linux_dsm_epyc7002/sound/soc/codecs/nau8824.c
John Hsu 844a4a362d
ASoC: nau8824: fix the issue of the widget with prefix name
The driver has two issues when machine add prefix name for codec.
(1)The stream name of DAI can't find the AIF widgets.
(2)The drivr can enable/disalbe the MICBIAS and SAR widgets.

The patch will fix these issues caused by prefixed name added.

Signed-off-by: John Hsu <KCHSU0@nuvoton.com>
Signed-off-by: Mark Brown <broonie@kernel.org>
2019-03-11 16:58:50 +00:00

1960 lines
62 KiB
C

/*
* NAU88L24 ALSA SoC audio driver
*
* Copyright 2016 Nuvoton Technology Corp.
* Author: John Hsu <KCHSU0@nuvoton.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/init.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/acpi.h>
#include <linux/math64.h>
#include <linux/semaphore.h>
#include <sound/initval.h>
#include <sound/tlv.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/jack.h>
#include "nau8824.h"
static int nau8824_config_sysclk(struct nau8824 *nau8824,
int clk_id, unsigned int freq);
static bool nau8824_is_jack_inserted(struct nau8824 *nau8824);
/* the ADC threshold of headset */
#define DMIC_CLK 3072000
/* the ADC threshold of headset */
#define HEADSET_SARADC_THD 0x80
/* the parameter threshold of FLL */
#define NAU_FREF_MAX 13500000
#define NAU_FVCO_MAX 100000000
#define NAU_FVCO_MIN 90000000
/* scaling for mclk from sysclk_src output */
static const struct nau8824_fll_attr mclk_src_scaling[] = {
{ 1, 0x0 },
{ 2, 0x2 },
{ 4, 0x3 },
{ 8, 0x4 },
{ 16, 0x5 },
{ 32, 0x6 },
{ 3, 0x7 },
{ 6, 0xa },
{ 12, 0xb },
{ 24, 0xc },
};
/* ratio for input clk freq */
static const struct nau8824_fll_attr fll_ratio[] = {
{ 512000, 0x01 },
{ 256000, 0x02 },
{ 128000, 0x04 },
{ 64000, 0x08 },
{ 32000, 0x10 },
{ 8000, 0x20 },
{ 4000, 0x40 },
};
static const struct nau8824_fll_attr fll_pre_scalar[] = {
{ 1, 0x0 },
{ 2, 0x1 },
{ 4, 0x2 },
{ 8, 0x3 },
};
/* the maximum frequency of CLK_ADC and CLK_DAC */
#define CLK_DA_AD_MAX 6144000
/* over sampling rate */
static const struct nau8824_osr_attr osr_dac_sel[] = {
{ 64, 2 }, /* OSR 64, SRC 1/4 */
{ 256, 0 }, /* OSR 256, SRC 1 */
{ 128, 1 }, /* OSR 128, SRC 1/2 */
{ 0, 0 },
{ 32, 3 }, /* OSR 32, SRC 1/8 */
};
static const struct nau8824_osr_attr osr_adc_sel[] = {
{ 32, 3 }, /* OSR 32, SRC 1/8 */
{ 64, 2 }, /* OSR 64, SRC 1/4 */
{ 128, 1 }, /* OSR 128, SRC 1/2 */
{ 256, 0 }, /* OSR 256, SRC 1 */
};
static const struct reg_default nau8824_reg_defaults[] = {
{ NAU8824_REG_ENA_CTRL, 0x0000 },
{ NAU8824_REG_CLK_GATING_ENA, 0x0000 },
{ NAU8824_REG_CLK_DIVIDER, 0x0000 },
{ NAU8824_REG_FLL1, 0x0000 },
{ NAU8824_REG_FLL2, 0x3126 },
{ NAU8824_REG_FLL3, 0x0008 },
{ NAU8824_REG_FLL4, 0x0010 },
{ NAU8824_REG_FLL5, 0xC000 },
{ NAU8824_REG_FLL6, 0x6000 },
{ NAU8824_REG_FLL_VCO_RSV, 0xF13C },
{ NAU8824_REG_JACK_DET_CTRL, 0x0000 },
{ NAU8824_REG_INTERRUPT_SETTING_1, 0x0000 },
{ NAU8824_REG_IRQ, 0x0000 },
{ NAU8824_REG_CLEAR_INT_REG, 0x0000 },
{ NAU8824_REG_INTERRUPT_SETTING, 0x1000 },
{ NAU8824_REG_SAR_ADC, 0x0015 },
{ NAU8824_REG_VDET_COEFFICIENT, 0x0110 },
{ NAU8824_REG_VDET_THRESHOLD_1, 0x0000 },
{ NAU8824_REG_VDET_THRESHOLD_2, 0x0000 },
{ NAU8824_REG_VDET_THRESHOLD_3, 0x0000 },
{ NAU8824_REG_VDET_THRESHOLD_4, 0x0000 },
{ NAU8824_REG_GPIO_SEL, 0x0000 },
{ NAU8824_REG_PORT0_I2S_PCM_CTRL_1, 0x000B },
{ NAU8824_REG_PORT0_I2S_PCM_CTRL_2, 0x0010 },
{ NAU8824_REG_PORT0_LEFT_TIME_SLOT, 0x0000 },
{ NAU8824_REG_PORT0_RIGHT_TIME_SLOT, 0x0000 },
{ NAU8824_REG_TDM_CTRL, 0x0000 },
{ NAU8824_REG_ADC_HPF_FILTER, 0x0000 },
{ NAU8824_REG_ADC_FILTER_CTRL, 0x0002 },
{ NAU8824_REG_DAC_FILTER_CTRL_1, 0x0000 },
{ NAU8824_REG_DAC_FILTER_CTRL_2, 0x0000 },
{ NAU8824_REG_NOTCH_FILTER_1, 0x0000 },
{ NAU8824_REG_NOTCH_FILTER_2, 0x0000 },
{ NAU8824_REG_EQ1_LOW, 0x112C },
{ NAU8824_REG_EQ2_EQ3, 0x2C2C },
{ NAU8824_REG_EQ4_EQ5, 0x2C2C },
{ NAU8824_REG_ADC_CH0_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_ADC_CH1_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_ADC_CH2_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_ADC_CH3_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_DAC_MUTE_CTRL, 0x0000 },
{ NAU8824_REG_DAC_CH0_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_DAC_CH1_DGAIN_CTRL, 0x0100 },
{ NAU8824_REG_ADC_TO_DAC_ST, 0x0000 },
{ NAU8824_REG_DRC_KNEE_IP12_ADC_CH01, 0x1486 },
{ NAU8824_REG_DRC_KNEE_IP34_ADC_CH01, 0x0F12 },
{ NAU8824_REG_DRC_SLOPE_ADC_CH01, 0x25FF },
{ NAU8824_REG_DRC_ATKDCY_ADC_CH01, 0x3457 },
{ NAU8824_REG_DRC_KNEE_IP12_ADC_CH23, 0x1486 },
{ NAU8824_REG_DRC_KNEE_IP34_ADC_CH23, 0x0F12 },
{ NAU8824_REG_DRC_SLOPE_ADC_CH23, 0x25FF },
{ NAU8824_REG_DRC_ATKDCY_ADC_CH23, 0x3457 },
{ NAU8824_REG_DRC_GAINL_ADC0, 0x0200 },
{ NAU8824_REG_DRC_GAINL_ADC1, 0x0200 },
{ NAU8824_REG_DRC_GAINL_ADC2, 0x0200 },
{ NAU8824_REG_DRC_GAINL_ADC3, 0x0200 },
{ NAU8824_REG_DRC_KNEE_IP12_DAC, 0x1486 },
{ NAU8824_REG_DRC_KNEE_IP34_DAC, 0x0F12 },
{ NAU8824_REG_DRC_SLOPE_DAC, 0x25F9 },
{ NAU8824_REG_DRC_ATKDCY_DAC, 0x3457 },
{ NAU8824_REG_DRC_GAIN_DAC_CH0, 0x0200 },
{ NAU8824_REG_DRC_GAIN_DAC_CH1, 0x0200 },
{ NAU8824_REG_MODE, 0x0000 },
{ NAU8824_REG_MODE1, 0x0000 },
{ NAU8824_REG_MODE2, 0x0000 },
{ NAU8824_REG_CLASSG, 0x0000 },
{ NAU8824_REG_OTP_EFUSE, 0x0000 },
{ NAU8824_REG_OTPDOUT_1, 0x0000 },
{ NAU8824_REG_OTPDOUT_2, 0x0000 },
{ NAU8824_REG_MISC_CTRL, 0x0000 },
{ NAU8824_REG_I2C_TIMEOUT, 0xEFFF },
{ NAU8824_REG_TEST_MODE, 0x0000 },
{ NAU8824_REG_I2C_DEVICE_ID, 0x1AF1 },
{ NAU8824_REG_SAR_ADC_DATA_OUT, 0x00FF },
{ NAU8824_REG_BIAS_ADJ, 0x0000 },
{ NAU8824_REG_PGA_GAIN, 0x0000 },
{ NAU8824_REG_TRIM_SETTINGS, 0x0000 },
{ NAU8824_REG_ANALOG_CONTROL_1, 0x0000 },
{ NAU8824_REG_ANALOG_CONTROL_2, 0x0000 },
{ NAU8824_REG_ENABLE_LO, 0x0000 },
{ NAU8824_REG_GAIN_LO, 0x0000 },
{ NAU8824_REG_CLASSD_GAIN_1, 0x0000 },
{ NAU8824_REG_CLASSD_GAIN_2, 0x0000 },
{ NAU8824_REG_ANALOG_ADC_1, 0x0011 },
{ NAU8824_REG_ANALOG_ADC_2, 0x0020 },
{ NAU8824_REG_RDAC, 0x0008 },
{ NAU8824_REG_MIC_BIAS, 0x0006 },
{ NAU8824_REG_HS_VOLUME_CONTROL, 0x0000 },
{ NAU8824_REG_BOOST, 0x0000 },
{ NAU8824_REG_FEPGA, 0x0000 },
{ NAU8824_REG_FEPGA_II, 0x0000 },
{ NAU8824_REG_FEPGA_SE, 0x0000 },
{ NAU8824_REG_FEPGA_ATTENUATION, 0x0000 },
{ NAU8824_REG_ATT_PORT0, 0x0000 },
{ NAU8824_REG_ATT_PORT1, 0x0000 },
{ NAU8824_REG_POWER_UP_CONTROL, 0x0000 },
{ NAU8824_REG_CHARGE_PUMP_CONTROL, 0x0300 },
{ NAU8824_REG_CHARGE_PUMP_INPUT, 0x0013 },
};
static int nau8824_sema_acquire(struct nau8824 *nau8824, long timeout)
{
int ret;
if (timeout) {
ret = down_timeout(&nau8824->jd_sem, timeout);
if (ret < 0)
dev_warn(nau8824->dev, "Acquire semaphore timeout\n");
} else {
ret = down_interruptible(&nau8824->jd_sem);
if (ret < 0)
dev_warn(nau8824->dev, "Acquire semaphore fail\n");
}
return ret;
}
static inline void nau8824_sema_release(struct nau8824 *nau8824)
{
up(&nau8824->jd_sem);
}
static bool nau8824_readable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8824_REG_ENA_CTRL ... NAU8824_REG_FLL_VCO_RSV:
case NAU8824_REG_JACK_DET_CTRL:
case NAU8824_REG_INTERRUPT_SETTING_1:
case NAU8824_REG_IRQ:
case NAU8824_REG_CLEAR_INT_REG ... NAU8824_REG_VDET_THRESHOLD_4:
case NAU8824_REG_GPIO_SEL:
case NAU8824_REG_PORT0_I2S_PCM_CTRL_1 ... NAU8824_REG_TDM_CTRL:
case NAU8824_REG_ADC_HPF_FILTER ... NAU8824_REG_EQ4_EQ5:
case NAU8824_REG_ADC_CH0_DGAIN_CTRL ... NAU8824_REG_ADC_TO_DAC_ST:
case NAU8824_REG_DRC_KNEE_IP12_ADC_CH01 ... NAU8824_REG_DRC_GAINL_ADC3:
case NAU8824_REG_DRC_KNEE_IP12_DAC ... NAU8824_REG_DRC_GAIN_DAC_CH1:
case NAU8824_REG_CLASSG ... NAU8824_REG_OTP_EFUSE:
case NAU8824_REG_OTPDOUT_1 ... NAU8824_REG_OTPDOUT_2:
case NAU8824_REG_I2C_TIMEOUT:
case NAU8824_REG_I2C_DEVICE_ID ... NAU8824_REG_SAR_ADC_DATA_OUT:
case NAU8824_REG_BIAS_ADJ ... NAU8824_REG_CLASSD_GAIN_2:
case NAU8824_REG_ANALOG_ADC_1 ... NAU8824_REG_ATT_PORT1:
case NAU8824_REG_POWER_UP_CONTROL ... NAU8824_REG_CHARGE_PUMP_INPUT:
return true;
default:
return false;
}
}
static bool nau8824_writeable_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8824_REG_RESET ... NAU8824_REG_FLL_VCO_RSV:
case NAU8824_REG_JACK_DET_CTRL:
case NAU8824_REG_INTERRUPT_SETTING_1:
case NAU8824_REG_CLEAR_INT_REG ... NAU8824_REG_VDET_THRESHOLD_4:
case NAU8824_REG_GPIO_SEL:
case NAU8824_REG_PORT0_I2S_PCM_CTRL_1 ... NAU8824_REG_TDM_CTRL:
case NAU8824_REG_ADC_HPF_FILTER ... NAU8824_REG_EQ4_EQ5:
case NAU8824_REG_ADC_CH0_DGAIN_CTRL ... NAU8824_REG_ADC_TO_DAC_ST:
case NAU8824_REG_DRC_KNEE_IP12_ADC_CH01:
case NAU8824_REG_DRC_KNEE_IP34_ADC_CH01:
case NAU8824_REG_DRC_SLOPE_ADC_CH01:
case NAU8824_REG_DRC_ATKDCY_ADC_CH01:
case NAU8824_REG_DRC_KNEE_IP12_ADC_CH23:
case NAU8824_REG_DRC_KNEE_IP34_ADC_CH23:
case NAU8824_REG_DRC_SLOPE_ADC_CH23:
case NAU8824_REG_DRC_ATKDCY_ADC_CH23:
case NAU8824_REG_DRC_KNEE_IP12_DAC ... NAU8824_REG_DRC_ATKDCY_DAC:
case NAU8824_REG_CLASSG ... NAU8824_REG_OTP_EFUSE:
case NAU8824_REG_I2C_TIMEOUT:
case NAU8824_REG_BIAS_ADJ ... NAU8824_REG_CLASSD_GAIN_2:
case NAU8824_REG_ANALOG_ADC_1 ... NAU8824_REG_ATT_PORT1:
case NAU8824_REG_POWER_UP_CONTROL ... NAU8824_REG_CHARGE_PUMP_CONTROL:
return true;
default:
return false;
}
}
static bool nau8824_volatile_reg(struct device *dev, unsigned int reg)
{
switch (reg) {
case NAU8824_REG_RESET:
case NAU8824_REG_IRQ ... NAU8824_REG_CLEAR_INT_REG:
case NAU8824_REG_DRC_GAINL_ADC0 ... NAU8824_REG_DRC_GAINL_ADC3:
case NAU8824_REG_DRC_GAIN_DAC_CH0 ... NAU8824_REG_DRC_GAIN_DAC_CH1:
case NAU8824_REG_OTPDOUT_1 ... NAU8824_REG_OTPDOUT_2:
case NAU8824_REG_I2C_DEVICE_ID ... NAU8824_REG_SAR_ADC_DATA_OUT:
case NAU8824_REG_CHARGE_PUMP_INPUT:
return true;
default:
return false;
}
}
static const char * const nau8824_companding[] = {
"Off", "NC", "u-law", "A-law" };
static const struct soc_enum nau8824_companding_adc_enum =
SOC_ENUM_SINGLE(NAU8824_REG_PORT0_I2S_PCM_CTRL_1, 12,
ARRAY_SIZE(nau8824_companding), nau8824_companding);
static const struct soc_enum nau8824_companding_dac_enum =
SOC_ENUM_SINGLE(NAU8824_REG_PORT0_I2S_PCM_CTRL_1, 14,
ARRAY_SIZE(nau8824_companding), nau8824_companding);
static const char * const nau8824_adc_decimation[] = {
"32", "64", "128", "256" };
static const struct soc_enum nau8824_adc_decimation_enum =
SOC_ENUM_SINGLE(NAU8824_REG_ADC_FILTER_CTRL, 0,
ARRAY_SIZE(nau8824_adc_decimation), nau8824_adc_decimation);
static const char * const nau8824_dac_oversampl[] = {
"64", "256", "128", "", "32" };
static const struct soc_enum nau8824_dac_oversampl_enum =
SOC_ENUM_SINGLE(NAU8824_REG_DAC_FILTER_CTRL_1, 0,
ARRAY_SIZE(nau8824_dac_oversampl), nau8824_dac_oversampl);
static const char * const nau8824_input_channel[] = {
"Input CH0", "Input CH1", "Input CH2", "Input CH3" };
static const struct soc_enum nau8824_adc_ch0_enum =
SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH0_DGAIN_CTRL, 9,
ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel);
static const struct soc_enum nau8824_adc_ch1_enum =
SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH1_DGAIN_CTRL, 9,
ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel);
static const struct soc_enum nau8824_adc_ch2_enum =
SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH2_DGAIN_CTRL, 9,
ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel);
static const struct soc_enum nau8824_adc_ch3_enum =
SOC_ENUM_SINGLE(NAU8824_REG_ADC_CH3_DGAIN_CTRL, 9,
ARRAY_SIZE(nau8824_input_channel), nau8824_input_channel);
static const char * const nau8824_tdm_slot[] = {
"Slot 0", "Slot 1", "Slot 2", "Slot 3" };
static const struct soc_enum nau8824_dac_left_sel_enum =
SOC_ENUM_SINGLE(NAU8824_REG_TDM_CTRL, 6,
ARRAY_SIZE(nau8824_tdm_slot), nau8824_tdm_slot);
static const struct soc_enum nau8824_dac_right_sel_enum =
SOC_ENUM_SINGLE(NAU8824_REG_TDM_CTRL, 4,
ARRAY_SIZE(nau8824_tdm_slot), nau8824_tdm_slot);
static const DECLARE_TLV_DB_MINMAX_MUTE(spk_vol_tlv, 0, 2400);
static const DECLARE_TLV_DB_MINMAX(hp_vol_tlv, -3000, 0);
static const DECLARE_TLV_DB_SCALE(mic_vol_tlv, 0, 200, 0);
static const DECLARE_TLV_DB_SCALE(dmic_vol_tlv, -12800, 50, 0);
static const struct snd_kcontrol_new nau8824_snd_controls[] = {
SOC_ENUM("ADC Companding", nau8824_companding_adc_enum),
SOC_ENUM("DAC Companding", nau8824_companding_dac_enum),
SOC_ENUM("ADC Decimation Rate", nau8824_adc_decimation_enum),
SOC_ENUM("DAC Oversampling Rate", nau8824_dac_oversampl_enum),
SOC_SINGLE_TLV("Speaker Right DACR Volume",
NAU8824_REG_CLASSD_GAIN_1, 8, 0x1f, 0, spk_vol_tlv),
SOC_SINGLE_TLV("Speaker Left DACL Volume",
NAU8824_REG_CLASSD_GAIN_2, 0, 0x1f, 0, spk_vol_tlv),
SOC_SINGLE_TLV("Speaker Left DACR Volume",
NAU8824_REG_CLASSD_GAIN_1, 0, 0x1f, 0, spk_vol_tlv),
SOC_SINGLE_TLV("Speaker Right DACL Volume",
NAU8824_REG_CLASSD_GAIN_2, 8, 0x1f, 0, spk_vol_tlv),
SOC_SINGLE_TLV("Headphone Right DACR Volume",
NAU8824_REG_ATT_PORT0, 8, 0x1f, 0, hp_vol_tlv),
SOC_SINGLE_TLV("Headphone Left DACL Volume",
NAU8824_REG_ATT_PORT0, 0, 0x1f, 0, hp_vol_tlv),
SOC_SINGLE_TLV("Headphone Right DACL Volume",
NAU8824_REG_ATT_PORT1, 8, 0x1f, 0, hp_vol_tlv),
SOC_SINGLE_TLV("Headphone Left DACR Volume",
NAU8824_REG_ATT_PORT1, 0, 0x1f, 0, hp_vol_tlv),
SOC_SINGLE_TLV("MIC1 Volume", NAU8824_REG_FEPGA_II,
NAU8824_FEPGA_GAINL_SFT, 0x12, 0, mic_vol_tlv),
SOC_SINGLE_TLV("MIC2 Volume", NAU8824_REG_FEPGA_II,
NAU8824_FEPGA_GAINR_SFT, 0x12, 0, mic_vol_tlv),
SOC_SINGLE_TLV("DMIC1 Volume", NAU8824_REG_ADC_CH0_DGAIN_CTRL,
0, 0x164, 0, dmic_vol_tlv),
SOC_SINGLE_TLV("DMIC2 Volume", NAU8824_REG_ADC_CH1_DGAIN_CTRL,
0, 0x164, 0, dmic_vol_tlv),
SOC_SINGLE_TLV("DMIC3 Volume", NAU8824_REG_ADC_CH2_DGAIN_CTRL,
0, 0x164, 0, dmic_vol_tlv),
SOC_SINGLE_TLV("DMIC4 Volume", NAU8824_REG_ADC_CH3_DGAIN_CTRL,
0, 0x164, 0, dmic_vol_tlv),
SOC_ENUM("ADC CH0 Select", nau8824_adc_ch0_enum),
SOC_ENUM("ADC CH1 Select", nau8824_adc_ch1_enum),
SOC_ENUM("ADC CH2 Select", nau8824_adc_ch2_enum),
SOC_ENUM("ADC CH3 Select", nau8824_adc_ch3_enum),
SOC_SINGLE("ADC CH0 TX Switch", NAU8824_REG_TDM_CTRL, 0, 1, 0),
SOC_SINGLE("ADC CH1 TX Switch", NAU8824_REG_TDM_CTRL, 1, 1, 0),
SOC_SINGLE("ADC CH2 TX Switch", NAU8824_REG_TDM_CTRL, 2, 1, 0),
SOC_SINGLE("ADC CH3 TX Switch", NAU8824_REG_TDM_CTRL, 3, 1, 0),
SOC_ENUM("DACL Channel Source", nau8824_dac_left_sel_enum),
SOC_ENUM("DACR Channel Source", nau8824_dac_right_sel_enum),
SOC_SINGLE("DACL LR Mix", NAU8824_REG_DAC_MUTE_CTRL, 0, 1, 0),
SOC_SINGLE("DACR LR Mix", NAU8824_REG_DAC_MUTE_CTRL, 1, 1, 0),
SOC_SINGLE("THD for key media",
NAU8824_REG_VDET_THRESHOLD_1, 8, 0xff, 0),
SOC_SINGLE("THD for key voice command",
NAU8824_REG_VDET_THRESHOLD_1, 0, 0xff, 0),
SOC_SINGLE("THD for key volume up",
NAU8824_REG_VDET_THRESHOLD_2, 8, 0xff, 0),
SOC_SINGLE("THD for key volume down",
NAU8824_REG_VDET_THRESHOLD_2, 0, 0xff, 0),
};
static int nau8824_output_dac_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
/* Disables the TESTDAC to let DAC signal pass through. */
regmap_update_bits(nau8824->regmap, NAU8824_REG_ENABLE_LO,
NAU8824_TEST_DAC_EN, 0);
break;
case SND_SOC_DAPM_POST_PMD:
regmap_update_bits(nau8824->regmap, NAU8824_REG_ENABLE_LO,
NAU8824_TEST_DAC_EN, NAU8824_TEST_DAC_EN);
break;
default:
return -EINVAL;
}
return 0;
}
static int nau8824_spk_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_PRE_PMU:
regmap_update_bits(nau8824->regmap,
NAU8824_REG_ANALOG_CONTROL_2,
NAU8824_CLASSD_CLAMP_DIS, NAU8824_CLASSD_CLAMP_DIS);
break;
case SND_SOC_DAPM_POST_PMD:
regmap_update_bits(nau8824->regmap,
NAU8824_REG_ANALOG_CONTROL_2,
NAU8824_CLASSD_CLAMP_DIS, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int nau8824_pump_event(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *kcontrol, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
switch (event) {
case SND_SOC_DAPM_POST_PMU:
/* Prevent startup click by letting charge pump to ramp up */
msleep(10);
regmap_update_bits(nau8824->regmap,
NAU8824_REG_CHARGE_PUMP_CONTROL,
NAU8824_JAMNODCLOW, NAU8824_JAMNODCLOW);
break;
case SND_SOC_DAPM_PRE_PMD:
regmap_update_bits(nau8824->regmap,
NAU8824_REG_CHARGE_PUMP_CONTROL,
NAU8824_JAMNODCLOW, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int system_clock_control(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
struct regmap *regmap = nau8824->regmap;
unsigned int value;
bool clk_fll, error;
if (SND_SOC_DAPM_EVENT_OFF(event)) {
dev_dbg(nau8824->dev, "system clock control : POWER OFF\n");
/* Set clock source to disable or internal clock before the
* playback or capture end. Codec needs clock for Jack
* detection and button press if jack inserted; otherwise,
* the clock should be closed.
*/
if (nau8824_is_jack_inserted(nau8824)) {
nau8824_config_sysclk(nau8824,
NAU8824_CLK_INTERNAL, 0);
} else {
nau8824_config_sysclk(nau8824, NAU8824_CLK_DIS, 0);
}
} else {
dev_dbg(nau8824->dev, "system clock control : POWER ON\n");
/* Check the clock source setting is proper or not
* no matter the source is from FLL or MCLK.
*/
regmap_read(regmap, NAU8824_REG_FLL1, &value);
clk_fll = value & NAU8824_FLL_RATIO_MASK;
/* It's error to use internal clock when playback */
regmap_read(regmap, NAU8824_REG_FLL6, &value);
error = value & NAU8824_DCO_EN;
if (!error) {
/* Check error depending on source is FLL or MCLK. */
regmap_read(regmap, NAU8824_REG_CLK_DIVIDER, &value);
if (clk_fll)
error = !(value & NAU8824_CLK_SRC_VCO);
else
error = value & NAU8824_CLK_SRC_VCO;
}
/* Recover the clock source setting if error. */
if (error) {
if (clk_fll) {
regmap_update_bits(regmap,
NAU8824_REG_FLL6, NAU8824_DCO_EN, 0);
regmap_update_bits(regmap,
NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK,
NAU8824_CLK_SRC_VCO);
} else {
nau8824_config_sysclk(nau8824,
NAU8824_CLK_MCLK, 0);
}
}
}
return 0;
}
static int dmic_clock_control(struct snd_soc_dapm_widget *w,
struct snd_kcontrol *k, int event)
{
struct snd_soc_component *component = snd_soc_dapm_to_component(w->dapm);
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
int src;
/* The DMIC clock is gotten from system clock (256fs) divided by
* DMIC_SRC (1, 2, 4, 8, 16, 32). The clock has to be equal or
* less than 3.072 MHz.
*/
for (src = 0; src < 5; src++) {
if ((0x1 << (8 - src)) * nau8824->fs <= DMIC_CLK)
break;
}
dev_dbg(nau8824->dev, "dmic src %d for mclk %d\n", src, nau8824->fs * 256);
regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_DMIC_SRC_MASK, (src << NAU8824_CLK_DMIC_SRC_SFT));
return 0;
}
static const struct snd_kcontrol_new nau8824_adc_ch0_dmic =
SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL,
NAU8824_ADC_CH0_DMIC_SFT, 1, 0);
static const struct snd_kcontrol_new nau8824_adc_ch1_dmic =
SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL,
NAU8824_ADC_CH1_DMIC_SFT, 1, 0);
static const struct snd_kcontrol_new nau8824_adc_ch2_dmic =
SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL,
NAU8824_ADC_CH2_DMIC_SFT, 1, 0);
static const struct snd_kcontrol_new nau8824_adc_ch3_dmic =
SOC_DAPM_SINGLE("Switch", NAU8824_REG_ENA_CTRL,
NAU8824_ADC_CH3_DMIC_SFT, 1, 0);
static const struct snd_kcontrol_new nau8824_adc_left_mixer[] = {
SOC_DAPM_SINGLE("MIC Switch", NAU8824_REG_FEPGA,
NAU8824_FEPGA_MODEL_MIC1_SFT, 1, 0),
SOC_DAPM_SINGLE("HSMIC Switch", NAU8824_REG_FEPGA,
NAU8824_FEPGA_MODEL_HSMIC_SFT, 1, 0),
};
static const struct snd_kcontrol_new nau8824_adc_right_mixer[] = {
SOC_DAPM_SINGLE("MIC Switch", NAU8824_REG_FEPGA,
NAU8824_FEPGA_MODER_MIC2_SFT, 1, 0),
SOC_DAPM_SINGLE("HSMIC Switch", NAU8824_REG_FEPGA,
NAU8824_FEPGA_MODER_HSMIC_SFT, 1, 0),
};
static const struct snd_kcontrol_new nau8824_hp_left_mixer[] = {
SOC_DAPM_SINGLE("DAC Right Switch", NAU8824_REG_ENABLE_LO,
NAU8824_DACR_HPL_EN_SFT, 1, 0),
SOC_DAPM_SINGLE("DAC Left Switch", NAU8824_REG_ENABLE_LO,
NAU8824_DACL_HPL_EN_SFT, 1, 0),
};
static const struct snd_kcontrol_new nau8824_hp_right_mixer[] = {
SOC_DAPM_SINGLE("DAC Left Switch", NAU8824_REG_ENABLE_LO,
NAU8824_DACL_HPR_EN_SFT, 1, 0),
SOC_DAPM_SINGLE("DAC Right Switch", NAU8824_REG_ENABLE_LO,
NAU8824_DACR_HPR_EN_SFT, 1, 0),
};
static const char * const nau8824_dac_src[] = { "DACL", "DACR" };
static SOC_ENUM_SINGLE_DECL(
nau8824_dacl_enum, NAU8824_REG_DAC_CH0_DGAIN_CTRL,
NAU8824_DAC_CH0_SEL_SFT, nau8824_dac_src);
static SOC_ENUM_SINGLE_DECL(
nau8824_dacr_enum, NAU8824_REG_DAC_CH1_DGAIN_CTRL,
NAU8824_DAC_CH1_SEL_SFT, nau8824_dac_src);
static const struct snd_kcontrol_new nau8824_dacl_mux =
SOC_DAPM_ENUM("DACL Source", nau8824_dacl_enum);
static const struct snd_kcontrol_new nau8824_dacr_mux =
SOC_DAPM_ENUM("DACR Source", nau8824_dacr_enum);
static const struct snd_soc_dapm_widget nau8824_dapm_widgets[] = {
SND_SOC_DAPM_SUPPLY("System Clock", SND_SOC_NOPM, 0, 0,
system_clock_control, SND_SOC_DAPM_POST_PMD |
SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_INPUT("HSMIC1"),
SND_SOC_DAPM_INPUT("HSMIC2"),
SND_SOC_DAPM_INPUT("MIC1"),
SND_SOC_DAPM_INPUT("MIC2"),
SND_SOC_DAPM_INPUT("DMIC1"),
SND_SOC_DAPM_INPUT("DMIC2"),
SND_SOC_DAPM_INPUT("DMIC3"),
SND_SOC_DAPM_INPUT("DMIC4"),
SND_SOC_DAPM_SUPPLY("SAR", NAU8824_REG_SAR_ADC,
NAU8824_SAR_ADC_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("MICBIAS", NAU8824_REG_MIC_BIAS,
NAU8824_MICBIAS_POWERUP_SFT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DMIC12 Power", NAU8824_REG_BIAS_ADJ,
NAU8824_DMIC1_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DMIC34 Power", NAU8824_REG_BIAS_ADJ,
NAU8824_DMIC2_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_SUPPLY("DMIC Clock", SND_SOC_NOPM, 0, 0,
dmic_clock_control, SND_SOC_DAPM_POST_PMU),
SND_SOC_DAPM_SWITCH("DMIC1 Enable", SND_SOC_NOPM,
0, 0, &nau8824_adc_ch0_dmic),
SND_SOC_DAPM_SWITCH("DMIC2 Enable", SND_SOC_NOPM,
0, 0, &nau8824_adc_ch1_dmic),
SND_SOC_DAPM_SWITCH("DMIC3 Enable", SND_SOC_NOPM,
0, 0, &nau8824_adc_ch2_dmic),
SND_SOC_DAPM_SWITCH("DMIC4 Enable", SND_SOC_NOPM,
0, 0, &nau8824_adc_ch3_dmic),
SND_SOC_DAPM_MIXER("Left ADC", NAU8824_REG_POWER_UP_CONTROL,
12, 0, nau8824_adc_left_mixer,
ARRAY_SIZE(nau8824_adc_left_mixer)),
SND_SOC_DAPM_MIXER("Right ADC", NAU8824_REG_POWER_UP_CONTROL,
13, 0, nau8824_adc_right_mixer,
ARRAY_SIZE(nau8824_adc_right_mixer)),
SND_SOC_DAPM_ADC("ADCL", NULL, NAU8824_REG_ANALOG_ADC_2,
NAU8824_ADCL_EN_SFT, 0),
SND_SOC_DAPM_ADC("ADCR", NULL, NAU8824_REG_ANALOG_ADC_2,
NAU8824_ADCR_EN_SFT, 0),
SND_SOC_DAPM_AIF_OUT("AIFTX", "Capture", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_AIF_IN("AIFRX", "Playback", 0, SND_SOC_NOPM, 0, 0),
SND_SOC_DAPM_DAC("DACL", NULL, NAU8824_REG_RDAC,
NAU8824_DACL_EN_SFT, 0),
SND_SOC_DAPM_SUPPLY("DACL Clock", NAU8824_REG_RDAC,
NAU8824_DACL_CLK_SFT, 0, NULL, 0),
SND_SOC_DAPM_DAC("DACR", NULL, NAU8824_REG_RDAC,
NAU8824_DACR_EN_SFT, 0),
SND_SOC_DAPM_SUPPLY("DACR Clock", NAU8824_REG_RDAC,
NAU8824_DACR_CLK_SFT, 0, NULL, 0),
SND_SOC_DAPM_MUX("DACL Mux", SND_SOC_NOPM, 0, 0, &nau8824_dacl_mux),
SND_SOC_DAPM_MUX("DACR Mux", SND_SOC_NOPM, 0, 0, &nau8824_dacr_mux),
SND_SOC_DAPM_PGA_S("Output DACL", 0, NAU8824_REG_CHARGE_PUMP_CONTROL,
8, 1, nau8824_output_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_S("Output DACR", 0, NAU8824_REG_CHARGE_PUMP_CONTROL,
9, 1, nau8824_output_dac_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_PGA_S("ClassD", 0, NAU8824_REG_CLASSD_GAIN_1,
NAU8824_CLASSD_EN_SFT, 0, nau8824_spk_event,
SND_SOC_DAPM_PRE_PMU | SND_SOC_DAPM_POST_PMD),
SND_SOC_DAPM_MIXER("Left Headphone", NAU8824_REG_CLASSG,
NAU8824_CLASSG_LDAC_EN_SFT, 0, nau8824_hp_left_mixer,
ARRAY_SIZE(nau8824_hp_left_mixer)),
SND_SOC_DAPM_MIXER("Right Headphone", NAU8824_REG_CLASSG,
NAU8824_CLASSG_RDAC_EN_SFT, 0, nau8824_hp_right_mixer,
ARRAY_SIZE(nau8824_hp_right_mixer)),
SND_SOC_DAPM_PGA_S("Charge Pump", 1, NAU8824_REG_CHARGE_PUMP_CONTROL,
NAU8824_CHARGE_PUMP_EN_SFT, 0, nau8824_pump_event,
SND_SOC_DAPM_POST_PMU | SND_SOC_DAPM_PRE_PMD),
SND_SOC_DAPM_PGA("Output Driver L",
NAU8824_REG_POWER_UP_CONTROL, 3, 0, NULL, 0),
SND_SOC_DAPM_PGA("Output Driver R",
NAU8824_REG_POWER_UP_CONTROL, 2, 0, NULL, 0),
SND_SOC_DAPM_PGA("Main Driver L",
NAU8824_REG_POWER_UP_CONTROL, 1, 0, NULL, 0),
SND_SOC_DAPM_PGA("Main Driver R",
NAU8824_REG_POWER_UP_CONTROL, 0, 0, NULL, 0),
SND_SOC_DAPM_PGA("HP Boost Driver", NAU8824_REG_BOOST,
NAU8824_HP_BOOST_DIS_SFT, 1, NULL, 0),
SND_SOC_DAPM_PGA("Class G", NAU8824_REG_CLASSG,
NAU8824_CLASSG_EN_SFT, 0, NULL, 0),
SND_SOC_DAPM_OUTPUT("SPKOUTL"),
SND_SOC_DAPM_OUTPUT("SPKOUTR"),
SND_SOC_DAPM_OUTPUT("HPOL"),
SND_SOC_DAPM_OUTPUT("HPOR"),
};
static const struct snd_soc_dapm_route nau8824_dapm_routes[] = {
{"DMIC1 Enable", "Switch", "DMIC1"},
{"DMIC2 Enable", "Switch", "DMIC2"},
{"DMIC3 Enable", "Switch", "DMIC3"},
{"DMIC4 Enable", "Switch", "DMIC4"},
{"DMIC1", NULL, "DMIC12 Power"},
{"DMIC2", NULL, "DMIC12 Power"},
{"DMIC3", NULL, "DMIC34 Power"},
{"DMIC4", NULL, "DMIC34 Power"},
{"DMIC12 Power", NULL, "DMIC Clock"},
{"DMIC34 Power", NULL, "DMIC Clock"},
{"Left ADC", "MIC Switch", "MIC1"},
{"Left ADC", "HSMIC Switch", "HSMIC1"},
{"Right ADC", "MIC Switch", "MIC2"},
{"Right ADC", "HSMIC Switch", "HSMIC2"},
{"ADCL", NULL, "Left ADC"},
{"ADCR", NULL, "Right ADC"},
{"AIFTX", NULL, "MICBIAS"},
{"AIFTX", NULL, "ADCL"},
{"AIFTX", NULL, "ADCR"},
{"AIFTX", NULL, "DMIC1 Enable"},
{"AIFTX", NULL, "DMIC2 Enable"},
{"AIFTX", NULL, "DMIC3 Enable"},
{"AIFTX", NULL, "DMIC4 Enable"},
{"AIFTX", NULL, "System Clock"},
{"AIFRX", NULL, "System Clock"},
{"DACL", NULL, "AIFRX"},
{"DACL", NULL, "DACL Clock"},
{"DACR", NULL, "AIFRX"},
{"DACR", NULL, "DACR Clock"},
{"DACL Mux", "DACL", "DACL"},
{"DACL Mux", "DACR", "DACR"},
{"DACR Mux", "DACL", "DACL"},
{"DACR Mux", "DACR", "DACR"},
{"Output DACL", NULL, "DACL Mux"},
{"Output DACR", NULL, "DACR Mux"},
{"ClassD", NULL, "Output DACL"},
{"ClassD", NULL, "Output DACR"},
{"Left Headphone", "DAC Left Switch", "Output DACL"},
{"Left Headphone", "DAC Right Switch", "Output DACR"},
{"Right Headphone", "DAC Left Switch", "Output DACL"},
{"Right Headphone", "DAC Right Switch", "Output DACR"},
{"Charge Pump", NULL, "Left Headphone"},
{"Charge Pump", NULL, "Right Headphone"},
{"Output Driver L", NULL, "Charge Pump"},
{"Output Driver R", NULL, "Charge Pump"},
{"Main Driver L", NULL, "Output Driver L"},
{"Main Driver R", NULL, "Output Driver R"},
{"Class G", NULL, "Main Driver L"},
{"Class G", NULL, "Main Driver R"},
{"HP Boost Driver", NULL, "Class G"},
{"SPKOUTL", NULL, "ClassD"},
{"SPKOUTR", NULL, "ClassD"},
{"HPOL", NULL, "HP Boost Driver"},
{"HPOR", NULL, "HP Boost Driver"},
};
static bool nau8824_is_jack_inserted(struct nau8824 *nau8824)
{
struct snd_soc_jack *jack = nau8824->jack;
bool insert = false;
if (nau8824->irq && jack)
insert = jack->status & SND_JACK_HEADPHONE;
return insert;
}
static void nau8824_int_status_clear_all(struct regmap *regmap)
{
int active_irq, clear_irq, i;
/* Reset the intrruption status from rightmost bit if the corres-
* ponding irq event occurs.
*/
regmap_read(regmap, NAU8824_REG_IRQ, &active_irq);
for (i = 0; i < NAU8824_REG_DATA_LEN; i++) {
clear_irq = (0x1 << i);
if (active_irq & clear_irq)
regmap_write(regmap,
NAU8824_REG_CLEAR_INT_REG, clear_irq);
}
}
static void nau8824_dapm_disable_pin(struct nau8824 *nau8824, const char *pin)
{
struct snd_soc_dapm_context *dapm = nau8824->dapm;
const char *prefix = dapm->component->name_prefix;
char prefixed_pin[80];
if (prefix) {
snprintf(prefixed_pin, sizeof(prefixed_pin), "%s %s",
prefix, pin);
snd_soc_dapm_disable_pin(dapm, prefixed_pin);
} else {
snd_soc_dapm_disable_pin(dapm, pin);
}
}
static void nau8824_dapm_enable_pin(struct nau8824 *nau8824, const char *pin)
{
struct snd_soc_dapm_context *dapm = nau8824->dapm;
const char *prefix = dapm->component->name_prefix;
char prefixed_pin[80];
if (prefix) {
snprintf(prefixed_pin, sizeof(prefixed_pin), "%s %s",
prefix, pin);
snd_soc_dapm_force_enable_pin(dapm, prefixed_pin);
} else {
snd_soc_dapm_force_enable_pin(dapm, pin);
}
}
static void nau8824_eject_jack(struct nau8824 *nau8824)
{
struct snd_soc_dapm_context *dapm = nau8824->dapm;
struct regmap *regmap = nau8824->regmap;
/* Clear all interruption status */
nau8824_int_status_clear_all(regmap);
nau8824_dapm_disable_pin(nau8824, "SAR");
nau8824_dapm_disable_pin(nau8824, "MICBIAS");
snd_soc_dapm_sync(dapm);
/* Enable the insertion interruption, disable the ejection
* interruption, and then bypass de-bounce circuit.
*/
regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING,
NAU8824_IRQ_KEY_RELEASE_DIS | NAU8824_IRQ_KEY_SHORT_PRESS_DIS |
NAU8824_IRQ_EJECT_DIS | NAU8824_IRQ_INSERT_DIS,
NAU8824_IRQ_KEY_RELEASE_DIS | NAU8824_IRQ_KEY_SHORT_PRESS_DIS |
NAU8824_IRQ_EJECT_DIS);
regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_INSERT_EN | NAU8824_IRQ_EJECT_EN,
NAU8824_IRQ_INSERT_EN);
regmap_update_bits(regmap, NAU8824_REG_ENA_CTRL,
NAU8824_JD_SLEEP_MODE, NAU8824_JD_SLEEP_MODE);
/* Close clock for jack type detection at manual mode */
if (dapm->bias_level < SND_SOC_BIAS_PREPARE)
nau8824_config_sysclk(nau8824, NAU8824_CLK_DIS, 0);
}
static void nau8824_jdet_work(struct work_struct *work)
{
struct nau8824 *nau8824 = container_of(
work, struct nau8824, jdet_work);
struct snd_soc_dapm_context *dapm = nau8824->dapm;
struct regmap *regmap = nau8824->regmap;
int adc_value, event = 0, event_mask = 0;
nau8824_dapm_enable_pin(nau8824, "MICBIAS");
nau8824_dapm_enable_pin(nau8824, "SAR");
snd_soc_dapm_sync(dapm);
msleep(100);
regmap_read(regmap, NAU8824_REG_SAR_ADC_DATA_OUT, &adc_value);
adc_value = adc_value & NAU8824_SAR_ADC_DATA_MASK;
dev_dbg(nau8824->dev, "SAR ADC data 0x%02x\n", adc_value);
if (adc_value < HEADSET_SARADC_THD) {
event |= SND_JACK_HEADPHONE;
nau8824_dapm_disable_pin(nau8824, "SAR");
nau8824_dapm_disable_pin(nau8824, "MICBIAS");
snd_soc_dapm_sync(dapm);
} else {
event |= SND_JACK_HEADSET;
}
event_mask |= SND_JACK_HEADSET;
snd_soc_jack_report(nau8824->jack, event, event_mask);
/* Enable short key press and release interruption. */
regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING,
NAU8824_IRQ_KEY_RELEASE_DIS |
NAU8824_IRQ_KEY_SHORT_PRESS_DIS, 0);
nau8824_sema_release(nau8824);
}
static void nau8824_setup_auto_irq(struct nau8824 *nau8824)
{
struct regmap *regmap = nau8824->regmap;
/* Enable jack ejection interruption. */
regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_INSERT_EN | NAU8824_IRQ_EJECT_EN,
NAU8824_IRQ_EJECT_EN);
regmap_update_bits(regmap, NAU8824_REG_INTERRUPT_SETTING,
NAU8824_IRQ_EJECT_DIS, 0);
/* Enable internal VCO needed for interruptions */
if (nau8824->dapm->bias_level < SND_SOC_BIAS_PREPARE)
nau8824_config_sysclk(nau8824, NAU8824_CLK_INTERNAL, 0);
regmap_update_bits(regmap, NAU8824_REG_ENA_CTRL,
NAU8824_JD_SLEEP_MODE, 0);
}
static int nau8824_button_decode(int value)
{
int buttons = 0;
/* The chip supports up to 8 buttons, but ALSA defines
* only 6 buttons.
*/
if (value & BIT(0))
buttons |= SND_JACK_BTN_0;
if (value & BIT(1))
buttons |= SND_JACK_BTN_1;
if (value & BIT(2))
buttons |= SND_JACK_BTN_2;
if (value & BIT(3))
buttons |= SND_JACK_BTN_3;
if (value & BIT(4))
buttons |= SND_JACK_BTN_4;
if (value & BIT(5))
buttons |= SND_JACK_BTN_5;
return buttons;
}
#define NAU8824_BUTTONS (SND_JACK_BTN_0 | SND_JACK_BTN_1 | \
SND_JACK_BTN_2 | SND_JACK_BTN_3)
static irqreturn_t nau8824_interrupt(int irq, void *data)
{
struct nau8824 *nau8824 = (struct nau8824 *)data;
struct regmap *regmap = nau8824->regmap;
int active_irq, clear_irq = 0, event = 0, event_mask = 0;
if (regmap_read(regmap, NAU8824_REG_IRQ, &active_irq)) {
dev_err(nau8824->dev, "failed to read irq status\n");
return IRQ_NONE;
}
dev_dbg(nau8824->dev, "IRQ %x\n", active_irq);
if (active_irq & NAU8824_JACK_EJECTION_DETECTED) {
nau8824_eject_jack(nau8824);
event_mask |= SND_JACK_HEADSET;
clear_irq = NAU8824_JACK_EJECTION_DETECTED;
/* release semaphore held after resume,
* and cancel jack detection
*/
nau8824_sema_release(nau8824);
cancel_work_sync(&nau8824->jdet_work);
} else if (active_irq & NAU8824_KEY_SHORT_PRESS_IRQ) {
int key_status, button_pressed;
regmap_read(regmap, NAU8824_REG_CLEAR_INT_REG,
&key_status);
/* lower 8 bits of the register are for pressed keys */
button_pressed = nau8824_button_decode(key_status);
event |= button_pressed;
dev_dbg(nau8824->dev, "button %x pressed\n", event);
event_mask |= NAU8824_BUTTONS;
clear_irq = NAU8824_KEY_SHORT_PRESS_IRQ;
} else if (active_irq & NAU8824_KEY_RELEASE_IRQ) {
event_mask = NAU8824_BUTTONS;
clear_irq = NAU8824_KEY_RELEASE_IRQ;
} else if (active_irq & NAU8824_JACK_INSERTION_DETECTED) {
/* Turn off insertion interruption at manual mode */
regmap_update_bits(regmap,
NAU8824_REG_INTERRUPT_SETTING,
NAU8824_IRQ_INSERT_DIS,
NAU8824_IRQ_INSERT_DIS);
regmap_update_bits(regmap,
NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_INSERT_EN, 0);
/* detect microphone and jack type */
cancel_work_sync(&nau8824->jdet_work);
schedule_work(&nau8824->jdet_work);
/* Enable interruption for jack type detection at audo
* mode which can detect microphone and jack type.
*/
nau8824_setup_auto_irq(nau8824);
}
if (!clear_irq)
clear_irq = active_irq;
/* clears the rightmost interruption */
regmap_write(regmap, NAU8824_REG_CLEAR_INT_REG, clear_irq);
if (event_mask)
snd_soc_jack_report(nau8824->jack, event, event_mask);
return IRQ_HANDLED;
}
static int nau8824_clock_check(struct nau8824 *nau8824,
int stream, int rate, int osr)
{
int osrate;
if (stream == SNDRV_PCM_STREAM_PLAYBACK) {
if (osr >= ARRAY_SIZE(osr_dac_sel))
return -EINVAL;
osrate = osr_dac_sel[osr].osr;
} else {
if (osr >= ARRAY_SIZE(osr_adc_sel))
return -EINVAL;
osrate = osr_adc_sel[osr].osr;
}
if (!osrate || rate * osr > CLK_DA_AD_MAX) {
dev_err(nau8824->dev, "exceed the maximum frequency of CLK_ADC or CLK_DAC\n");
return -EINVAL;
}
return 0;
}
static int nau8824_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params, struct snd_soc_dai *dai)
{
struct snd_soc_component *component = dai->component;
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
unsigned int val_len = 0, osr, ctrl_val, bclk_fs, bclk_div;
nau8824_sema_acquire(nau8824, HZ);
/* CLK_DAC or CLK_ADC = OSR * FS
* DAC or ADC clock frequency is defined as Over Sampling Rate (OSR)
* multiplied by the audio sample rate (Fs). Note that the OSR and Fs
* values must be selected such that the maximum frequency is less
* than 6.144 MHz.
*/
nau8824->fs = params_rate(params);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
regmap_read(nau8824->regmap,
NAU8824_REG_DAC_FILTER_CTRL_1, &osr);
osr &= NAU8824_DAC_OVERSAMPLE_MASK;
if (nau8824_clock_check(nau8824, substream->stream,
nau8824->fs, osr))
return -EINVAL;
regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_DAC_SRC_MASK,
osr_dac_sel[osr].clk_src << NAU8824_CLK_DAC_SRC_SFT);
} else {
regmap_read(nau8824->regmap,
NAU8824_REG_ADC_FILTER_CTRL, &osr);
osr &= NAU8824_ADC_SYNC_DOWN_MASK;
if (nau8824_clock_check(nau8824, substream->stream,
nau8824->fs, osr))
return -EINVAL;
regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_ADC_SRC_MASK,
osr_adc_sel[osr].clk_src << NAU8824_CLK_ADC_SRC_SFT);
}
/* make BCLK and LRC divde configuration if the codec as master. */
regmap_read(nau8824->regmap,
NAU8824_REG_PORT0_I2S_PCM_CTRL_2, &ctrl_val);
if (ctrl_val & NAU8824_I2S_MS_MASTER) {
/* get the bclk and fs ratio */
bclk_fs = snd_soc_params_to_bclk(params) / nau8824->fs;
if (bclk_fs <= 32)
bclk_div = 0x3;
else if (bclk_fs <= 64)
bclk_div = 0x2;
else if (bclk_fs <= 128)
bclk_div = 0x1;
else if (bclk_fs <= 256)
bclk_div = 0;
else
return -EINVAL;
regmap_update_bits(nau8824->regmap,
NAU8824_REG_PORT0_I2S_PCM_CTRL_2,
NAU8824_I2S_LRC_DIV_MASK | NAU8824_I2S_BLK_DIV_MASK,
(bclk_div << NAU8824_I2S_LRC_DIV_SFT) | bclk_div);
}
switch (params_width(params)) {
case 16:
val_len |= NAU8824_I2S_DL_16;
break;
case 20:
val_len |= NAU8824_I2S_DL_20;
break;
case 24:
val_len |= NAU8824_I2S_DL_24;
break;
case 32:
val_len |= NAU8824_I2S_DL_32;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_I2S_PCM_CTRL_1,
NAU8824_I2S_DL_MASK, val_len);
nau8824_sema_release(nau8824);
return 0;
}
static int nau8824_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct snd_soc_component *component = dai->component;
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
unsigned int ctrl1_val = 0, ctrl2_val = 0;
nau8824_sema_acquire(nau8824, HZ);
switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
case SND_SOC_DAIFMT_CBM_CFM:
ctrl2_val |= NAU8824_I2S_MS_MASTER;
break;
case SND_SOC_DAIFMT_CBS_CFS:
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
break;
case SND_SOC_DAIFMT_IB_NF:
ctrl1_val |= NAU8824_I2S_BP_INV;
break;
default:
return -EINVAL;
}
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
ctrl1_val |= NAU8824_I2S_DF_I2S;
break;
case SND_SOC_DAIFMT_LEFT_J:
ctrl1_val |= NAU8824_I2S_DF_LEFT;
break;
case SND_SOC_DAIFMT_RIGHT_J:
ctrl1_val |= NAU8824_I2S_DF_RIGTH;
break;
case SND_SOC_DAIFMT_DSP_A:
ctrl1_val |= NAU8824_I2S_DF_PCM_AB;
break;
case SND_SOC_DAIFMT_DSP_B:
ctrl1_val |= NAU8824_I2S_DF_PCM_AB;
ctrl1_val |= NAU8824_I2S_PCMB_EN;
break;
default:
return -EINVAL;
}
regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_I2S_PCM_CTRL_1,
NAU8824_I2S_DF_MASK | NAU8824_I2S_BP_MASK |
NAU8824_I2S_PCMB_EN, ctrl1_val);
regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_I2S_PCM_CTRL_2,
NAU8824_I2S_MS_MASK, ctrl2_val);
nau8824_sema_release(nau8824);
return 0;
}
/**
* nau8824_set_tdm_slot - configure DAI TDM.
* @dai: DAI
* @tx_mask: Bitmask representing active TX slots. Ex.
* 0xf for normal 4 channel TDM.
* 0xf0 for shifted 4 channel TDM
* @rx_mask: Bitmask [0:1] representing active DACR RX slots.
* Bitmask [2:3] representing active DACL RX slots.
* 00=CH0,01=CH1,10=CH2,11=CH3. Ex.
* 0xf for DACL/R selecting TDM CH3.
* 0xf0 for DACL/R selecting shifted TDM CH3.
* @slots: Number of slots in use.
* @slot_width: Width in bits for each slot.
*
* Configures a DAI for TDM operation. Only support 4 slots TDM.
*/
static int nau8824_set_tdm_slot(struct snd_soc_dai *dai,
unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
{
struct snd_soc_component *component = dai->component;
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
unsigned int tslot_l = 0, ctrl_val = 0;
if (slots > 4 || ((tx_mask & 0xf0) && (tx_mask & 0xf)) ||
((rx_mask & 0xf0) && (rx_mask & 0xf)) ||
((rx_mask & 0xf0) && (tx_mask & 0xf)) ||
((rx_mask & 0xf) && (tx_mask & 0xf0)))
return -EINVAL;
ctrl_val |= (NAU8824_TDM_MODE | NAU8824_TDM_OFFSET_EN);
if (tx_mask & 0xf0) {
tslot_l = 4 * slot_width;
ctrl_val |= (tx_mask >> 4);
} else {
ctrl_val |= tx_mask;
}
if (rx_mask & 0xf0)
ctrl_val |= ((rx_mask >> 4) << NAU8824_TDM_DACR_RX_SFT);
else
ctrl_val |= (rx_mask << NAU8824_TDM_DACR_RX_SFT);
regmap_update_bits(nau8824->regmap, NAU8824_REG_TDM_CTRL,
NAU8824_TDM_MODE | NAU8824_TDM_OFFSET_EN |
NAU8824_TDM_DACL_RX_MASK | NAU8824_TDM_DACR_RX_MASK |
NAU8824_TDM_TX_MASK, ctrl_val);
regmap_update_bits(nau8824->regmap, NAU8824_REG_PORT0_LEFT_TIME_SLOT,
NAU8824_TSLOT_L_MASK, tslot_l);
return 0;
}
/**
* nau8824_calc_fll_param - Calculate FLL parameters.
* @fll_in: external clock provided to codec.
* @fs: sampling rate.
* @fll_param: Pointer to structure of FLL parameters.
*
* Calculate FLL parameters to configure codec.
*
* Returns 0 for success or negative error code.
*/
static int nau8824_calc_fll_param(unsigned int fll_in,
unsigned int fs, struct nau8824_fll *fll_param)
{
u64 fvco, fvco_max;
unsigned int fref, i, fvco_sel;
/* Ensure the reference clock frequency (FREF) is <= 13.5MHz by dividing
* freq_in by 1, 2, 4, or 8 using FLL pre-scalar.
* FREF = freq_in / NAU8824_FLL_REF_DIV_MASK
*/
for (i = 0; i < ARRAY_SIZE(fll_pre_scalar); i++) {
fref = fll_in / fll_pre_scalar[i].param;
if (fref <= NAU_FREF_MAX)
break;
}
if (i == ARRAY_SIZE(fll_pre_scalar))
return -EINVAL;
fll_param->clk_ref_div = fll_pre_scalar[i].val;
/* Choose the FLL ratio based on FREF */
for (i = 0; i < ARRAY_SIZE(fll_ratio); i++) {
if (fref >= fll_ratio[i].param)
break;
}
if (i == ARRAY_SIZE(fll_ratio))
return -EINVAL;
fll_param->ratio = fll_ratio[i].val;
/* Calculate the frequency of DCO (FDCO) given freq_out = 256 * Fs.
* FDCO must be within the 90MHz - 124MHz or the FFL cannot be
* guaranteed across the full range of operation.
* FDCO = freq_out * 2 * mclk_src_scaling
*/
fvco_max = 0;
fvco_sel = ARRAY_SIZE(mclk_src_scaling);
for (i = 0; i < ARRAY_SIZE(mclk_src_scaling); i++) {
fvco = 256ULL * fs * 2 * mclk_src_scaling[i].param;
if (fvco > NAU_FVCO_MIN && fvco < NAU_FVCO_MAX &&
fvco_max < fvco) {
fvco_max = fvco;
fvco_sel = i;
}
}
if (ARRAY_SIZE(mclk_src_scaling) == fvco_sel)
return -EINVAL;
fll_param->mclk_src = mclk_src_scaling[fvco_sel].val;
/* Calculate the FLL 10-bit integer input and the FLL 16-bit fractional
* input based on FDCO, FREF and FLL ratio.
*/
fvco = div_u64(fvco_max << 16, fref * fll_param->ratio);
fll_param->fll_int = (fvco >> 16) & 0x3FF;
fll_param->fll_frac = fvco & 0xFFFF;
return 0;
}
static void nau8824_fll_apply(struct regmap *regmap,
struct nau8824_fll *fll_param)
{
regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK | NAU8824_CLK_MCLK_SRC_MASK,
NAU8824_CLK_SRC_MCLK | fll_param->mclk_src);
regmap_update_bits(regmap, NAU8824_REG_FLL1,
NAU8824_FLL_RATIO_MASK, fll_param->ratio);
/* FLL 16-bit fractional input */
regmap_write(regmap, NAU8824_REG_FLL2, fll_param->fll_frac);
/* FLL 10-bit integer input */
regmap_update_bits(regmap, NAU8824_REG_FLL3,
NAU8824_FLL_INTEGER_MASK, fll_param->fll_int);
/* FLL pre-scaler */
regmap_update_bits(regmap, NAU8824_REG_FLL4,
NAU8824_FLL_REF_DIV_MASK,
fll_param->clk_ref_div << NAU8824_FLL_REF_DIV_SFT);
/* select divided VCO input */
regmap_update_bits(regmap, NAU8824_REG_FLL5,
NAU8824_FLL_CLK_SW_MASK, NAU8824_FLL_CLK_SW_REF);
/* Disable free-running mode */
regmap_update_bits(regmap,
NAU8824_REG_FLL6, NAU8824_DCO_EN, 0);
if (fll_param->fll_frac) {
regmap_update_bits(regmap, NAU8824_REG_FLL5,
NAU8824_FLL_PDB_DAC_EN | NAU8824_FLL_LOOP_FTR_EN |
NAU8824_FLL_FTR_SW_MASK,
NAU8824_FLL_PDB_DAC_EN | NAU8824_FLL_LOOP_FTR_EN |
NAU8824_FLL_FTR_SW_FILTER);
regmap_update_bits(regmap, NAU8824_REG_FLL6,
NAU8824_SDM_EN, NAU8824_SDM_EN);
} else {
regmap_update_bits(regmap, NAU8824_REG_FLL5,
NAU8824_FLL_PDB_DAC_EN | NAU8824_FLL_LOOP_FTR_EN |
NAU8824_FLL_FTR_SW_MASK, NAU8824_FLL_FTR_SW_ACCU);
regmap_update_bits(regmap,
NAU8824_REG_FLL6, NAU8824_SDM_EN, 0);
}
}
/* freq_out must be 256*Fs in order to achieve the best performance */
static int nau8824_set_pll(struct snd_soc_component *component, int pll_id, int source,
unsigned int freq_in, unsigned int freq_out)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
struct nau8824_fll fll_param;
int ret, fs;
fs = freq_out / 256;
ret = nau8824_calc_fll_param(freq_in, fs, &fll_param);
if (ret < 0) {
dev_err(nau8824->dev, "Unsupported input clock %d\n", freq_in);
return ret;
}
dev_dbg(nau8824->dev, "mclk_src=%x ratio=%x fll_frac=%x fll_int=%x clk_ref_div=%x\n",
fll_param.mclk_src, fll_param.ratio, fll_param.fll_frac,
fll_param.fll_int, fll_param.clk_ref_div);
nau8824_fll_apply(nau8824->regmap, &fll_param);
mdelay(2);
regmap_update_bits(nau8824->regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_VCO);
return 0;
}
static int nau8824_config_sysclk(struct nau8824 *nau8824,
int clk_id, unsigned int freq)
{
struct regmap *regmap = nau8824->regmap;
switch (clk_id) {
case NAU8824_CLK_DIS:
regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_MCLK);
regmap_update_bits(regmap, NAU8824_REG_FLL6,
NAU8824_DCO_EN, 0);
break;
case NAU8824_CLK_MCLK:
nau8824_sema_acquire(nau8824, HZ);
regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_MCLK);
regmap_update_bits(regmap, NAU8824_REG_FLL6,
NAU8824_DCO_EN, 0);
nau8824_sema_release(nau8824);
break;
case NAU8824_CLK_INTERNAL:
regmap_update_bits(regmap, NAU8824_REG_FLL6,
NAU8824_DCO_EN, NAU8824_DCO_EN);
regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_SRC_MASK, NAU8824_CLK_SRC_VCO);
break;
case NAU8824_CLK_FLL_MCLK:
nau8824_sema_acquire(nau8824, HZ);
regmap_update_bits(regmap, NAU8824_REG_FLL3,
NAU8824_FLL_CLK_SRC_MASK, NAU8824_FLL_CLK_SRC_MCLK);
nau8824_sema_release(nau8824);
break;
case NAU8824_CLK_FLL_BLK:
nau8824_sema_acquire(nau8824, HZ);
regmap_update_bits(regmap, NAU8824_REG_FLL3,
NAU8824_FLL_CLK_SRC_MASK, NAU8824_FLL_CLK_SRC_BLK);
nau8824_sema_release(nau8824);
break;
case NAU8824_CLK_FLL_FS:
nau8824_sema_acquire(nau8824, HZ);
regmap_update_bits(regmap, NAU8824_REG_FLL3,
NAU8824_FLL_CLK_SRC_MASK, NAU8824_FLL_CLK_SRC_FS);
nau8824_sema_release(nau8824);
break;
default:
dev_err(nau8824->dev, "Invalid clock id (%d)\n", clk_id);
return -EINVAL;
}
dev_dbg(nau8824->dev, "Sysclk is %dHz and clock id is %d\n", freq,
clk_id);
return 0;
}
static int nau8824_set_sysclk(struct snd_soc_component *component,
int clk_id, int source, unsigned int freq, int dir)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
return nau8824_config_sysclk(nau8824, clk_id, freq);
}
static void nau8824_resume_setup(struct nau8824 *nau8824)
{
nau8824_config_sysclk(nau8824, NAU8824_CLK_DIS, 0);
if (nau8824->irq) {
/* Clear all interruption status */
nau8824_int_status_clear_all(nau8824->regmap);
/* Enable jack detection at sleep mode, insertion detection,
* and ejection detection.
*/
regmap_update_bits(nau8824->regmap, NAU8824_REG_ENA_CTRL,
NAU8824_JD_SLEEP_MODE, NAU8824_JD_SLEEP_MODE);
regmap_update_bits(nau8824->regmap,
NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN,
NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN);
regmap_update_bits(nau8824->regmap,
NAU8824_REG_INTERRUPT_SETTING,
NAU8824_IRQ_EJECT_DIS | NAU8824_IRQ_INSERT_DIS, 0);
}
}
static int nau8824_set_bias_level(struct snd_soc_component *component,
enum snd_soc_bias_level level)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
switch (level) {
case SND_SOC_BIAS_ON:
break;
case SND_SOC_BIAS_PREPARE:
break;
case SND_SOC_BIAS_STANDBY:
if (snd_soc_component_get_bias_level(component) == SND_SOC_BIAS_OFF) {
/* Setup codec configuration after resume */
nau8824_resume_setup(nau8824);
}
break;
case SND_SOC_BIAS_OFF:
regmap_update_bits(nau8824->regmap,
NAU8824_REG_INTERRUPT_SETTING, 0x3ff, 0x3ff);
regmap_update_bits(nau8824->regmap,
NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN, 0);
break;
}
return 0;
}
static int nau8824_component_probe(struct snd_soc_component *component)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
struct snd_soc_dapm_context *dapm = snd_soc_component_get_dapm(component);
nau8824->dapm = dapm;
return 0;
}
static int __maybe_unused nau8824_suspend(struct snd_soc_component *component)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
if (nau8824->irq) {
disable_irq(nau8824->irq);
snd_soc_component_force_bias_level(component, SND_SOC_BIAS_OFF);
}
regcache_cache_only(nau8824->regmap, true);
regcache_mark_dirty(nau8824->regmap);
return 0;
}
static int __maybe_unused nau8824_resume(struct snd_soc_component *component)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
regcache_cache_only(nau8824->regmap, false);
regcache_sync(nau8824->regmap);
if (nau8824->irq) {
/* Hold semaphore to postpone playback happening
* until jack detection done.
*/
nau8824_sema_acquire(nau8824, 0);
enable_irq(nau8824->irq);
}
return 0;
}
static const struct snd_soc_component_driver nau8824_component_driver = {
.probe = nau8824_component_probe,
.set_sysclk = nau8824_set_sysclk,
.set_pll = nau8824_set_pll,
.set_bias_level = nau8824_set_bias_level,
.suspend = nau8824_suspend,
.resume = nau8824_resume,
.controls = nau8824_snd_controls,
.num_controls = ARRAY_SIZE(nau8824_snd_controls),
.dapm_widgets = nau8824_dapm_widgets,
.num_dapm_widgets = ARRAY_SIZE(nau8824_dapm_widgets),
.dapm_routes = nau8824_dapm_routes,
.num_dapm_routes = ARRAY_SIZE(nau8824_dapm_routes),
.suspend_bias_off = 1,
.idle_bias_on = 1,
.use_pmdown_time = 1,
.endianness = 1,
.non_legacy_dai_naming = 1,
};
static const struct snd_soc_dai_ops nau8824_dai_ops = {
.hw_params = nau8824_hw_params,
.set_fmt = nau8824_set_fmt,
.set_tdm_slot = nau8824_set_tdm_slot,
};
#define NAU8824_RATES SNDRV_PCM_RATE_8000_192000
#define NAU8824_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE \
| SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_S32_LE)
static struct snd_soc_dai_driver nau8824_dai = {
.name = NAU8824_CODEC_DAI,
.playback = {
.stream_name = "Playback",
.channels_min = 1,
.channels_max = 2,
.rates = NAU8824_RATES,
.formats = NAU8824_FORMATS,
},
.capture = {
.stream_name = "Capture",
.channels_min = 1,
.channels_max = 2,
.rates = NAU8824_RATES,
.formats = NAU8824_FORMATS,
},
.ops = &nau8824_dai_ops,
};
static const struct regmap_config nau8824_regmap_config = {
.val_bits = NAU8824_REG_ADDR_LEN,
.reg_bits = NAU8824_REG_DATA_LEN,
.max_register = NAU8824_REG_MAX,
.readable_reg = nau8824_readable_reg,
.writeable_reg = nau8824_writeable_reg,
.volatile_reg = nau8824_volatile_reg,
.cache_type = REGCACHE_RBTREE,
.reg_defaults = nau8824_reg_defaults,
.num_reg_defaults = ARRAY_SIZE(nau8824_reg_defaults),
};
/**
* nau8824_enable_jack_detect - Specify a jack for event reporting
*
* @component: component to register the jack with
* @jack: jack to use to report headset and button events on
*
* After this function has been called the headset insert/remove and button
* events will be routed to the given jack. Jack can be null to stop
* reporting.
*/
int nau8824_enable_jack_detect(struct snd_soc_component *component,
struct snd_soc_jack *jack)
{
struct nau8824 *nau8824 = snd_soc_component_get_drvdata(component);
int ret;
nau8824->jack = jack;
/* Initiate jack detection work queue */
INIT_WORK(&nau8824->jdet_work, nau8824_jdet_work);
ret = devm_request_threaded_irq(nau8824->dev, nau8824->irq, NULL,
nau8824_interrupt, IRQF_TRIGGER_LOW | IRQF_ONESHOT,
"nau8824", nau8824);
if (ret) {
dev_err(nau8824->dev, "Cannot request irq %d (%d)\n",
nau8824->irq, ret);
}
return ret;
}
EXPORT_SYMBOL_GPL(nau8824_enable_jack_detect);
static void nau8824_reset_chip(struct regmap *regmap)
{
regmap_write(regmap, NAU8824_REG_RESET, 0x00);
regmap_write(regmap, NAU8824_REG_RESET, 0x00);
}
static void nau8824_setup_buttons(struct nau8824 *nau8824)
{
struct regmap *regmap = nau8824->regmap;
regmap_update_bits(regmap, NAU8824_REG_SAR_ADC,
NAU8824_SAR_TRACKING_GAIN_MASK,
nau8824->sar_voltage << NAU8824_SAR_TRACKING_GAIN_SFT);
regmap_update_bits(regmap, NAU8824_REG_SAR_ADC,
NAU8824_SAR_COMPARE_TIME_MASK,
nau8824->sar_compare_time << NAU8824_SAR_COMPARE_TIME_SFT);
regmap_update_bits(regmap, NAU8824_REG_SAR_ADC,
NAU8824_SAR_SAMPLING_TIME_MASK,
nau8824->sar_sampling_time << NAU8824_SAR_SAMPLING_TIME_SFT);
regmap_update_bits(regmap, NAU8824_REG_VDET_COEFFICIENT,
NAU8824_LEVELS_NR_MASK,
(nau8824->sar_threshold_num - 1) << NAU8824_LEVELS_NR_SFT);
regmap_update_bits(regmap, NAU8824_REG_VDET_COEFFICIENT,
NAU8824_HYSTERESIS_MASK,
nau8824->sar_hysteresis << NAU8824_HYSTERESIS_SFT);
regmap_update_bits(regmap, NAU8824_REG_VDET_COEFFICIENT,
NAU8824_SHORTKEY_DEBOUNCE_MASK,
nau8824->key_debounce << NAU8824_SHORTKEY_DEBOUNCE_SFT);
regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_1,
(nau8824->sar_threshold[0] << 8) | nau8824->sar_threshold[1]);
regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_2,
(nau8824->sar_threshold[2] << 8) | nau8824->sar_threshold[3]);
regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_3,
(nau8824->sar_threshold[4] << 8) | nau8824->sar_threshold[5]);
regmap_write(regmap, NAU8824_REG_VDET_THRESHOLD_4,
(nau8824->sar_threshold[6] << 8) | nau8824->sar_threshold[7]);
}
static void nau8824_init_regs(struct nau8824 *nau8824)
{
struct regmap *regmap = nau8824->regmap;
/* Enable Bias/VMID/VMID Tieoff */
regmap_update_bits(regmap, NAU8824_REG_BIAS_ADJ,
NAU8824_VMID | NAU8824_VMID_SEL_MASK, NAU8824_VMID |
(nau8824->vref_impedance << NAU8824_VMID_SEL_SFT));
regmap_update_bits(regmap, NAU8824_REG_BOOST,
NAU8824_GLOBAL_BIAS_EN, NAU8824_GLOBAL_BIAS_EN);
mdelay(2);
regmap_update_bits(regmap, NAU8824_REG_MIC_BIAS,
NAU8824_MICBIAS_VOLTAGE_MASK, nau8824->micbias_voltage);
/* Disable Boost Driver, Automatic Short circuit protection enable */
regmap_update_bits(regmap, NAU8824_REG_BOOST,
NAU8824_PRECHARGE_DIS | NAU8824_HP_BOOST_DIS |
NAU8824_HP_BOOST_G_DIS | NAU8824_SHORT_SHUTDOWN_EN,
NAU8824_PRECHARGE_DIS | NAU8824_HP_BOOST_DIS |
NAU8824_HP_BOOST_G_DIS | NAU8824_SHORT_SHUTDOWN_EN);
/* Scaling for ADC and DAC clock */
regmap_update_bits(regmap, NAU8824_REG_CLK_DIVIDER,
NAU8824_CLK_ADC_SRC_MASK | NAU8824_CLK_DAC_SRC_MASK,
(0x1 << NAU8824_CLK_ADC_SRC_SFT) |
(0x1 << NAU8824_CLK_DAC_SRC_SFT));
regmap_update_bits(regmap, NAU8824_REG_DAC_MUTE_CTRL,
NAU8824_DAC_ZC_EN, NAU8824_DAC_ZC_EN);
regmap_update_bits(regmap, NAU8824_REG_ENA_CTRL,
NAU8824_DAC_CH1_EN | NAU8824_DAC_CH0_EN |
NAU8824_ADC_CH0_EN | NAU8824_ADC_CH1_EN |
NAU8824_ADC_CH2_EN | NAU8824_ADC_CH3_EN,
NAU8824_DAC_CH1_EN | NAU8824_DAC_CH0_EN |
NAU8824_ADC_CH0_EN | NAU8824_ADC_CH1_EN |
NAU8824_ADC_CH2_EN | NAU8824_ADC_CH3_EN);
regmap_update_bits(regmap, NAU8824_REG_CLK_GATING_ENA,
NAU8824_CLK_ADC_CH23_EN | NAU8824_CLK_ADC_CH01_EN |
NAU8824_CLK_DAC_CH1_EN | NAU8824_CLK_DAC_CH0_EN |
NAU8824_CLK_I2S_EN | NAU8824_CLK_GAIN_EN |
NAU8824_CLK_SAR_EN | NAU8824_CLK_DMIC_CH23_EN,
NAU8824_CLK_ADC_CH23_EN | NAU8824_CLK_ADC_CH01_EN |
NAU8824_CLK_DAC_CH1_EN | NAU8824_CLK_DAC_CH0_EN |
NAU8824_CLK_I2S_EN | NAU8824_CLK_GAIN_EN |
NAU8824_CLK_SAR_EN | NAU8824_CLK_DMIC_CH23_EN);
/* Class G timer 64ms */
regmap_update_bits(regmap, NAU8824_REG_CLASSG,
NAU8824_CLASSG_TIMER_MASK,
0x20 << NAU8824_CLASSG_TIMER_SFT);
regmap_update_bits(regmap, NAU8824_REG_TRIM_SETTINGS,
NAU8824_DRV_CURR_INC, NAU8824_DRV_CURR_INC);
/* Disable DACR/L power */
regmap_update_bits(regmap, NAU8824_REG_CHARGE_PUMP_CONTROL,
NAU8824_SPKR_PULL_DOWN | NAU8824_SPKL_PULL_DOWN |
NAU8824_POWER_DOWN_DACR | NAU8824_POWER_DOWN_DACL,
NAU8824_SPKR_PULL_DOWN | NAU8824_SPKL_PULL_DOWN |
NAU8824_POWER_DOWN_DACR | NAU8824_POWER_DOWN_DACL);
/* Enable TESTDAC. This sets the analog DAC inputs to a '0' input
* signal to avoid any glitches due to power up transients in both
* the analog and digital DAC circuit.
*/
regmap_update_bits(regmap, NAU8824_REG_ENABLE_LO,
NAU8824_TEST_DAC_EN, NAU8824_TEST_DAC_EN);
/* Config L/R channel */
regmap_update_bits(regmap, NAU8824_REG_DAC_CH0_DGAIN_CTRL,
NAU8824_DAC_CH0_SEL_MASK, NAU8824_DAC_CH0_SEL_I2S0);
regmap_update_bits(regmap, NAU8824_REG_DAC_CH1_DGAIN_CTRL,
NAU8824_DAC_CH1_SEL_MASK, NAU8824_DAC_CH1_SEL_I2S1);
regmap_update_bits(regmap, NAU8824_REG_ENABLE_LO,
NAU8824_DACR_HPR_EN | NAU8824_DACL_HPL_EN,
NAU8824_DACR_HPR_EN | NAU8824_DACL_HPL_EN);
/* Default oversampling/decimations settings are unusable
* (audible hiss). Set it to something better.
*/
regmap_update_bits(regmap, NAU8824_REG_ADC_FILTER_CTRL,
NAU8824_ADC_SYNC_DOWN_MASK, NAU8824_ADC_SYNC_DOWN_64);
regmap_update_bits(regmap, NAU8824_REG_DAC_FILTER_CTRL_1,
NAU8824_DAC_CICCLP_OFF | NAU8824_DAC_OVERSAMPLE_MASK,
NAU8824_DAC_CICCLP_OFF | NAU8824_DAC_OVERSAMPLE_64);
/* DAC clock delay 2ns, VREF */
regmap_update_bits(regmap, NAU8824_REG_RDAC,
NAU8824_RDAC_CLK_DELAY_MASK | NAU8824_RDAC_VREF_MASK,
(0x2 << NAU8824_RDAC_CLK_DELAY_SFT) |
(0x3 << NAU8824_RDAC_VREF_SFT));
/* PGA input mode selection */
regmap_update_bits(regmap, NAU8824_REG_FEPGA,
NAU8824_FEPGA_MODEL_SHORT_EN | NAU8824_FEPGA_MODER_SHORT_EN,
NAU8824_FEPGA_MODEL_SHORT_EN | NAU8824_FEPGA_MODER_SHORT_EN);
/* Digital microphone control */
regmap_update_bits(regmap, NAU8824_REG_ANALOG_CONTROL_1,
NAU8824_DMIC_CLK_DRV_STRG | NAU8824_DMIC_CLK_SLEW_FAST,
NAU8824_DMIC_CLK_DRV_STRG | NAU8824_DMIC_CLK_SLEW_FAST);
regmap_update_bits(regmap, NAU8824_REG_JACK_DET_CTRL,
NAU8824_JACK_LOGIC,
/* jkdet_polarity - 1 is for active-low */
nau8824->jkdet_polarity ? 0 : NAU8824_JACK_LOGIC);
regmap_update_bits(regmap,
NAU8824_REG_JACK_DET_CTRL, NAU8824_JACK_EJECT_DT_MASK,
(nau8824->jack_eject_debounce << NAU8824_JACK_EJECT_DT_SFT));
if (nau8824->sar_threshold_num)
nau8824_setup_buttons(nau8824);
}
static int nau8824_setup_irq(struct nau8824 *nau8824)
{
/* Disable interruption before codec initiation done */
regmap_update_bits(nau8824->regmap, NAU8824_REG_ENA_CTRL,
NAU8824_JD_SLEEP_MODE, NAU8824_JD_SLEEP_MODE);
regmap_update_bits(nau8824->regmap,
NAU8824_REG_INTERRUPT_SETTING, 0x3ff, 0x3ff);
regmap_update_bits(nau8824->regmap, NAU8824_REG_INTERRUPT_SETTING_1,
NAU8824_IRQ_EJECT_EN | NAU8824_IRQ_INSERT_EN, 0);
return 0;
}
static void nau8824_print_device_properties(struct nau8824 *nau8824)
{
struct device *dev = nau8824->dev;
int i;
dev_dbg(dev, "jkdet-polarity: %d\n", nau8824->jkdet_polarity);
dev_dbg(dev, "micbias-voltage: %d\n", nau8824->micbias_voltage);
dev_dbg(dev, "vref-impedance: %d\n", nau8824->vref_impedance);
dev_dbg(dev, "sar-threshold-num: %d\n", nau8824->sar_threshold_num);
for (i = 0; i < nau8824->sar_threshold_num; i++)
dev_dbg(dev, "sar-threshold[%d]=%x\n", i,
nau8824->sar_threshold[i]);
dev_dbg(dev, "sar-hysteresis: %d\n", nau8824->sar_hysteresis);
dev_dbg(dev, "sar-voltage: %d\n", nau8824->sar_voltage);
dev_dbg(dev, "sar-compare-time: %d\n", nau8824->sar_compare_time);
dev_dbg(dev, "sar-sampling-time: %d\n", nau8824->sar_sampling_time);
dev_dbg(dev, "short-key-debounce: %d\n", nau8824->key_debounce);
dev_dbg(dev, "jack-eject-debounce: %d\n",
nau8824->jack_eject_debounce);
}
static int nau8824_read_device_properties(struct device *dev,
struct nau8824 *nau8824) {
int ret;
ret = device_property_read_u32(dev, "nuvoton,jkdet-polarity",
&nau8824->jkdet_polarity);
if (ret)
nau8824->jkdet_polarity = 1;
ret = device_property_read_u32(dev, "nuvoton,micbias-voltage",
&nau8824->micbias_voltage);
if (ret)
nau8824->micbias_voltage = 6;
ret = device_property_read_u32(dev, "nuvoton,vref-impedance",
&nau8824->vref_impedance);
if (ret)
nau8824->vref_impedance = 2;
ret = device_property_read_u32(dev, "nuvoton,sar-threshold-num",
&nau8824->sar_threshold_num);
if (ret)
nau8824->sar_threshold_num = 4;
ret = device_property_read_u32_array(dev, "nuvoton,sar-threshold",
nau8824->sar_threshold, nau8824->sar_threshold_num);
if (ret) {
nau8824->sar_threshold[0] = 0x0a;
nau8824->sar_threshold[1] = 0x14;
nau8824->sar_threshold[2] = 0x26;
nau8824->sar_threshold[3] = 0x73;
}
ret = device_property_read_u32(dev, "nuvoton,sar-hysteresis",
&nau8824->sar_hysteresis);
if (ret)
nau8824->sar_hysteresis = 0;
ret = device_property_read_u32(dev, "nuvoton,sar-voltage",
&nau8824->sar_voltage);
if (ret)
nau8824->sar_voltage = 6;
ret = device_property_read_u32(dev, "nuvoton,sar-compare-time",
&nau8824->sar_compare_time);
if (ret)
nau8824->sar_compare_time = 1;
ret = device_property_read_u32(dev, "nuvoton,sar-sampling-time",
&nau8824->sar_sampling_time);
if (ret)
nau8824->sar_sampling_time = 1;
ret = device_property_read_u32(dev, "nuvoton,short-key-debounce",
&nau8824->key_debounce);
if (ret)
nau8824->key_debounce = 0;
ret = device_property_read_u32(dev, "nuvoton,jack-eject-debounce",
&nau8824->jack_eject_debounce);
if (ret)
nau8824->jack_eject_debounce = 1;
return 0;
}
static int nau8824_i2c_probe(struct i2c_client *i2c,
const struct i2c_device_id *id)
{
struct device *dev = &i2c->dev;
struct nau8824 *nau8824 = dev_get_platdata(dev);
int ret, value;
if (!nau8824) {
nau8824 = devm_kzalloc(dev, sizeof(*nau8824), GFP_KERNEL);
if (!nau8824)
return -ENOMEM;
ret = nau8824_read_device_properties(dev, nau8824);
if (ret)
return ret;
}
i2c_set_clientdata(i2c, nau8824);
nau8824->regmap = devm_regmap_init_i2c(i2c, &nau8824_regmap_config);
if (IS_ERR(nau8824->regmap))
return PTR_ERR(nau8824->regmap);
nau8824->dev = dev;
nau8824->irq = i2c->irq;
sema_init(&nau8824->jd_sem, 1);
nau8824_print_device_properties(nau8824);
ret = regmap_read(nau8824->regmap, NAU8824_REG_I2C_DEVICE_ID, &value);
if (ret < 0) {
dev_err(dev, "Failed to read device id from the NAU8824: %d\n",
ret);
return ret;
}
nau8824_reset_chip(nau8824->regmap);
nau8824_init_regs(nau8824);
if (i2c->irq)
nau8824_setup_irq(nau8824);
return devm_snd_soc_register_component(dev,
&nau8824_component_driver, &nau8824_dai, 1);
}
static const struct i2c_device_id nau8824_i2c_ids[] = {
{ "nau8824", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, nau8824_i2c_ids);
#ifdef CONFIG_OF
static const struct of_device_id nau8824_of_ids[] = {
{ .compatible = "nuvoton,nau8824", },
{}
};
MODULE_DEVICE_TABLE(of, nau8824_of_ids);
#endif
#ifdef CONFIG_ACPI
static const struct acpi_device_id nau8824_acpi_match[] = {
{ "10508824", 0 },
{},
};
MODULE_DEVICE_TABLE(acpi, nau8824_acpi_match);
#endif
static struct i2c_driver nau8824_i2c_driver = {
.driver = {
.name = "nau8824",
.of_match_table = of_match_ptr(nau8824_of_ids),
.acpi_match_table = ACPI_PTR(nau8824_acpi_match),
},
.probe = nau8824_i2c_probe,
.id_table = nau8824_i2c_ids,
};
module_i2c_driver(nau8824_i2c_driver);
MODULE_DESCRIPTION("ASoC NAU88L24 driver");
MODULE_AUTHOR("John Hsu <KCHSU0@nuvoton.com>");
MODULE_LICENSE("GPL v2");