mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 10:37:51 +07:00
6b368cd4a4
This moves all new code including new page migration helper behind kernel Kconfig option so that there is no codee bloat for arch or user that do not want to use HMM or any of its associated features. arm allyesconfig (without all the patchset, then with and this patch): text data bss dec hex filename 83721896 46511131 27582964 157815991 96814b7 ../without/vmlinux 83722364 46511131 27582964 157816459 968168b vmlinux [jglisse@redhat.com: struct hmm is only use by HMM mirror functionality] Link: http://lkml.kernel.org/r/20170825213133.27286-1-jglisse@redhat.com [sfr@canb.auug.org.au: fix build (arm multi_v7_defconfig)] Link: http://lkml.kernel.org/r/20170828181849.323ab81b@canb.auug.org.au Link: http://lkml.kernel.org/r/20170818032858.7447-1-jglisse@redhat.com Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
214 lines
7.1 KiB
C
214 lines
7.1 KiB
C
#ifndef _LINUX_MEMREMAP_H_
|
|
#define _LINUX_MEMREMAP_H_
|
|
#include <linux/mm.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/percpu-refcount.h>
|
|
|
|
#include <asm/pgtable.h>
|
|
|
|
struct resource;
|
|
struct device;
|
|
|
|
/**
|
|
* struct vmem_altmap - pre-allocated storage for vmemmap_populate
|
|
* @base_pfn: base of the entire dev_pagemap mapping
|
|
* @reserve: pages mapped, but reserved for driver use (relative to @base)
|
|
* @free: free pages set aside in the mapping for memmap storage
|
|
* @align: pages reserved to meet allocation alignments
|
|
* @alloc: track pages consumed, private to vmemmap_populate()
|
|
*/
|
|
struct vmem_altmap {
|
|
const unsigned long base_pfn;
|
|
const unsigned long reserve;
|
|
unsigned long free;
|
|
unsigned long align;
|
|
unsigned long alloc;
|
|
};
|
|
|
|
unsigned long vmem_altmap_offset(struct vmem_altmap *altmap);
|
|
void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns);
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
struct vmem_altmap *to_vmem_altmap(unsigned long memmap_start);
|
|
#else
|
|
static inline struct vmem_altmap *to_vmem_altmap(unsigned long memmap_start)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Specialize ZONE_DEVICE memory into multiple types each having differents
|
|
* usage.
|
|
*
|
|
* MEMORY_DEVICE_HOST:
|
|
* Persistent device memory (pmem): struct page might be allocated in different
|
|
* memory and architecture might want to perform special actions. It is similar
|
|
* to regular memory, in that the CPU can access it transparently. However,
|
|
* it is likely to have different bandwidth and latency than regular memory.
|
|
* See Documentation/nvdimm/nvdimm.txt for more information.
|
|
*
|
|
* MEMORY_DEVICE_PRIVATE:
|
|
* Device memory that is not directly addressable by the CPU: CPU can neither
|
|
* read nor write private memory. In this case, we do still have struct pages
|
|
* backing the device memory. Doing so simplifies the implementation, but it is
|
|
* important to remember that there are certain points at which the struct page
|
|
* must be treated as an opaque object, rather than a "normal" struct page.
|
|
*
|
|
* A more complete discussion of unaddressable memory may be found in
|
|
* include/linux/hmm.h and Documentation/vm/hmm.txt.
|
|
*
|
|
* MEMORY_DEVICE_PUBLIC:
|
|
* Device memory that is cache coherent from device and CPU point of view. This
|
|
* is use on platform that have an advance system bus (like CAPI or CCIX). A
|
|
* driver can hotplug the device memory using ZONE_DEVICE and with that memory
|
|
* type. Any page of a process can be migrated to such memory. However no one
|
|
* should be allow to pin such memory so that it can always be evicted.
|
|
*/
|
|
enum memory_type {
|
|
MEMORY_DEVICE_HOST = 0,
|
|
MEMORY_DEVICE_PRIVATE,
|
|
MEMORY_DEVICE_PUBLIC,
|
|
};
|
|
|
|
/*
|
|
* For MEMORY_DEVICE_PRIVATE we use ZONE_DEVICE and extend it with two
|
|
* callbacks:
|
|
* page_fault()
|
|
* page_free()
|
|
*
|
|
* Additional notes about MEMORY_DEVICE_PRIVATE may be found in
|
|
* include/linux/hmm.h and Documentation/vm/hmm.txt. There is also a brief
|
|
* explanation in include/linux/memory_hotplug.h.
|
|
*
|
|
* The page_fault() callback must migrate page back, from device memory to
|
|
* system memory, so that the CPU can access it. This might fail for various
|
|
* reasons (device issues, device have been unplugged, ...). When such error
|
|
* conditions happen, the page_fault() callback must return VM_FAULT_SIGBUS and
|
|
* set the CPU page table entry to "poisoned".
|
|
*
|
|
* Note that because memory cgroup charges are transferred to the device memory,
|
|
* this should never fail due to memory restrictions. However, allocation
|
|
* of a regular system page might still fail because we are out of memory. If
|
|
* that happens, the page_fault() callback must return VM_FAULT_OOM.
|
|
*
|
|
* The page_fault() callback can also try to migrate back multiple pages in one
|
|
* chunk, as an optimization. It must, however, prioritize the faulting address
|
|
* over all the others.
|
|
*
|
|
*
|
|
* The page_free() callback is called once the page refcount reaches 1
|
|
* (ZONE_DEVICE pages never reach 0 refcount unless there is a refcount bug.
|
|
* This allows the device driver to implement its own memory management.)
|
|
*
|
|
* For MEMORY_DEVICE_PUBLIC only the page_free() callback matter.
|
|
*/
|
|
typedef int (*dev_page_fault_t)(struct vm_area_struct *vma,
|
|
unsigned long addr,
|
|
const struct page *page,
|
|
unsigned int flags,
|
|
pmd_t *pmdp);
|
|
typedef void (*dev_page_free_t)(struct page *page, void *data);
|
|
|
|
/**
|
|
* struct dev_pagemap - metadata for ZONE_DEVICE mappings
|
|
* @page_fault: callback when CPU fault on an unaddressable device page
|
|
* @page_free: free page callback when page refcount reaches 1
|
|
* @altmap: pre-allocated/reserved memory for vmemmap allocations
|
|
* @res: physical address range covered by @ref
|
|
* @ref: reference count that pins the devm_memremap_pages() mapping
|
|
* @dev: host device of the mapping for debug
|
|
* @data: private data pointer for page_free()
|
|
* @type: memory type: see MEMORY_* in memory_hotplug.h
|
|
*/
|
|
struct dev_pagemap {
|
|
dev_page_fault_t page_fault;
|
|
dev_page_free_t page_free;
|
|
struct vmem_altmap *altmap;
|
|
const struct resource *res;
|
|
struct percpu_ref *ref;
|
|
struct device *dev;
|
|
void *data;
|
|
enum memory_type type;
|
|
};
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
void *devm_memremap_pages(struct device *dev, struct resource *res,
|
|
struct percpu_ref *ref, struct vmem_altmap *altmap);
|
|
struct dev_pagemap *find_dev_pagemap(resource_size_t phys);
|
|
|
|
static inline bool is_zone_device_page(const struct page *page);
|
|
#else
|
|
static inline void *devm_memremap_pages(struct device *dev,
|
|
struct resource *res, struct percpu_ref *ref,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
/*
|
|
* Fail attempts to call devm_memremap_pages() without
|
|
* ZONE_DEVICE support enabled, this requires callers to fall
|
|
* back to plain devm_memremap() based on config
|
|
*/
|
|
WARN_ON_ONCE(1);
|
|
return ERR_PTR(-ENXIO);
|
|
}
|
|
|
|
static inline struct dev_pagemap *find_dev_pagemap(resource_size_t phys)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_DEVICE_PRIVATE) || defined(CONFIG_DEVICE_PUBLIC)
|
|
static inline bool is_device_private_page(const struct page *page)
|
|
{
|
|
return is_zone_device_page(page) &&
|
|
page->pgmap->type == MEMORY_DEVICE_PRIVATE;
|
|
}
|
|
|
|
static inline bool is_device_public_page(const struct page *page)
|
|
{
|
|
return is_zone_device_page(page) &&
|
|
page->pgmap->type == MEMORY_DEVICE_PUBLIC;
|
|
}
|
|
#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
|
|
|
|
/**
|
|
* get_dev_pagemap() - take a new live reference on the dev_pagemap for @pfn
|
|
* @pfn: page frame number to lookup page_map
|
|
* @pgmap: optional known pgmap that already has a reference
|
|
*
|
|
* @pgmap allows the overhead of a lookup to be bypassed when @pfn lands in the
|
|
* same mapping.
|
|
*/
|
|
static inline struct dev_pagemap *get_dev_pagemap(unsigned long pfn,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
const struct resource *res = pgmap ? pgmap->res : NULL;
|
|
resource_size_t phys = PFN_PHYS(pfn);
|
|
|
|
/*
|
|
* In the cached case we're already holding a live reference so
|
|
* we can simply do a blind increment
|
|
*/
|
|
if (res && phys >= res->start && phys <= res->end) {
|
|
percpu_ref_get(pgmap->ref);
|
|
return pgmap;
|
|
}
|
|
|
|
/* fall back to slow path lookup */
|
|
rcu_read_lock();
|
|
pgmap = find_dev_pagemap(phys);
|
|
if (pgmap && !percpu_ref_tryget_live(pgmap->ref))
|
|
pgmap = NULL;
|
|
rcu_read_unlock();
|
|
|
|
return pgmap;
|
|
}
|
|
|
|
static inline void put_dev_pagemap(struct dev_pagemap *pgmap)
|
|
{
|
|
if (pgmap)
|
|
percpu_ref_put(pgmap->ref);
|
|
}
|
|
#endif /* _LINUX_MEMREMAP_H_ */
|