linux_dsm_epyc7002/fs/ext4/ialloc.c
Lukas Czerner 4113c4caa4 ext4: remove deprecated oldalloc
For a long time now orlov is the default block allocator in the
ext4. It performs better than the old one and no one seems to claim
otherwise so we can safely drop it and make oldalloc and orlov mount
option deprecated.

This is a part of the effort to reduce number of ext4 options hence the
test matrix.

Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
2011-10-08 14:34:47 -04:00

1200 lines
33 KiB
C

/*
* linux/fs/ext4/ialloc.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* BSD ufs-inspired inode and directory allocation by
* Stephen Tweedie (sct@redhat.com), 1993
* Big-endian to little-endian byte-swapping/bitmaps by
* David S. Miller (davem@caip.rutgers.edu), 1995
*/
#include <linux/time.h>
#include <linux/fs.h>
#include <linux/jbd2.h>
#include <linux/stat.h>
#include <linux/string.h>
#include <linux/quotaops.h>
#include <linux/buffer_head.h>
#include <linux/random.h>
#include <linux/bitops.h>
#include <linux/blkdev.h>
#include <asm/byteorder.h>
#include "ext4.h"
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include <trace/events/ext4.h>
/*
* ialloc.c contains the inodes allocation and deallocation routines
*/
/*
* The free inodes are managed by bitmaps. A file system contains several
* blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
* block for inodes, N blocks for the inode table and data blocks.
*
* The file system contains group descriptors which are located after the
* super block. Each descriptor contains the number of the bitmap block and
* the free blocks count in the block.
*/
/*
* To avoid calling the atomic setbit hundreds or thousands of times, we only
* need to use it within a single byte (to ensure we get endianness right).
* We can use memset for the rest of the bitmap as there are no other users.
*/
void ext4_mark_bitmap_end(int start_bit, int end_bit, char *bitmap)
{
int i;
if (start_bit >= end_bit)
return;
ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit);
for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++)
ext4_set_bit(i, bitmap);
if (i < end_bit)
memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3);
}
/* Initializes an uninitialized inode bitmap */
static unsigned ext4_init_inode_bitmap(struct super_block *sb,
struct buffer_head *bh,
ext4_group_t block_group,
struct ext4_group_desc *gdp)
{
struct ext4_sb_info *sbi = EXT4_SB(sb);
J_ASSERT_BH(bh, buffer_locked(bh));
/* If checksum is bad mark all blocks and inodes use to prevent
* allocation, essentially implementing a per-group read-only flag. */
if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
ext4_error(sb, "Checksum bad for group %u", block_group);
ext4_free_group_clusters_set(sb, gdp, 0);
ext4_free_inodes_set(sb, gdp, 0);
ext4_itable_unused_set(sb, gdp, 0);
memset(bh->b_data, 0xff, sb->s_blocksize);
return 0;
}
memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8);
ext4_mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), sb->s_blocksize * 8,
bh->b_data);
return EXT4_INODES_PER_GROUP(sb);
}
/*
* Read the inode allocation bitmap for a given block_group, reading
* into the specified slot in the superblock's bitmap cache.
*
* Return buffer_head of bitmap on success or NULL.
*/
static struct buffer_head *
ext4_read_inode_bitmap(struct super_block *sb, ext4_group_t block_group)
{
struct ext4_group_desc *desc;
struct buffer_head *bh = NULL;
ext4_fsblk_t bitmap_blk;
desc = ext4_get_group_desc(sb, block_group, NULL);
if (!desc)
return NULL;
bitmap_blk = ext4_inode_bitmap(sb, desc);
bh = sb_getblk(sb, bitmap_blk);
if (unlikely(!bh)) {
ext4_error(sb, "Cannot read inode bitmap - "
"block_group = %u, inode_bitmap = %llu",
block_group, bitmap_blk);
return NULL;
}
if (bitmap_uptodate(bh))
return bh;
lock_buffer(bh);
if (bitmap_uptodate(bh)) {
unlock_buffer(bh);
return bh;
}
ext4_lock_group(sb, block_group);
if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
ext4_init_inode_bitmap(sb, bh, block_group, desc);
set_bitmap_uptodate(bh);
set_buffer_uptodate(bh);
ext4_unlock_group(sb, block_group);
unlock_buffer(bh);
return bh;
}
ext4_unlock_group(sb, block_group);
if (buffer_uptodate(bh)) {
/*
* if not uninit if bh is uptodate,
* bitmap is also uptodate
*/
set_bitmap_uptodate(bh);
unlock_buffer(bh);
return bh;
}
/*
* submit the buffer_head for read. We can
* safely mark the bitmap as uptodate now.
* We do it here so the bitmap uptodate bit
* get set with buffer lock held.
*/
trace_ext4_load_inode_bitmap(sb, block_group);
set_bitmap_uptodate(bh);
if (bh_submit_read(bh) < 0) {
put_bh(bh);
ext4_error(sb, "Cannot read inode bitmap - "
"block_group = %u, inode_bitmap = %llu",
block_group, bitmap_blk);
return NULL;
}
return bh;
}
/*
* NOTE! When we get the inode, we're the only people
* that have access to it, and as such there are no
* race conditions we have to worry about. The inode
* is not on the hash-lists, and it cannot be reached
* through the filesystem because the directory entry
* has been deleted earlier.
*
* HOWEVER: we must make sure that we get no aliases,
* which means that we have to call "clear_inode()"
* _before_ we mark the inode not in use in the inode
* bitmaps. Otherwise a newly created file might use
* the same inode number (not actually the same pointer
* though), and then we'd have two inodes sharing the
* same inode number and space on the harddisk.
*/
void ext4_free_inode(handle_t *handle, struct inode *inode)
{
struct super_block *sb = inode->i_sb;
int is_directory;
unsigned long ino;
struct buffer_head *bitmap_bh = NULL;
struct buffer_head *bh2;
ext4_group_t block_group;
unsigned long bit;
struct ext4_group_desc *gdp;
struct ext4_super_block *es;
struct ext4_sb_info *sbi;
int fatal = 0, err, count, cleared;
if (atomic_read(&inode->i_count) > 1) {
printk(KERN_ERR "ext4_free_inode: inode has count=%d\n",
atomic_read(&inode->i_count));
return;
}
if (inode->i_nlink) {
printk(KERN_ERR "ext4_free_inode: inode has nlink=%d\n",
inode->i_nlink);
return;
}
if (!sb) {
printk(KERN_ERR "ext4_free_inode: inode on "
"nonexistent device\n");
return;
}
sbi = EXT4_SB(sb);
ino = inode->i_ino;
ext4_debug("freeing inode %lu\n", ino);
trace_ext4_free_inode(inode);
/*
* Note: we must free any quota before locking the superblock,
* as writing the quota to disk may need the lock as well.
*/
dquot_initialize(inode);
ext4_xattr_delete_inode(handle, inode);
dquot_free_inode(inode);
dquot_drop(inode);
is_directory = S_ISDIR(inode->i_mode);
/* Do this BEFORE marking the inode not in use or returning an error */
ext4_clear_inode(inode);
es = EXT4_SB(sb)->s_es;
if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) {
ext4_error(sb, "reserved or nonexistent inode %lu", ino);
goto error_return;
}
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
if (!bitmap_bh)
goto error_return;
BUFFER_TRACE(bitmap_bh, "get_write_access");
fatal = ext4_journal_get_write_access(handle, bitmap_bh);
if (fatal)
goto error_return;
fatal = -ESRCH;
gdp = ext4_get_group_desc(sb, block_group, &bh2);
if (gdp) {
BUFFER_TRACE(bh2, "get_write_access");
fatal = ext4_journal_get_write_access(handle, bh2);
}
ext4_lock_group(sb, block_group);
cleared = ext4_clear_bit(bit, bitmap_bh->b_data);
if (fatal || !cleared) {
ext4_unlock_group(sb, block_group);
goto out;
}
count = ext4_free_inodes_count(sb, gdp) + 1;
ext4_free_inodes_set(sb, gdp, count);
if (is_directory) {
count = ext4_used_dirs_count(sb, gdp) - 1;
ext4_used_dirs_set(sb, gdp, count);
percpu_counter_dec(&sbi->s_dirs_counter);
}
gdp->bg_checksum = ext4_group_desc_csum(sbi, block_group, gdp);
ext4_unlock_group(sb, block_group);
percpu_counter_inc(&sbi->s_freeinodes_counter);
if (sbi->s_log_groups_per_flex) {
ext4_group_t f = ext4_flex_group(sbi, block_group);
atomic_inc(&sbi->s_flex_groups[f].free_inodes);
if (is_directory)
atomic_dec(&sbi->s_flex_groups[f].used_dirs);
}
BUFFER_TRACE(bh2, "call ext4_handle_dirty_metadata");
fatal = ext4_handle_dirty_metadata(handle, NULL, bh2);
out:
if (cleared) {
BUFFER_TRACE(bitmap_bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
if (!fatal)
fatal = err;
ext4_mark_super_dirty(sb);
} else
ext4_error(sb, "bit already cleared for inode %lu", ino);
error_return:
brelse(bitmap_bh);
ext4_std_error(sb, fatal);
}
struct orlov_stats {
__u32 free_inodes;
__u32 free_clusters;
__u32 used_dirs;
};
/*
* Helper function for Orlov's allocator; returns critical information
* for a particular block group or flex_bg. If flex_size is 1, then g
* is a block group number; otherwise it is flex_bg number.
*/
static void get_orlov_stats(struct super_block *sb, ext4_group_t g,
int flex_size, struct orlov_stats *stats)
{
struct ext4_group_desc *desc;
struct flex_groups *flex_group = EXT4_SB(sb)->s_flex_groups;
if (flex_size > 1) {
stats->free_inodes = atomic_read(&flex_group[g].free_inodes);
stats->free_clusters = atomic_read(&flex_group[g].free_clusters);
stats->used_dirs = atomic_read(&flex_group[g].used_dirs);
return;
}
desc = ext4_get_group_desc(sb, g, NULL);
if (desc) {
stats->free_inodes = ext4_free_inodes_count(sb, desc);
stats->free_clusters = ext4_free_group_clusters(sb, desc);
stats->used_dirs = ext4_used_dirs_count(sb, desc);
} else {
stats->free_inodes = 0;
stats->free_clusters = 0;
stats->used_dirs = 0;
}
}
/*
* Orlov's allocator for directories.
*
* We always try to spread first-level directories.
*
* If there are blockgroups with both free inodes and free blocks counts
* not worse than average we return one with smallest directory count.
* Otherwise we simply return a random group.
*
* For the rest rules look so:
*
* It's OK to put directory into a group unless
* it has too many directories already (max_dirs) or
* it has too few free inodes left (min_inodes) or
* it has too few free blocks left (min_blocks) or
* Parent's group is preferred, if it doesn't satisfy these
* conditions we search cyclically through the rest. If none
* of the groups look good we just look for a group with more
* free inodes than average (starting at parent's group).
*/
static int find_group_orlov(struct super_block *sb, struct inode *parent,
ext4_group_t *group, int mode,
const struct qstr *qstr)
{
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
struct ext4_sb_info *sbi = EXT4_SB(sb);
ext4_group_t real_ngroups = ext4_get_groups_count(sb);
int inodes_per_group = EXT4_INODES_PER_GROUP(sb);
unsigned int freei, avefreei;
ext4_fsblk_t freeb, avefreec;
unsigned int ndirs;
int max_dirs, min_inodes;
ext4_grpblk_t min_clusters;
ext4_group_t i, grp, g, ngroups;
struct ext4_group_desc *desc;
struct orlov_stats stats;
int flex_size = ext4_flex_bg_size(sbi);
struct dx_hash_info hinfo;
ngroups = real_ngroups;
if (flex_size > 1) {
ngroups = (real_ngroups + flex_size - 1) >>
sbi->s_log_groups_per_flex;
parent_group >>= sbi->s_log_groups_per_flex;
}
freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter);
avefreei = freei / ngroups;
freeb = EXT4_C2B(sbi,
percpu_counter_read_positive(&sbi->s_freeclusters_counter));
avefreec = freeb;
do_div(avefreec, ngroups);
ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter);
if (S_ISDIR(mode) &&
((parent == sb->s_root->d_inode) ||
(ext4_test_inode_flag(parent, EXT4_INODE_TOPDIR)))) {
int best_ndir = inodes_per_group;
int ret = -1;
if (qstr) {
hinfo.hash_version = DX_HASH_HALF_MD4;
hinfo.seed = sbi->s_hash_seed;
ext4fs_dirhash(qstr->name, qstr->len, &hinfo);
grp = hinfo.hash;
} else
get_random_bytes(&grp, sizeof(grp));
parent_group = (unsigned)grp % ngroups;
for (i = 0; i < ngroups; i++) {
g = (parent_group + i) % ngroups;
get_orlov_stats(sb, g, flex_size, &stats);
if (!stats.free_inodes)
continue;
if (stats.used_dirs >= best_ndir)
continue;
if (stats.free_inodes < avefreei)
continue;
if (stats.free_clusters < avefreec)
continue;
grp = g;
ret = 0;
best_ndir = stats.used_dirs;
}
if (ret)
goto fallback;
found_flex_bg:
if (flex_size == 1) {
*group = grp;
return 0;
}
/*
* We pack inodes at the beginning of the flexgroup's
* inode tables. Block allocation decisions will do
* something similar, although regular files will
* start at 2nd block group of the flexgroup. See
* ext4_ext_find_goal() and ext4_find_near().
*/
grp *= flex_size;
for (i = 0; i < flex_size; i++) {
if (grp+i >= real_ngroups)
break;
desc = ext4_get_group_desc(sb, grp+i, NULL);
if (desc && ext4_free_inodes_count(sb, desc)) {
*group = grp+i;
return 0;
}
}
goto fallback;
}
max_dirs = ndirs / ngroups + inodes_per_group / 16;
min_inodes = avefreei - inodes_per_group*flex_size / 4;
if (min_inodes < 1)
min_inodes = 1;
min_clusters = avefreec - EXT4_CLUSTERS_PER_GROUP(sb)*flex_size / 4;
/*
* Start looking in the flex group where we last allocated an
* inode for this parent directory
*/
if (EXT4_I(parent)->i_last_alloc_group != ~0) {
parent_group = EXT4_I(parent)->i_last_alloc_group;
if (flex_size > 1)
parent_group >>= sbi->s_log_groups_per_flex;
}
for (i = 0; i < ngroups; i++) {
grp = (parent_group + i) % ngroups;
get_orlov_stats(sb, grp, flex_size, &stats);
if (stats.used_dirs >= max_dirs)
continue;
if (stats.free_inodes < min_inodes)
continue;
if (stats.free_clusters < min_clusters)
continue;
goto found_flex_bg;
}
fallback:
ngroups = real_ngroups;
avefreei = freei / ngroups;
fallback_retry:
parent_group = EXT4_I(parent)->i_block_group;
for (i = 0; i < ngroups; i++) {
grp = (parent_group + i) % ngroups;
desc = ext4_get_group_desc(sb, grp, NULL);
if (desc && ext4_free_inodes_count(sb, desc) &&
ext4_free_inodes_count(sb, desc) >= avefreei) {
*group = grp;
return 0;
}
}
if (avefreei) {
/*
* The free-inodes counter is approximate, and for really small
* filesystems the above test can fail to find any blockgroups
*/
avefreei = 0;
goto fallback_retry;
}
return -1;
}
static int find_group_other(struct super_block *sb, struct inode *parent,
ext4_group_t *group, int mode)
{
ext4_group_t parent_group = EXT4_I(parent)->i_block_group;
ext4_group_t i, last, ngroups = ext4_get_groups_count(sb);
struct ext4_group_desc *desc;
int flex_size = ext4_flex_bg_size(EXT4_SB(sb));
/*
* Try to place the inode is the same flex group as its
* parent. If we can't find space, use the Orlov algorithm to
* find another flex group, and store that information in the
* parent directory's inode information so that use that flex
* group for future allocations.
*/
if (flex_size > 1) {
int retry = 0;
try_again:
parent_group &= ~(flex_size-1);
last = parent_group + flex_size;
if (last > ngroups)
last = ngroups;
for (i = parent_group; i < last; i++) {
desc = ext4_get_group_desc(sb, i, NULL);
if (desc && ext4_free_inodes_count(sb, desc)) {
*group = i;
return 0;
}
}
if (!retry && EXT4_I(parent)->i_last_alloc_group != ~0) {
retry = 1;
parent_group = EXT4_I(parent)->i_last_alloc_group;
goto try_again;
}
/*
* If this didn't work, use the Orlov search algorithm
* to find a new flex group; we pass in the mode to
* avoid the topdir algorithms.
*/
*group = parent_group + flex_size;
if (*group > ngroups)
*group = 0;
return find_group_orlov(sb, parent, group, mode, NULL);
}
/*
* Try to place the inode in its parent directory
*/
*group = parent_group;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && ext4_free_inodes_count(sb, desc) &&
ext4_free_group_clusters(sb, desc))
return 0;
/*
* We're going to place this inode in a different blockgroup from its
* parent. We want to cause files in a common directory to all land in
* the same blockgroup. But we want files which are in a different
* directory which shares a blockgroup with our parent to land in a
* different blockgroup.
*
* So add our directory's i_ino into the starting point for the hash.
*/
*group = (*group + parent->i_ino) % ngroups;
/*
* Use a quadratic hash to find a group with a free inode and some free
* blocks.
*/
for (i = 1; i < ngroups; i <<= 1) {
*group += i;
if (*group >= ngroups)
*group -= ngroups;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && ext4_free_inodes_count(sb, desc) &&
ext4_free_group_clusters(sb, desc))
return 0;
}
/*
* That failed: try linear search for a free inode, even if that group
* has no free blocks.
*/
*group = parent_group;
for (i = 0; i < ngroups; i++) {
if (++*group >= ngroups)
*group = 0;
desc = ext4_get_group_desc(sb, *group, NULL);
if (desc && ext4_free_inodes_count(sb, desc))
return 0;
}
return -1;
}
/*
* claim the inode from the inode bitmap. If the group
* is uninit we need to take the groups's ext4_group_lock
* and clear the uninit flag. The inode bitmap update
* and group desc uninit flag clear should be done
* after holding ext4_group_lock so that ext4_read_inode_bitmap
* doesn't race with the ext4_claim_inode
*/
static int ext4_claim_inode(struct super_block *sb,
struct buffer_head *inode_bitmap_bh,
unsigned long ino, ext4_group_t group, int mode)
{
int free = 0, retval = 0, count;
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_info *grp = ext4_get_group_info(sb, group);
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
/*
* We have to be sure that new inode allocation does not race with
* inode table initialization, because otherwise we may end up
* allocating and writing new inode right before sb_issue_zeroout
* takes place and overwriting our new inode with zeroes. So we
* take alloc_sem to prevent it.
*/
down_read(&grp->alloc_sem);
ext4_lock_group(sb, group);
if (ext4_set_bit(ino, inode_bitmap_bh->b_data)) {
/* not a free inode */
retval = 1;
goto err_ret;
}
ino++;
if ((group == 0 && ino < EXT4_FIRST_INO(sb)) ||
ino > EXT4_INODES_PER_GROUP(sb)) {
ext4_unlock_group(sb, group);
up_read(&grp->alloc_sem);
ext4_error(sb, "reserved inode or inode > inodes count - "
"block_group = %u, inode=%lu", group,
ino + group * EXT4_INODES_PER_GROUP(sb));
return 1;
}
/* If we didn't allocate from within the initialized part of the inode
* table then we need to initialize up to this inode. */
if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) {
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) {
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT);
/* When marking the block group with
* ~EXT4_BG_INODE_UNINIT we don't want to depend
* on the value of bg_itable_unused even though
* mke2fs could have initialized the same for us.
* Instead we calculated the value below
*/
free = 0;
} else {
free = EXT4_INODES_PER_GROUP(sb) -
ext4_itable_unused_count(sb, gdp);
}
/*
* Check the relative inode number against the last used
* relative inode number in this group. if it is greater
* we need to update the bg_itable_unused count
*
*/
if (ino > free)
ext4_itable_unused_set(sb, gdp,
(EXT4_INODES_PER_GROUP(sb) - ino));
}
count = ext4_free_inodes_count(sb, gdp) - 1;
ext4_free_inodes_set(sb, gdp, count);
if (S_ISDIR(mode)) {
count = ext4_used_dirs_count(sb, gdp) + 1;
ext4_used_dirs_set(sb, gdp, count);
if (sbi->s_log_groups_per_flex) {
ext4_group_t f = ext4_flex_group(sbi, group);
atomic_inc(&sbi->s_flex_groups[f].used_dirs);
}
}
gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
err_ret:
ext4_unlock_group(sb, group);
up_read(&grp->alloc_sem);
return retval;
}
/*
* There are two policies for allocating an inode. If the new inode is
* a directory, then a forward search is made for a block group with both
* free space and a low directory-to-inode ratio; if that fails, then of
* the groups with above-average free space, that group with the fewest
* directories already is chosen.
*
* For other inodes, search forward from the parent directory's block
* group to find a free inode.
*/
struct inode *ext4_new_inode(handle_t *handle, struct inode *dir, int mode,
const struct qstr *qstr, __u32 goal)
{
struct super_block *sb;
struct buffer_head *inode_bitmap_bh = NULL;
struct buffer_head *group_desc_bh;
ext4_group_t ngroups, group = 0;
unsigned long ino = 0;
struct inode *inode;
struct ext4_group_desc *gdp = NULL;
struct ext4_inode_info *ei;
struct ext4_sb_info *sbi;
int ret2, err = 0;
struct inode *ret;
ext4_group_t i;
ext4_group_t flex_group;
/* Cannot create files in a deleted directory */
if (!dir || !dir->i_nlink)
return ERR_PTR(-EPERM);
sb = dir->i_sb;
ngroups = ext4_get_groups_count(sb);
trace_ext4_request_inode(dir, mode);
inode = new_inode(sb);
if (!inode)
return ERR_PTR(-ENOMEM);
ei = EXT4_I(inode);
sbi = EXT4_SB(sb);
if (!goal)
goal = sbi->s_inode_goal;
if (goal && goal <= le32_to_cpu(sbi->s_es->s_inodes_count)) {
group = (goal - 1) / EXT4_INODES_PER_GROUP(sb);
ino = (goal - 1) % EXT4_INODES_PER_GROUP(sb);
ret2 = 0;
goto got_group;
}
if (S_ISDIR(mode))
ret2 = find_group_orlov(sb, dir, &group, mode, qstr);
else
ret2 = find_group_other(sb, dir, &group, mode);
got_group:
EXT4_I(dir)->i_last_alloc_group = group;
err = -ENOSPC;
if (ret2 == -1)
goto out;
for (i = 0; i < ngroups; i++, ino = 0) {
err = -EIO;
gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
if (!gdp)
goto fail;
brelse(inode_bitmap_bh);
inode_bitmap_bh = ext4_read_inode_bitmap(sb, group);
if (!inode_bitmap_bh)
goto fail;
repeat_in_this_group:
ino = ext4_find_next_zero_bit((unsigned long *)
inode_bitmap_bh->b_data,
EXT4_INODES_PER_GROUP(sb), ino);
if (ino < EXT4_INODES_PER_GROUP(sb)) {
BUFFER_TRACE(inode_bitmap_bh, "get_write_access");
err = ext4_journal_get_write_access(handle,
inode_bitmap_bh);
if (err)
goto fail;
BUFFER_TRACE(group_desc_bh, "get_write_access");
err = ext4_journal_get_write_access(handle,
group_desc_bh);
if (err)
goto fail;
if (!ext4_claim_inode(sb, inode_bitmap_bh,
ino, group, mode)) {
/* we won it */
BUFFER_TRACE(inode_bitmap_bh,
"call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle,
NULL,
inode_bitmap_bh);
if (err)
goto fail;
/* zero bit is inode number 1*/
ino++;
goto got;
}
/* we lost it */
ext4_handle_release_buffer(handle, inode_bitmap_bh);
ext4_handle_release_buffer(handle, group_desc_bh);
if (++ino < EXT4_INODES_PER_GROUP(sb))
goto repeat_in_this_group;
}
/*
* This case is possible in concurrent environment. It is very
* rare. We cannot repeat the find_group_xxx() call because
* that will simply return the same blockgroup, because the
* group descriptor metadata has not yet been updated.
* So we just go onto the next blockgroup.
*/
if (++group == ngroups)
group = 0;
}
err = -ENOSPC;
goto out;
got:
/* We may have to initialize the block bitmap if it isn't already */
if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) &&
gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
struct buffer_head *block_bitmap_bh;
block_bitmap_bh = ext4_read_block_bitmap(sb, group);
BUFFER_TRACE(block_bitmap_bh, "get block bitmap access");
err = ext4_journal_get_write_access(handle, block_bitmap_bh);
if (err) {
brelse(block_bitmap_bh);
goto fail;
}
BUFFER_TRACE(block_bitmap_bh, "dirty block bitmap");
err = ext4_handle_dirty_metadata(handle, NULL, block_bitmap_bh);
brelse(block_bitmap_bh);
/* recheck and clear flag under lock if we still need to */
ext4_lock_group(sb, group);
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
ext4_free_group_clusters_set(sb, gdp,
ext4_free_clusters_after_init(sb, group, gdp));
gdp->bg_checksum = ext4_group_desc_csum(sbi, group,
gdp);
}
ext4_unlock_group(sb, group);
if (err)
goto fail;
}
BUFFER_TRACE(group_desc_bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle, NULL, group_desc_bh);
if (err)
goto fail;
percpu_counter_dec(&sbi->s_freeinodes_counter);
if (S_ISDIR(mode))
percpu_counter_inc(&sbi->s_dirs_counter);
ext4_mark_super_dirty(sb);
if (sbi->s_log_groups_per_flex) {
flex_group = ext4_flex_group(sbi, group);
atomic_dec(&sbi->s_flex_groups[flex_group].free_inodes);
}
if (test_opt(sb, GRPID)) {
inode->i_mode = mode;
inode->i_uid = current_fsuid();
inode->i_gid = dir->i_gid;
} else
inode_init_owner(inode, dir, mode);
inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb);
/* This is the optimal IO size (for stat), not the fs block size */
inode->i_blocks = 0;
inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime =
ext4_current_time(inode);
memset(ei->i_data, 0, sizeof(ei->i_data));
ei->i_dir_start_lookup = 0;
ei->i_disksize = 0;
/*
* Don't inherit extent flag from directory, amongst others. We set
* extent flag on newly created directory and file only if -o extent
* mount option is specified
*/
ei->i_flags =
ext4_mask_flags(mode, EXT4_I(dir)->i_flags & EXT4_FL_INHERITED);
ei->i_file_acl = 0;
ei->i_dtime = 0;
ei->i_block_group = group;
ei->i_last_alloc_group = ~0;
ext4_set_inode_flags(inode);
if (IS_DIRSYNC(inode))
ext4_handle_sync(handle);
if (insert_inode_locked(inode) < 0) {
err = -EINVAL;
goto fail_drop;
}
spin_lock(&sbi->s_next_gen_lock);
inode->i_generation = sbi->s_next_generation++;
spin_unlock(&sbi->s_next_gen_lock);
ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ext4_set_inode_state(inode, EXT4_STATE_NEW);
ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize;
ret = inode;
dquot_initialize(inode);
err = dquot_alloc_inode(inode);
if (err)
goto fail_drop;
err = ext4_init_acl(handle, inode, dir);
if (err)
goto fail_free_drop;
err = ext4_init_security(handle, inode, dir, qstr);
if (err)
goto fail_free_drop;
if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
/* set extent flag only for directory, file and normal symlink*/
if (S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode)) {
ext4_set_inode_flag(inode, EXT4_INODE_EXTENTS);
ext4_ext_tree_init(handle, inode);
}
}
if (ext4_handle_valid(handle)) {
ei->i_sync_tid = handle->h_transaction->t_tid;
ei->i_datasync_tid = handle->h_transaction->t_tid;
}
err = ext4_mark_inode_dirty(handle, inode);
if (err) {
ext4_std_error(sb, err);
goto fail_free_drop;
}
ext4_debug("allocating inode %lu\n", inode->i_ino);
trace_ext4_allocate_inode(inode, dir, mode);
goto really_out;
fail:
ext4_std_error(sb, err);
out:
iput(inode);
ret = ERR_PTR(err);
really_out:
brelse(inode_bitmap_bh);
return ret;
fail_free_drop:
dquot_free_inode(inode);
fail_drop:
dquot_drop(inode);
inode->i_flags |= S_NOQUOTA;
inode->i_nlink = 0;
unlock_new_inode(inode);
iput(inode);
brelse(inode_bitmap_bh);
return ERR_PTR(err);
}
/* Verify that we are loading a valid orphan from disk */
struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino)
{
unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count);
ext4_group_t block_group;
int bit;
struct buffer_head *bitmap_bh;
struct inode *inode = NULL;
long err = -EIO;
/* Error cases - e2fsck has already cleaned up for us */
if (ino > max_ino) {
ext4_warning(sb, "bad orphan ino %lu! e2fsck was run?", ino);
goto error;
}
block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb);
bitmap_bh = ext4_read_inode_bitmap(sb, block_group);
if (!bitmap_bh) {
ext4_warning(sb, "inode bitmap error for orphan %lu", ino);
goto error;
}
/* Having the inode bit set should be a 100% indicator that this
* is a valid orphan (no e2fsck run on fs). Orphans also include
* inodes that were being truncated, so we can't check i_nlink==0.
*/
if (!ext4_test_bit(bit, bitmap_bh->b_data))
goto bad_orphan;
inode = ext4_iget(sb, ino);
if (IS_ERR(inode))
goto iget_failed;
/*
* If the orphans has i_nlinks > 0 then it should be able to be
* truncated, otherwise it won't be removed from the orphan list
* during processing and an infinite loop will result.
*/
if (inode->i_nlink && !ext4_can_truncate(inode))
goto bad_orphan;
if (NEXT_ORPHAN(inode) > max_ino)
goto bad_orphan;
brelse(bitmap_bh);
return inode;
iget_failed:
err = PTR_ERR(inode);
inode = NULL;
bad_orphan:
ext4_warning(sb, "bad orphan inode %lu! e2fsck was run?", ino);
printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n",
bit, (unsigned long long)bitmap_bh->b_blocknr,
ext4_test_bit(bit, bitmap_bh->b_data));
printk(KERN_NOTICE "inode=%p\n", inode);
if (inode) {
printk(KERN_NOTICE "is_bad_inode(inode)=%d\n",
is_bad_inode(inode));
printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n",
NEXT_ORPHAN(inode));
printk(KERN_NOTICE "max_ino=%lu\n", max_ino);
printk(KERN_NOTICE "i_nlink=%u\n", inode->i_nlink);
/* Avoid freeing blocks if we got a bad deleted inode */
if (inode->i_nlink == 0)
inode->i_blocks = 0;
iput(inode);
}
brelse(bitmap_bh);
error:
return ERR_PTR(err);
}
unsigned long ext4_count_free_inodes(struct super_block *sb)
{
unsigned long desc_count;
struct ext4_group_desc *gdp;
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
#ifdef EXT4FS_DEBUG
struct ext4_super_block *es;
unsigned long bitmap_count, x;
struct buffer_head *bitmap_bh = NULL;
es = EXT4_SB(sb)->s_es;
desc_count = 0;
bitmap_count = 0;
gdp = NULL;
for (i = 0; i < ngroups; i++) {
gdp = ext4_get_group_desc(sb, i, NULL);
if (!gdp)
continue;
desc_count += ext4_free_inodes_count(sb, gdp);
brelse(bitmap_bh);
bitmap_bh = ext4_read_inode_bitmap(sb, i);
if (!bitmap_bh)
continue;
x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8);
printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
(unsigned long) i, ext4_free_inodes_count(sb, gdp), x);
bitmap_count += x;
}
brelse(bitmap_bh);
printk(KERN_DEBUG "ext4_count_free_inodes: "
"stored = %u, computed = %lu, %lu\n",
le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count);
return desc_count;
#else
desc_count = 0;
for (i = 0; i < ngroups; i++) {
gdp = ext4_get_group_desc(sb, i, NULL);
if (!gdp)
continue;
desc_count += ext4_free_inodes_count(sb, gdp);
cond_resched();
}
return desc_count;
#endif
}
/* Called at mount-time, super-block is locked */
unsigned long ext4_count_dirs(struct super_block * sb)
{
unsigned long count = 0;
ext4_group_t i, ngroups = ext4_get_groups_count(sb);
for (i = 0; i < ngroups; i++) {
struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
if (!gdp)
continue;
count += ext4_used_dirs_count(sb, gdp);
}
return count;
}
/*
* Zeroes not yet zeroed inode table - just write zeroes through the whole
* inode table. Must be called without any spinlock held. The only place
* where it is called from on active part of filesystem is ext4lazyinit
* thread, so we do not need any special locks, however we have to prevent
* inode allocation from the current group, so we take alloc_sem lock, to
* block ext4_claim_inode until we are finished.
*/
extern int ext4_init_inode_table(struct super_block *sb, ext4_group_t group,
int barrier)
{
struct ext4_group_info *grp = ext4_get_group_info(sb, group);
struct ext4_sb_info *sbi = EXT4_SB(sb);
struct ext4_group_desc *gdp = NULL;
struct buffer_head *group_desc_bh;
handle_t *handle;
ext4_fsblk_t blk;
int num, ret = 0, used_blks = 0;
/* This should not happen, but just to be sure check this */
if (sb->s_flags & MS_RDONLY) {
ret = 1;
goto out;
}
gdp = ext4_get_group_desc(sb, group, &group_desc_bh);
if (!gdp)
goto out;
/*
* We do not need to lock this, because we are the only one
* handling this flag.
*/
if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED))
goto out;
handle = ext4_journal_start_sb(sb, 1);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
goto out;
}
down_write(&grp->alloc_sem);
/*
* If inode bitmap was already initialized there may be some
* used inodes so we need to skip blocks with used inodes in
* inode table.
*/
if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)))
used_blks = DIV_ROUND_UP((EXT4_INODES_PER_GROUP(sb) -
ext4_itable_unused_count(sb, gdp)),
sbi->s_inodes_per_block);
if ((used_blks < 0) || (used_blks > sbi->s_itb_per_group)) {
ext4_error(sb, "Something is wrong with group %u\n"
"Used itable blocks: %d"
"itable unused count: %u\n",
group, used_blks,
ext4_itable_unused_count(sb, gdp));
ret = 1;
goto err_out;
}
blk = ext4_inode_table(sb, gdp) + used_blks;
num = sbi->s_itb_per_group - used_blks;
BUFFER_TRACE(group_desc_bh, "get_write_access");
ret = ext4_journal_get_write_access(handle,
group_desc_bh);
if (ret)
goto err_out;
/*
* Skip zeroout if the inode table is full. But we set the ZEROED
* flag anyway, because obviously, when it is full it does not need
* further zeroing.
*/
if (unlikely(num == 0))
goto skip_zeroout;
ext4_debug("going to zero out inode table in group %d\n",
group);
ret = sb_issue_zeroout(sb, blk, num, GFP_NOFS);
if (ret < 0)
goto err_out;
if (barrier)
blkdev_issue_flush(sb->s_bdev, GFP_NOFS, NULL);
skip_zeroout:
ext4_lock_group(sb, group);
gdp->bg_flags |= cpu_to_le16(EXT4_BG_INODE_ZEROED);
gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp);
ext4_unlock_group(sb, group);
BUFFER_TRACE(group_desc_bh,
"call ext4_handle_dirty_metadata");
ret = ext4_handle_dirty_metadata(handle, NULL,
group_desc_bh);
err_out:
up_write(&grp->alloc_sem);
ext4_journal_stop(handle);
out:
return ret;
}