mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 04:56:54 +07:00
1a59d1b8e0
Based on 1 normalized pattern(s): this program is free software you can redistribute it and or modify it under the terms of the gnu general public license as published by the free software foundation either version 2 of the license or at your option any later version this program is distributed in the hope that it will be useful but without any warranty without even the implied warranty of merchantability or fitness for a particular purpose see the gnu general public license for more details you should have received a copy of the gnu general public license along with this program if not write to the free software foundation inc 59 temple place suite 330 boston ma 02111 1307 usa extracted by the scancode license scanner the SPDX license identifier GPL-2.0-or-later has been chosen to replace the boilerplate/reference in 1334 file(s). Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Allison Randal <allison@lohutok.net> Reviewed-by: Richard Fontana <rfontana@redhat.com> Cc: linux-spdx@vger.kernel.org Link: https://lkml.kernel.org/r/20190527070033.113240726@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
739 lines
17 KiB
C
739 lines
17 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
*
|
|
* Copyright (C) 2000, 2001 Kanoj Sarcar
|
|
* Copyright (C) 2000, 2001 Ralf Baechle
|
|
* Copyright (C) 2000, 2001 Silicon Graphics, Inc.
|
|
* Copyright (C) 2000, 2001, 2003 Broadcom Corporation
|
|
*/
|
|
#include <linux/cache.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/init.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/threads.h>
|
|
#include <linux/export.h>
|
|
#include <linux/time.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/err.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_irq.h>
|
|
|
|
#include <linux/atomic.h>
|
|
#include <asm/cpu.h>
|
|
#include <asm/ginvt.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/idle.h>
|
|
#include <asm/r4k-timer.h>
|
|
#include <asm/mips-cps.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/time.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/maar.h>
|
|
|
|
int __cpu_number_map[CONFIG_MIPS_NR_CPU_NR_MAP]; /* Map physical to logical */
|
|
EXPORT_SYMBOL(__cpu_number_map);
|
|
|
|
int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
|
|
EXPORT_SYMBOL(__cpu_logical_map);
|
|
|
|
/* Number of TCs (or siblings in Intel speak) per CPU core */
|
|
int smp_num_siblings = 1;
|
|
EXPORT_SYMBOL(smp_num_siblings);
|
|
|
|
/* representing the TCs (or siblings in Intel speak) of each logical CPU */
|
|
cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
|
|
EXPORT_SYMBOL(cpu_sibling_map);
|
|
|
|
/* representing the core map of multi-core chips of each logical CPU */
|
|
cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
|
|
EXPORT_SYMBOL(cpu_core_map);
|
|
|
|
static DECLARE_COMPLETION(cpu_starting);
|
|
static DECLARE_COMPLETION(cpu_running);
|
|
|
|
/*
|
|
* A logcal cpu mask containing only one VPE per core to
|
|
* reduce the number of IPIs on large MT systems.
|
|
*/
|
|
cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
|
|
EXPORT_SYMBOL(cpu_foreign_map);
|
|
|
|
/* representing cpus for which sibling maps can be computed */
|
|
static cpumask_t cpu_sibling_setup_map;
|
|
|
|
/* representing cpus for which core maps can be computed */
|
|
static cpumask_t cpu_core_setup_map;
|
|
|
|
cpumask_t cpu_coherent_mask;
|
|
|
|
#ifdef CONFIG_GENERIC_IRQ_IPI
|
|
static struct irq_desc *call_desc;
|
|
static struct irq_desc *sched_desc;
|
|
#endif
|
|
|
|
static inline void set_cpu_sibling_map(int cpu)
|
|
{
|
|
int i;
|
|
|
|
cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
|
|
|
|
if (smp_num_siblings > 1) {
|
|
for_each_cpu(i, &cpu_sibling_setup_map) {
|
|
if (cpus_are_siblings(cpu, i)) {
|
|
cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
|
|
cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
|
|
}
|
|
}
|
|
} else
|
|
cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
|
|
}
|
|
|
|
static inline void set_cpu_core_map(int cpu)
|
|
{
|
|
int i;
|
|
|
|
cpumask_set_cpu(cpu, &cpu_core_setup_map);
|
|
|
|
for_each_cpu(i, &cpu_core_setup_map) {
|
|
if (cpu_data[cpu].package == cpu_data[i].package) {
|
|
cpumask_set_cpu(i, &cpu_core_map[cpu]);
|
|
cpumask_set_cpu(cpu, &cpu_core_map[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate a new cpu_foreign_map mask whenever a
|
|
* new cpu appears or disappears.
|
|
*/
|
|
void calculate_cpu_foreign_map(void)
|
|
{
|
|
int i, k, core_present;
|
|
cpumask_t temp_foreign_map;
|
|
|
|
/* Re-calculate the mask */
|
|
cpumask_clear(&temp_foreign_map);
|
|
for_each_online_cpu(i) {
|
|
core_present = 0;
|
|
for_each_cpu(k, &temp_foreign_map)
|
|
if (cpus_are_siblings(i, k))
|
|
core_present = 1;
|
|
if (!core_present)
|
|
cpumask_set_cpu(i, &temp_foreign_map);
|
|
}
|
|
|
|
for_each_online_cpu(i)
|
|
cpumask_andnot(&cpu_foreign_map[i],
|
|
&temp_foreign_map, &cpu_sibling_map[i]);
|
|
}
|
|
|
|
const struct plat_smp_ops *mp_ops;
|
|
EXPORT_SYMBOL(mp_ops);
|
|
|
|
void register_smp_ops(const struct plat_smp_ops *ops)
|
|
{
|
|
if (mp_ops)
|
|
printk(KERN_WARNING "Overriding previously set SMP ops\n");
|
|
|
|
mp_ops = ops;
|
|
}
|
|
|
|
#ifdef CONFIG_GENERIC_IRQ_IPI
|
|
void mips_smp_send_ipi_single(int cpu, unsigned int action)
|
|
{
|
|
mips_smp_send_ipi_mask(cpumask_of(cpu), action);
|
|
}
|
|
|
|
void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
|
|
{
|
|
unsigned long flags;
|
|
unsigned int core;
|
|
int cpu;
|
|
|
|
local_irq_save(flags);
|
|
|
|
switch (action) {
|
|
case SMP_CALL_FUNCTION:
|
|
__ipi_send_mask(call_desc, mask);
|
|
break;
|
|
|
|
case SMP_RESCHEDULE_YOURSELF:
|
|
__ipi_send_mask(sched_desc, mask);
|
|
break;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
if (mips_cpc_present()) {
|
|
for_each_cpu(cpu, mask) {
|
|
if (cpus_are_siblings(cpu, smp_processor_id()))
|
|
continue;
|
|
|
|
core = cpu_core(&cpu_data[cpu]);
|
|
|
|
while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
|
|
mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
|
|
mips_cpc_lock_other(core);
|
|
write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
|
|
mips_cpc_unlock_other();
|
|
mips_cm_unlock_other();
|
|
}
|
|
}
|
|
}
|
|
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
|
|
static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
|
|
{
|
|
scheduler_ipi();
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
|
|
{
|
|
generic_smp_call_function_interrupt();
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static struct irqaction irq_resched = {
|
|
.handler = ipi_resched_interrupt,
|
|
.flags = IRQF_PERCPU,
|
|
.name = "IPI resched"
|
|
};
|
|
|
|
static struct irqaction irq_call = {
|
|
.handler = ipi_call_interrupt,
|
|
.flags = IRQF_PERCPU,
|
|
.name = "IPI call"
|
|
};
|
|
|
|
static void smp_ipi_init_one(unsigned int virq,
|
|
struct irqaction *action)
|
|
{
|
|
int ret;
|
|
|
|
irq_set_handler(virq, handle_percpu_irq);
|
|
ret = setup_irq(virq, action);
|
|
BUG_ON(ret);
|
|
}
|
|
|
|
static unsigned int call_virq, sched_virq;
|
|
|
|
int mips_smp_ipi_allocate(const struct cpumask *mask)
|
|
{
|
|
int virq;
|
|
struct irq_domain *ipidomain;
|
|
struct device_node *node;
|
|
|
|
node = of_irq_find_parent(of_root);
|
|
ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
|
|
|
|
/*
|
|
* Some platforms have half DT setup. So if we found irq node but
|
|
* didn't find an ipidomain, try to search for one that is not in the
|
|
* DT.
|
|
*/
|
|
if (node && !ipidomain)
|
|
ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
|
|
|
|
/*
|
|
* There are systems which use IPI IRQ domains, but only have one
|
|
* registered when some runtime condition is met. For example a Malta
|
|
* kernel may include support for GIC & CPU interrupt controller IPI
|
|
* IRQ domains, but if run on a system with no GIC & no MT ASE then
|
|
* neither will be supported or registered.
|
|
*
|
|
* We only have a problem if we're actually using multiple CPUs so fail
|
|
* loudly if that is the case. Otherwise simply return, skipping IPI
|
|
* setup, if we're running with only a single CPU.
|
|
*/
|
|
if (!ipidomain) {
|
|
BUG_ON(num_present_cpus() > 1);
|
|
return 0;
|
|
}
|
|
|
|
virq = irq_reserve_ipi(ipidomain, mask);
|
|
BUG_ON(!virq);
|
|
if (!call_virq)
|
|
call_virq = virq;
|
|
|
|
virq = irq_reserve_ipi(ipidomain, mask);
|
|
BUG_ON(!virq);
|
|
if (!sched_virq)
|
|
sched_virq = virq;
|
|
|
|
if (irq_domain_is_ipi_per_cpu(ipidomain)) {
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, mask) {
|
|
smp_ipi_init_one(call_virq + cpu, &irq_call);
|
|
smp_ipi_init_one(sched_virq + cpu, &irq_resched);
|
|
}
|
|
} else {
|
|
smp_ipi_init_one(call_virq, &irq_call);
|
|
smp_ipi_init_one(sched_virq, &irq_resched);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int mips_smp_ipi_free(const struct cpumask *mask)
|
|
{
|
|
struct irq_domain *ipidomain;
|
|
struct device_node *node;
|
|
|
|
node = of_irq_find_parent(of_root);
|
|
ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
|
|
|
|
/*
|
|
* Some platforms have half DT setup. So if we found irq node but
|
|
* didn't find an ipidomain, try to search for one that is not in the
|
|
* DT.
|
|
*/
|
|
if (node && !ipidomain)
|
|
ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
|
|
|
|
BUG_ON(!ipidomain);
|
|
|
|
if (irq_domain_is_ipi_per_cpu(ipidomain)) {
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, mask) {
|
|
remove_irq(call_virq + cpu, &irq_call);
|
|
remove_irq(sched_virq + cpu, &irq_resched);
|
|
}
|
|
}
|
|
irq_destroy_ipi(call_virq, mask);
|
|
irq_destroy_ipi(sched_virq, mask);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int __init mips_smp_ipi_init(void)
|
|
{
|
|
if (num_possible_cpus() == 1)
|
|
return 0;
|
|
|
|
mips_smp_ipi_allocate(cpu_possible_mask);
|
|
|
|
call_desc = irq_to_desc(call_virq);
|
|
sched_desc = irq_to_desc(sched_virq);
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(mips_smp_ipi_init);
|
|
#endif
|
|
|
|
/*
|
|
* First C code run on the secondary CPUs after being started up by
|
|
* the master.
|
|
*/
|
|
asmlinkage void start_secondary(void)
|
|
{
|
|
unsigned int cpu;
|
|
|
|
cpu_probe();
|
|
per_cpu_trap_init(false);
|
|
mips_clockevent_init();
|
|
mp_ops->init_secondary();
|
|
cpu_report();
|
|
maar_init();
|
|
|
|
/*
|
|
* XXX parity protection should be folded in here when it's converted
|
|
* to an option instead of something based on .cputype
|
|
*/
|
|
|
|
calibrate_delay();
|
|
preempt_disable();
|
|
cpu = smp_processor_id();
|
|
cpu_data[cpu].udelay_val = loops_per_jiffy;
|
|
|
|
cpumask_set_cpu(cpu, &cpu_coherent_mask);
|
|
notify_cpu_starting(cpu);
|
|
|
|
/* Notify boot CPU that we're starting & ready to sync counters */
|
|
complete(&cpu_starting);
|
|
|
|
synchronise_count_slave(cpu);
|
|
|
|
/* The CPU is running and counters synchronised, now mark it online */
|
|
set_cpu_online(cpu, true);
|
|
|
|
set_cpu_sibling_map(cpu);
|
|
set_cpu_core_map(cpu);
|
|
|
|
calculate_cpu_foreign_map();
|
|
|
|
/*
|
|
* Notify boot CPU that we're up & online and it can safely return
|
|
* from __cpu_up
|
|
*/
|
|
complete(&cpu_running);
|
|
|
|
/*
|
|
* irq will be enabled in ->smp_finish(), enabling it too early
|
|
* is dangerous.
|
|
*/
|
|
WARN_ON_ONCE(!irqs_disabled());
|
|
mp_ops->smp_finish();
|
|
|
|
cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
|
|
}
|
|
|
|
static void stop_this_cpu(void *dummy)
|
|
{
|
|
/*
|
|
* Remove this CPU:
|
|
*/
|
|
|
|
set_cpu_online(smp_processor_id(), false);
|
|
calculate_cpu_foreign_map();
|
|
local_irq_disable();
|
|
while (1);
|
|
}
|
|
|
|
void smp_send_stop(void)
|
|
{
|
|
smp_call_function(stop_this_cpu, NULL, 0);
|
|
}
|
|
|
|
void __init smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
}
|
|
|
|
/* called from main before smp_init() */
|
|
void __init smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
init_new_context(current, &init_mm);
|
|
current_thread_info()->cpu = 0;
|
|
mp_ops->prepare_cpus(max_cpus);
|
|
set_cpu_sibling_map(0);
|
|
set_cpu_core_map(0);
|
|
calculate_cpu_foreign_map();
|
|
#ifndef CONFIG_HOTPLUG_CPU
|
|
init_cpu_present(cpu_possible_mask);
|
|
#endif
|
|
cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
|
|
}
|
|
|
|
/* preload SMP state for boot cpu */
|
|
void smp_prepare_boot_cpu(void)
|
|
{
|
|
if (mp_ops->prepare_boot_cpu)
|
|
mp_ops->prepare_boot_cpu();
|
|
set_cpu_possible(0, true);
|
|
set_cpu_online(0, true);
|
|
}
|
|
|
|
int __cpu_up(unsigned int cpu, struct task_struct *tidle)
|
|
{
|
|
int err;
|
|
|
|
err = mp_ops->boot_secondary(cpu, tidle);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Wait for CPU to start and be ready to sync counters */
|
|
if (!wait_for_completion_timeout(&cpu_starting,
|
|
msecs_to_jiffies(1000))) {
|
|
pr_crit("CPU%u: failed to start\n", cpu);
|
|
return -EIO;
|
|
}
|
|
|
|
synchronise_count_master(cpu);
|
|
|
|
/* Wait for CPU to finish startup & mark itself online before return */
|
|
wait_for_completion(&cpu_running);
|
|
return 0;
|
|
}
|
|
|
|
/* Not really SMP stuff ... */
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void flush_tlb_all_ipi(void *info)
|
|
{
|
|
local_flush_tlb_all();
|
|
}
|
|
|
|
void flush_tlb_all(void)
|
|
{
|
|
if (cpu_has_mmid) {
|
|
htw_stop();
|
|
ginvt_full();
|
|
sync_ginv();
|
|
instruction_hazard();
|
|
htw_start();
|
|
return;
|
|
}
|
|
|
|
on_each_cpu(flush_tlb_all_ipi, NULL, 1);
|
|
}
|
|
|
|
static void flush_tlb_mm_ipi(void *mm)
|
|
{
|
|
drop_mmu_context((struct mm_struct *)mm);
|
|
}
|
|
|
|
/*
|
|
* Special Variant of smp_call_function for use by TLB functions:
|
|
*
|
|
* o No return value
|
|
* o collapses to normal function call on UP kernels
|
|
* o collapses to normal function call on systems with a single shared
|
|
* primary cache.
|
|
*/
|
|
static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
|
|
{
|
|
smp_call_function(func, info, 1);
|
|
}
|
|
|
|
static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
|
|
{
|
|
preempt_disable();
|
|
|
|
smp_on_other_tlbs(func, info);
|
|
func(info);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* The following tlb flush calls are invoked when old translations are
|
|
* being torn down, or pte attributes are changing. For single threaded
|
|
* address spaces, a new context is obtained on the current cpu, and tlb
|
|
* context on other cpus are invalidated to force a new context allocation
|
|
* at switch_mm time, should the mm ever be used on other cpus. For
|
|
* multithreaded address spaces, intercpu interrupts have to be sent.
|
|
* Another case where intercpu interrupts are required is when the target
|
|
* mm might be active on another cpu (eg debuggers doing the flushes on
|
|
* behalf of debugees, kswapd stealing pages from another process etc).
|
|
* Kanoj 07/00.
|
|
*/
|
|
|
|
void flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
preempt_disable();
|
|
|
|
if (cpu_has_mmid) {
|
|
/*
|
|
* No need to worry about other CPUs - the ginvt in
|
|
* drop_mmu_context() will be globalized.
|
|
*/
|
|
} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
|
|
smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
|
|
} else {
|
|
unsigned int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
if (cpu != smp_processor_id() && cpu_context(cpu, mm))
|
|
set_cpu_context(cpu, mm, 0);
|
|
}
|
|
}
|
|
drop_mmu_context(mm);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
struct flush_tlb_data {
|
|
struct vm_area_struct *vma;
|
|
unsigned long addr1;
|
|
unsigned long addr2;
|
|
};
|
|
|
|
static void flush_tlb_range_ipi(void *info)
|
|
{
|
|
struct flush_tlb_data *fd = info;
|
|
|
|
local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
|
|
}
|
|
|
|
void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long addr;
|
|
u32 old_mmid;
|
|
|
|
preempt_disable();
|
|
if (cpu_has_mmid) {
|
|
htw_stop();
|
|
old_mmid = read_c0_memorymapid();
|
|
write_c0_memorymapid(cpu_asid(0, mm));
|
|
mtc0_tlbw_hazard();
|
|
addr = round_down(start, PAGE_SIZE * 2);
|
|
end = round_up(end, PAGE_SIZE * 2);
|
|
do {
|
|
ginvt_va_mmid(addr);
|
|
sync_ginv();
|
|
addr += PAGE_SIZE * 2;
|
|
} while (addr < end);
|
|
write_c0_memorymapid(old_mmid);
|
|
instruction_hazard();
|
|
htw_start();
|
|
} else if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
|
|
struct flush_tlb_data fd = {
|
|
.vma = vma,
|
|
.addr1 = start,
|
|
.addr2 = end,
|
|
};
|
|
|
|
smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
|
|
local_flush_tlb_range(vma, start, end);
|
|
} else {
|
|
unsigned int cpu;
|
|
int exec = vma->vm_flags & VM_EXEC;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
/*
|
|
* flush_cache_range() will only fully flush icache if
|
|
* the VMA is executable, otherwise we must invalidate
|
|
* ASID without it appearing to has_valid_asid() as if
|
|
* mm has been completely unused by that CPU.
|
|
*/
|
|
if (cpu != smp_processor_id() && cpu_context(cpu, mm))
|
|
set_cpu_context(cpu, mm, !exec);
|
|
}
|
|
local_flush_tlb_range(vma, start, end);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
static void flush_tlb_kernel_range_ipi(void *info)
|
|
{
|
|
struct flush_tlb_data *fd = info;
|
|
|
|
local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
|
|
}
|
|
|
|
void flush_tlb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
struct flush_tlb_data fd = {
|
|
.addr1 = start,
|
|
.addr2 = end,
|
|
};
|
|
|
|
on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
|
|
}
|
|
|
|
static void flush_tlb_page_ipi(void *info)
|
|
{
|
|
struct flush_tlb_data *fd = info;
|
|
|
|
local_flush_tlb_page(fd->vma, fd->addr1);
|
|
}
|
|
|
|
void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
|
|
{
|
|
u32 old_mmid;
|
|
|
|
preempt_disable();
|
|
if (cpu_has_mmid) {
|
|
htw_stop();
|
|
old_mmid = read_c0_memorymapid();
|
|
write_c0_memorymapid(cpu_asid(0, vma->vm_mm));
|
|
mtc0_tlbw_hazard();
|
|
ginvt_va_mmid(page);
|
|
sync_ginv();
|
|
write_c0_memorymapid(old_mmid);
|
|
instruction_hazard();
|
|
htw_start();
|
|
} else if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
|
|
(current->mm != vma->vm_mm)) {
|
|
struct flush_tlb_data fd = {
|
|
.vma = vma,
|
|
.addr1 = page,
|
|
};
|
|
|
|
smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
|
|
local_flush_tlb_page(vma, page);
|
|
} else {
|
|
unsigned int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
/*
|
|
* flush_cache_page() only does partial flushes, so
|
|
* invalidate ASID without it appearing to
|
|
* has_valid_asid() as if mm has been completely unused
|
|
* by that CPU.
|
|
*/
|
|
if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
|
|
set_cpu_context(cpu, vma->vm_mm, 1);
|
|
}
|
|
local_flush_tlb_page(vma, page);
|
|
}
|
|
preempt_enable();
|
|
}
|
|
|
|
static void flush_tlb_one_ipi(void *info)
|
|
{
|
|
unsigned long vaddr = (unsigned long) info;
|
|
|
|
local_flush_tlb_one(vaddr);
|
|
}
|
|
|
|
void flush_tlb_one(unsigned long vaddr)
|
|
{
|
|
smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
|
|
}
|
|
|
|
EXPORT_SYMBOL(flush_tlb_page);
|
|
EXPORT_SYMBOL(flush_tlb_one);
|
|
|
|
#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
|
|
|
|
static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
|
|
static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
|
|
|
|
void tick_broadcast(const struct cpumask *mask)
|
|
{
|
|
atomic_t *count;
|
|
call_single_data_t *csd;
|
|
int cpu;
|
|
|
|
for_each_cpu(cpu, mask) {
|
|
count = &per_cpu(tick_broadcast_count, cpu);
|
|
csd = &per_cpu(tick_broadcast_csd, cpu);
|
|
|
|
if (atomic_inc_return(count) == 1)
|
|
smp_call_function_single_async(cpu, csd);
|
|
}
|
|
}
|
|
|
|
static void tick_broadcast_callee(void *info)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
tick_receive_broadcast();
|
|
atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
|
|
}
|
|
|
|
static int __init tick_broadcast_init(void)
|
|
{
|
|
call_single_data_t *csd;
|
|
int cpu;
|
|
|
|
for (cpu = 0; cpu < NR_CPUS; cpu++) {
|
|
csd = &per_cpu(tick_broadcast_csd, cpu);
|
|
csd->func = tick_broadcast_callee;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
early_initcall(tick_broadcast_init);
|
|
|
|
#endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */
|