mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 06:43:52 +07:00
83242c5158
Make sure the WARN_ON_FPU() macro consumes the macro argument, to avoid 'unused variable' build warnings if the only use of a variable is in debugging code. Cc: Andy Lutomirski <luto@amacapital.net> Cc: Bobby Powers <bobbypowers@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
695 lines
18 KiB
C
695 lines
18 KiB
C
/*
|
|
* Copyright (C) 1994 Linus Torvalds
|
|
*
|
|
* Pentium III FXSR, SSE support
|
|
* General FPU state handling cleanups
|
|
* Gareth Hughes <gareth@valinux.com>, May 2000
|
|
* x86-64 work by Andi Kleen 2002
|
|
*/
|
|
|
|
#ifndef _ASM_X86_FPU_INTERNAL_H
|
|
#define _ASM_X86_FPU_INTERNAL_H
|
|
|
|
#include <linux/compat.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/user.h>
|
|
#include <asm/fpu/api.h>
|
|
#include <asm/fpu/xstate.h>
|
|
|
|
/*
|
|
* High level FPU state handling functions:
|
|
*/
|
|
extern void fpu__activate_curr(struct fpu *fpu);
|
|
extern void fpu__activate_fpstate_read(struct fpu *fpu);
|
|
extern void fpu__activate_fpstate_write(struct fpu *fpu);
|
|
extern void fpu__save(struct fpu *fpu);
|
|
extern void fpu__restore(struct fpu *fpu);
|
|
extern int fpu__restore_sig(void __user *buf, int ia32_frame);
|
|
extern void fpu__drop(struct fpu *fpu);
|
|
extern int fpu__copy(struct fpu *dst_fpu, struct fpu *src_fpu);
|
|
extern void fpu__clear(struct fpu *fpu);
|
|
extern int fpu__exception_code(struct fpu *fpu, int trap_nr);
|
|
extern int dump_fpu(struct pt_regs *ptregs, struct user_i387_struct *fpstate);
|
|
|
|
/*
|
|
* Boot time FPU initialization functions:
|
|
*/
|
|
extern void fpu__init_cpu(void);
|
|
extern void fpu__init_system_xstate(void);
|
|
extern void fpu__init_cpu_xstate(void);
|
|
extern void fpu__init_system(struct cpuinfo_x86 *c);
|
|
extern void fpu__init_check_bugs(void);
|
|
extern void fpu__resume_cpu(void);
|
|
|
|
/*
|
|
* Debugging facility:
|
|
*/
|
|
#ifdef CONFIG_X86_DEBUG_FPU
|
|
# define WARN_ON_FPU(x) WARN_ON_ONCE(x)
|
|
#else
|
|
# define WARN_ON_FPU(x) ({ (void)(x); 0; })
|
|
#endif
|
|
|
|
/*
|
|
* FPU related CPU feature flag helper routines:
|
|
*/
|
|
static __always_inline __pure bool use_eager_fpu(void)
|
|
{
|
|
return static_cpu_has_safe(X86_FEATURE_EAGER_FPU);
|
|
}
|
|
|
|
static __always_inline __pure bool use_xsaveopt(void)
|
|
{
|
|
return static_cpu_has_safe(X86_FEATURE_XSAVEOPT);
|
|
}
|
|
|
|
static __always_inline __pure bool use_xsave(void)
|
|
{
|
|
return static_cpu_has_safe(X86_FEATURE_XSAVE);
|
|
}
|
|
|
|
static __always_inline __pure bool use_fxsr(void)
|
|
{
|
|
return static_cpu_has_safe(X86_FEATURE_FXSR);
|
|
}
|
|
|
|
/*
|
|
* fpstate handling functions:
|
|
*/
|
|
|
|
extern union fpregs_state init_fpstate;
|
|
|
|
extern void fpstate_init(union fpregs_state *state);
|
|
#ifdef CONFIG_MATH_EMULATION
|
|
extern void fpstate_init_soft(struct swregs_state *soft);
|
|
#else
|
|
static inline void fpstate_init_soft(struct swregs_state *soft) {}
|
|
#endif
|
|
static inline void fpstate_init_fxstate(struct fxregs_state *fx)
|
|
{
|
|
fx->cwd = 0x37f;
|
|
fx->mxcsr = MXCSR_DEFAULT;
|
|
}
|
|
extern void fpstate_sanitize_xstate(struct fpu *fpu);
|
|
|
|
#define user_insn(insn, output, input...) \
|
|
({ \
|
|
int err; \
|
|
asm volatile(ASM_STAC "\n" \
|
|
"1:" #insn "\n\t" \
|
|
"2: " ASM_CLAC "\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: movl $-1,%[err]\n" \
|
|
" jmp 2b\n" \
|
|
".previous\n" \
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: [err] "=r" (err), output \
|
|
: "0"(0), input); \
|
|
err; \
|
|
})
|
|
|
|
#define check_insn(insn, output, input...) \
|
|
({ \
|
|
int err; \
|
|
asm volatile("1:" #insn "\n\t" \
|
|
"2:\n" \
|
|
".section .fixup,\"ax\"\n" \
|
|
"3: movl $-1,%[err]\n" \
|
|
" jmp 2b\n" \
|
|
".previous\n" \
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: [err] "=r" (err), output \
|
|
: "0"(0), input); \
|
|
err; \
|
|
})
|
|
|
|
static inline int copy_fregs_to_user(struct fregs_state __user *fx)
|
|
{
|
|
return user_insn(fnsave %[fx]; fwait, [fx] "=m" (*fx), "m" (*fx));
|
|
}
|
|
|
|
static inline int copy_fxregs_to_user(struct fxregs_state __user *fx)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
return user_insn(fxsave %[fx], [fx] "=m" (*fx), "m" (*fx));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
return user_insn(fxsaveq %[fx], [fx] "=m" (*fx), "m" (*fx));
|
|
|
|
/* See comment in copy_fxregs_to_kernel() below. */
|
|
return user_insn(rex64/fxsave (%[fx]), "=m" (*fx), [fx] "R" (fx));
|
|
}
|
|
|
|
static inline void copy_kernel_to_fxregs(struct fxregs_state *fx)
|
|
{
|
|
int err;
|
|
|
|
if (config_enabled(CONFIG_X86_32)) {
|
|
err = check_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
} else {
|
|
if (config_enabled(CONFIG_AS_FXSAVEQ)) {
|
|
err = check_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
} else {
|
|
/* See comment in copy_fxregs_to_kernel() below. */
|
|
err = check_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx), "m" (*fx));
|
|
}
|
|
}
|
|
/* Copying from a kernel buffer to FPU registers should never fail: */
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
static inline int copy_user_to_fxregs(struct fxregs_state __user *fx)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
return user_insn(fxrstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
return user_insn(fxrstorq %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
|
|
/* See comment in copy_fxregs_to_kernel() below. */
|
|
return user_insn(rex64/fxrstor (%[fx]), "=m" (*fx), [fx] "R" (fx),
|
|
"m" (*fx));
|
|
}
|
|
|
|
static inline void copy_kernel_to_fregs(struct fregs_state *fx)
|
|
{
|
|
int err = check_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
static inline int copy_user_to_fregs(struct fregs_state __user *fx)
|
|
{
|
|
return user_insn(frstor %[fx], "=m" (*fx), [fx] "m" (*fx));
|
|
}
|
|
|
|
static inline void copy_fxregs_to_kernel(struct fpu *fpu)
|
|
{
|
|
if (config_enabled(CONFIG_X86_32))
|
|
asm volatile( "fxsave %[fx]" : [fx] "=m" (fpu->state.fxsave));
|
|
else if (config_enabled(CONFIG_AS_FXSAVEQ))
|
|
asm volatile("fxsaveq %[fx]" : [fx] "=m" (fpu->state.fxsave));
|
|
else {
|
|
/* Using "rex64; fxsave %0" is broken because, if the memory
|
|
* operand uses any extended registers for addressing, a second
|
|
* REX prefix will be generated (to the assembler, rex64
|
|
* followed by semicolon is a separate instruction), and hence
|
|
* the 64-bitness is lost.
|
|
*
|
|
* Using "fxsaveq %0" would be the ideal choice, but is only
|
|
* supported starting with gas 2.16.
|
|
*
|
|
* Using, as a workaround, the properly prefixed form below
|
|
* isn't accepted by any binutils version so far released,
|
|
* complaining that the same type of prefix is used twice if
|
|
* an extended register is needed for addressing (fix submitted
|
|
* to mainline 2005-11-21).
|
|
*
|
|
* asm volatile("rex64/fxsave %0" : "=m" (fpu->state.fxsave));
|
|
*
|
|
* This, however, we can work around by forcing the compiler to
|
|
* select an addressing mode that doesn't require extended
|
|
* registers.
|
|
*/
|
|
asm volatile( "rex64/fxsave (%[fx])"
|
|
: "=m" (fpu->state.fxsave)
|
|
: [fx] "R" (&fpu->state.fxsave));
|
|
}
|
|
}
|
|
|
|
/* These macros all use (%edi)/(%rdi) as the single memory argument. */
|
|
#define XSAVE ".byte " REX_PREFIX "0x0f,0xae,0x27"
|
|
#define XSAVEOPT ".byte " REX_PREFIX "0x0f,0xae,0x37"
|
|
#define XSAVES ".byte " REX_PREFIX "0x0f,0xc7,0x2f"
|
|
#define XRSTOR ".byte " REX_PREFIX "0x0f,0xae,0x2f"
|
|
#define XRSTORS ".byte " REX_PREFIX "0x0f,0xc7,0x1f"
|
|
|
|
/* xstate instruction fault handler: */
|
|
#define xstate_fault(__err) \
|
|
\
|
|
".section .fixup,\"ax\"\n" \
|
|
\
|
|
"3: movl $-2,%[_err]\n" \
|
|
" jmp 2b\n" \
|
|
\
|
|
".previous\n" \
|
|
\
|
|
_ASM_EXTABLE(1b, 3b) \
|
|
: [_err] "=r" (__err)
|
|
|
|
/*
|
|
* This function is called only during boot time when x86 caps are not set
|
|
* up and alternative can not be used yet.
|
|
*/
|
|
static inline void copy_xregs_to_kernel_booting(struct xregs_state *xstate)
|
|
{
|
|
u64 mask = -1;
|
|
u32 lmask = mask;
|
|
u32 hmask = mask >> 32;
|
|
int err = 0;
|
|
|
|
WARN_ON(system_state != SYSTEM_BOOTING);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_XSAVES))
|
|
asm volatile("1:"XSAVES"\n\t"
|
|
"2:\n\t"
|
|
xstate_fault(err)
|
|
: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
|
|
: "memory");
|
|
else
|
|
asm volatile("1:"XSAVE"\n\t"
|
|
"2:\n\t"
|
|
xstate_fault(err)
|
|
: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
|
|
: "memory");
|
|
|
|
/* We should never fault when copying to a kernel buffer: */
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
/*
|
|
* This function is called only during boot time when x86 caps are not set
|
|
* up and alternative can not be used yet.
|
|
*/
|
|
static inline void copy_kernel_to_xregs_booting(struct xregs_state *xstate)
|
|
{
|
|
u64 mask = -1;
|
|
u32 lmask = mask;
|
|
u32 hmask = mask >> 32;
|
|
int err = 0;
|
|
|
|
WARN_ON(system_state != SYSTEM_BOOTING);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_XSAVES))
|
|
asm volatile("1:"XRSTORS"\n\t"
|
|
"2:\n\t"
|
|
xstate_fault(err)
|
|
: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
|
|
: "memory");
|
|
else
|
|
asm volatile("1:"XRSTOR"\n\t"
|
|
"2:\n\t"
|
|
xstate_fault(err)
|
|
: "D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask), "0" (err)
|
|
: "memory");
|
|
|
|
/* We should never fault when copying from a kernel buffer: */
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
/*
|
|
* Save processor xstate to xsave area.
|
|
*/
|
|
static inline void copy_xregs_to_kernel(struct xregs_state *xstate)
|
|
{
|
|
u64 mask = -1;
|
|
u32 lmask = mask;
|
|
u32 hmask = mask >> 32;
|
|
int err = 0;
|
|
|
|
WARN_ON(!alternatives_patched);
|
|
|
|
/*
|
|
* If xsaves is enabled, xsaves replaces xsaveopt because
|
|
* it supports compact format and supervisor states in addition to
|
|
* modified optimization in xsaveopt.
|
|
*
|
|
* Otherwise, if xsaveopt is enabled, xsaveopt replaces xsave
|
|
* because xsaveopt supports modified optimization which is not
|
|
* supported by xsave.
|
|
*
|
|
* If none of xsaves and xsaveopt is enabled, use xsave.
|
|
*/
|
|
alternative_input_2(
|
|
"1:"XSAVE,
|
|
XSAVEOPT,
|
|
X86_FEATURE_XSAVEOPT,
|
|
XSAVES,
|
|
X86_FEATURE_XSAVES,
|
|
[xstate] "D" (xstate), "a" (lmask), "d" (hmask) :
|
|
"memory");
|
|
asm volatile("2:\n\t"
|
|
xstate_fault(err)
|
|
: "0" (err)
|
|
: "memory");
|
|
|
|
/* We should never fault when copying to a kernel buffer: */
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
/*
|
|
* Restore processor xstate from xsave area.
|
|
*/
|
|
static inline void copy_kernel_to_xregs(struct xregs_state *xstate, u64 mask)
|
|
{
|
|
u32 lmask = mask;
|
|
u32 hmask = mask >> 32;
|
|
int err = 0;
|
|
|
|
/*
|
|
* Use xrstors to restore context if it is enabled. xrstors supports
|
|
* compacted format of xsave area which is not supported by xrstor.
|
|
*/
|
|
alternative_input(
|
|
"1: " XRSTOR,
|
|
XRSTORS,
|
|
X86_FEATURE_XSAVES,
|
|
"D" (xstate), "m" (*xstate), "a" (lmask), "d" (hmask)
|
|
: "memory");
|
|
|
|
asm volatile("2:\n"
|
|
xstate_fault(err)
|
|
: "0" (err)
|
|
: "memory");
|
|
|
|
/* We should never fault when copying from a kernel buffer: */
|
|
WARN_ON_FPU(err);
|
|
}
|
|
|
|
/*
|
|
* Save xstate to user space xsave area.
|
|
*
|
|
* We don't use modified optimization because xrstor/xrstors might track
|
|
* a different application.
|
|
*
|
|
* We don't use compacted format xsave area for
|
|
* backward compatibility for old applications which don't understand
|
|
* compacted format of xsave area.
|
|
*/
|
|
static inline int copy_xregs_to_user(struct xregs_state __user *buf)
|
|
{
|
|
int err;
|
|
|
|
/*
|
|
* Clear the xsave header first, so that reserved fields are
|
|
* initialized to zero.
|
|
*/
|
|
err = __clear_user(&buf->header, sizeof(buf->header));
|
|
if (unlikely(err))
|
|
return -EFAULT;
|
|
|
|
__asm__ __volatile__(ASM_STAC "\n"
|
|
"1:"XSAVE"\n"
|
|
"2: " ASM_CLAC "\n"
|
|
xstate_fault(err)
|
|
: "D" (buf), "a" (-1), "d" (-1), "0" (err)
|
|
: "memory");
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Restore xstate from user space xsave area.
|
|
*/
|
|
static inline int copy_user_to_xregs(struct xregs_state __user *buf, u64 mask)
|
|
{
|
|
struct xregs_state *xstate = ((__force struct xregs_state *)buf);
|
|
u32 lmask = mask;
|
|
u32 hmask = mask >> 32;
|
|
int err = 0;
|
|
|
|
__asm__ __volatile__(ASM_STAC "\n"
|
|
"1:"XRSTOR"\n"
|
|
"2: " ASM_CLAC "\n"
|
|
xstate_fault(err)
|
|
: "D" (xstate), "a" (lmask), "d" (hmask), "0" (err)
|
|
: "memory"); /* memory required? */
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* These must be called with preempt disabled. Returns
|
|
* 'true' if the FPU state is still intact and we can
|
|
* keep registers active.
|
|
*
|
|
* The legacy FNSAVE instruction cleared all FPU state
|
|
* unconditionally, so registers are essentially destroyed.
|
|
* Modern FPU state can be kept in registers, if there are
|
|
* no pending FP exceptions.
|
|
*/
|
|
static inline int copy_fpregs_to_fpstate(struct fpu *fpu)
|
|
{
|
|
if (likely(use_xsave())) {
|
|
copy_xregs_to_kernel(&fpu->state.xsave);
|
|
return 1;
|
|
}
|
|
|
|
if (likely(use_fxsr())) {
|
|
copy_fxregs_to_kernel(fpu);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Legacy FPU register saving, FNSAVE always clears FPU registers,
|
|
* so we have to mark them inactive:
|
|
*/
|
|
asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline void __copy_kernel_to_fpregs(union fpregs_state *fpstate)
|
|
{
|
|
if (use_xsave()) {
|
|
copy_kernel_to_xregs(&fpstate->xsave, -1);
|
|
} else {
|
|
if (use_fxsr())
|
|
copy_kernel_to_fxregs(&fpstate->fxsave);
|
|
else
|
|
copy_kernel_to_fregs(&fpstate->fsave);
|
|
}
|
|
}
|
|
|
|
static inline void copy_kernel_to_fpregs(union fpregs_state *fpstate)
|
|
{
|
|
/*
|
|
* AMD K7/K8 CPUs don't save/restore FDP/FIP/FOP unless an exception is
|
|
* pending. Clear the x87 state here by setting it to fixed values.
|
|
* "m" is a random variable that should be in L1.
|
|
*/
|
|
if (unlikely(static_cpu_has_bug_safe(X86_BUG_FXSAVE_LEAK))) {
|
|
asm volatile(
|
|
"fnclex\n\t"
|
|
"emms\n\t"
|
|
"fildl %P[addr]" /* set F?P to defined value */
|
|
: : [addr] "m" (fpstate));
|
|
}
|
|
|
|
__copy_kernel_to_fpregs(fpstate);
|
|
}
|
|
|
|
extern int copy_fpstate_to_sigframe(void __user *buf, void __user *fp, int size);
|
|
|
|
/*
|
|
* FPU context switch related helper methods:
|
|
*/
|
|
|
|
DECLARE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);
|
|
|
|
/*
|
|
* Must be run with preemption disabled: this clears the fpu_fpregs_owner_ctx,
|
|
* on this CPU.
|
|
*
|
|
* This will disable any lazy FPU state restore of the current FPU state,
|
|
* but if the current thread owns the FPU, it will still be saved by.
|
|
*/
|
|
static inline void __cpu_disable_lazy_restore(unsigned int cpu)
|
|
{
|
|
per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
|
|
}
|
|
|
|
static inline int fpu_want_lazy_restore(struct fpu *fpu, unsigned int cpu)
|
|
{
|
|
return fpu == this_cpu_read_stable(fpu_fpregs_owner_ctx) && cpu == fpu->last_cpu;
|
|
}
|
|
|
|
|
|
/*
|
|
* Wrap lazy FPU TS handling in a 'hw fpregs activation/deactivation'
|
|
* idiom, which is then paired with the sw-flag (fpregs_active) later on:
|
|
*/
|
|
|
|
static inline void __fpregs_activate_hw(void)
|
|
{
|
|
if (!use_eager_fpu())
|
|
clts();
|
|
}
|
|
|
|
static inline void __fpregs_deactivate_hw(void)
|
|
{
|
|
if (!use_eager_fpu())
|
|
stts();
|
|
}
|
|
|
|
/* Must be paired with an 'stts' (fpregs_deactivate_hw()) after! */
|
|
static inline void __fpregs_deactivate(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(!fpu->fpregs_active);
|
|
|
|
fpu->fpregs_active = 0;
|
|
this_cpu_write(fpu_fpregs_owner_ctx, NULL);
|
|
}
|
|
|
|
/* Must be paired with a 'clts' (fpregs_activate_hw()) before! */
|
|
static inline void __fpregs_activate(struct fpu *fpu)
|
|
{
|
|
WARN_ON_FPU(fpu->fpregs_active);
|
|
|
|
fpu->fpregs_active = 1;
|
|
this_cpu_write(fpu_fpregs_owner_ctx, fpu);
|
|
}
|
|
|
|
/*
|
|
* The question "does this thread have fpu access?"
|
|
* is slightly racy, since preemption could come in
|
|
* and revoke it immediately after the test.
|
|
*
|
|
* However, even in that very unlikely scenario,
|
|
* we can just assume we have FPU access - typically
|
|
* to save the FP state - we'll just take a #NM
|
|
* fault and get the FPU access back.
|
|
*/
|
|
static inline int fpregs_active(void)
|
|
{
|
|
return current->thread.fpu.fpregs_active;
|
|
}
|
|
|
|
/*
|
|
* Encapsulate the CR0.TS handling together with the
|
|
* software flag.
|
|
*
|
|
* These generally need preemption protection to work,
|
|
* do try to avoid using these on their own.
|
|
*/
|
|
static inline void fpregs_activate(struct fpu *fpu)
|
|
{
|
|
__fpregs_activate_hw();
|
|
__fpregs_activate(fpu);
|
|
}
|
|
|
|
static inline void fpregs_deactivate(struct fpu *fpu)
|
|
{
|
|
__fpregs_deactivate(fpu);
|
|
__fpregs_deactivate_hw();
|
|
}
|
|
|
|
/*
|
|
* FPU state switching for scheduling.
|
|
*
|
|
* This is a two-stage process:
|
|
*
|
|
* - switch_fpu_prepare() saves the old state and
|
|
* sets the new state of the CR0.TS bit. This is
|
|
* done within the context of the old process.
|
|
*
|
|
* - switch_fpu_finish() restores the new state as
|
|
* necessary.
|
|
*/
|
|
typedef struct { int preload; } fpu_switch_t;
|
|
|
|
static inline fpu_switch_t
|
|
switch_fpu_prepare(struct fpu *old_fpu, struct fpu *new_fpu, int cpu)
|
|
{
|
|
fpu_switch_t fpu;
|
|
|
|
/*
|
|
* If the task has used the math, pre-load the FPU on xsave processors
|
|
* or if the past 5 consecutive context-switches used math.
|
|
*/
|
|
fpu.preload = new_fpu->fpstate_active &&
|
|
(use_eager_fpu() || new_fpu->counter > 5);
|
|
|
|
if (old_fpu->fpregs_active) {
|
|
if (!copy_fpregs_to_fpstate(old_fpu))
|
|
old_fpu->last_cpu = -1;
|
|
else
|
|
old_fpu->last_cpu = cpu;
|
|
|
|
/* But leave fpu_fpregs_owner_ctx! */
|
|
old_fpu->fpregs_active = 0;
|
|
|
|
/* Don't change CR0.TS if we just switch! */
|
|
if (fpu.preload) {
|
|
new_fpu->counter++;
|
|
__fpregs_activate(new_fpu);
|
|
prefetch(&new_fpu->state);
|
|
} else {
|
|
__fpregs_deactivate_hw();
|
|
}
|
|
} else {
|
|
old_fpu->counter = 0;
|
|
old_fpu->last_cpu = -1;
|
|
if (fpu.preload) {
|
|
new_fpu->counter++;
|
|
if (fpu_want_lazy_restore(new_fpu, cpu))
|
|
fpu.preload = 0;
|
|
else
|
|
prefetch(&new_fpu->state);
|
|
fpregs_activate(new_fpu);
|
|
}
|
|
}
|
|
return fpu;
|
|
}
|
|
|
|
/*
|
|
* Misc helper functions:
|
|
*/
|
|
|
|
/*
|
|
* By the time this gets called, we've already cleared CR0.TS and
|
|
* given the process the FPU if we are going to preload the FPU
|
|
* state - all we need to do is to conditionally restore the register
|
|
* state itself.
|
|
*/
|
|
static inline void switch_fpu_finish(struct fpu *new_fpu, fpu_switch_t fpu_switch)
|
|
{
|
|
if (fpu_switch.preload)
|
|
copy_kernel_to_fpregs(&new_fpu->state);
|
|
}
|
|
|
|
/*
|
|
* Needs to be preemption-safe.
|
|
*
|
|
* NOTE! user_fpu_begin() must be used only immediately before restoring
|
|
* the save state. It does not do any saving/restoring on its own. In
|
|
* lazy FPU mode, it is just an optimization to avoid a #NM exception,
|
|
* the task can lose the FPU right after preempt_enable().
|
|
*/
|
|
static inline void user_fpu_begin(void)
|
|
{
|
|
struct fpu *fpu = ¤t->thread.fpu;
|
|
|
|
preempt_disable();
|
|
if (!fpregs_active())
|
|
fpregs_activate(fpu);
|
|
preempt_enable();
|
|
}
|
|
|
|
/*
|
|
* MXCSR and XCR definitions:
|
|
*/
|
|
|
|
extern unsigned int mxcsr_feature_mask;
|
|
|
|
#define XCR_XFEATURE_ENABLED_MASK 0x00000000
|
|
|
|
static inline u64 xgetbv(u32 index)
|
|
{
|
|
u32 eax, edx;
|
|
|
|
asm volatile(".byte 0x0f,0x01,0xd0" /* xgetbv */
|
|
: "=a" (eax), "=d" (edx)
|
|
: "c" (index));
|
|
return eax + ((u64)edx << 32);
|
|
}
|
|
|
|
static inline void xsetbv(u32 index, u64 value)
|
|
{
|
|
u32 eax = value;
|
|
u32 edx = value >> 32;
|
|
|
|
asm volatile(".byte 0x0f,0x01,0xd1" /* xsetbv */
|
|
: : "a" (eax), "d" (edx), "c" (index));
|
|
}
|
|
|
|
#endif /* _ASM_X86_FPU_INTERNAL_H */
|