mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 11:47:02 +07:00
6c690ee103
The kernel has several code paths that read CR3. Most of them assume that CR3 contains the PGD's physical address, whereas some of them awkwardly use PHYSICAL_PAGE_MASK to mask off low bits. Add explicit mask macros for CR3 and convert all of the CR3 readers. This will keep them from breaking when PCID is enabled. Signed-off-by: Andy Lutomirski <luto@kernel.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Cc: xen-devel <xen-devel@lists.xen.org> Link: http://lkml.kernel.org/r/883f8fb121f4616c1c1427ad87350bb2f5ffeca1.1497288170.git.luto@kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
503 lines
14 KiB
C
503 lines
14 KiB
C
/*
|
|
* Re-map IO memory to kernel address space so that we can access it.
|
|
* This is needed for high PCI addresses that aren't mapped in the
|
|
* 640k-1MB IO memory area on PC's
|
|
*
|
|
* (C) Copyright 1995 1996 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/bootmem.h>
|
|
#include <linux/init.h>
|
|
#include <linux/io.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mmiotrace.h>
|
|
|
|
#include <asm/set_memory.h>
|
|
#include <asm/e820/api.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pat.h>
|
|
|
|
#include "physaddr.h"
|
|
|
|
/*
|
|
* Fix up the linear direct mapping of the kernel to avoid cache attribute
|
|
* conflicts.
|
|
*/
|
|
int ioremap_change_attr(unsigned long vaddr, unsigned long size,
|
|
enum page_cache_mode pcm)
|
|
{
|
|
unsigned long nrpages = size >> PAGE_SHIFT;
|
|
int err;
|
|
|
|
switch (pcm) {
|
|
case _PAGE_CACHE_MODE_UC:
|
|
default:
|
|
err = _set_memory_uc(vaddr, nrpages);
|
|
break;
|
|
case _PAGE_CACHE_MODE_WC:
|
|
err = _set_memory_wc(vaddr, nrpages);
|
|
break;
|
|
case _PAGE_CACHE_MODE_WT:
|
|
err = _set_memory_wt(vaddr, nrpages);
|
|
break;
|
|
case _PAGE_CACHE_MODE_WB:
|
|
err = _set_memory_wb(vaddr, nrpages);
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __ioremap_check_ram(unsigned long start_pfn, unsigned long nr_pages,
|
|
void *arg)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < nr_pages; ++i)
|
|
if (pfn_valid(start_pfn + i) &&
|
|
!PageReserved(pfn_to_page(start_pfn + i)))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remap an arbitrary physical address space into the kernel virtual
|
|
* address space. It transparently creates kernel huge I/O mapping when
|
|
* the physical address is aligned by a huge page size (1GB or 2MB) and
|
|
* the requested size is at least the huge page size.
|
|
*
|
|
* NOTE: MTRRs can override PAT memory types with a 4KB granularity.
|
|
* Therefore, the mapping code falls back to use a smaller page toward 4KB
|
|
* when a mapping range is covered by non-WB type of MTRRs.
|
|
*
|
|
* NOTE! We need to allow non-page-aligned mappings too: we will obviously
|
|
* have to convert them into an offset in a page-aligned mapping, but the
|
|
* caller shouldn't need to know that small detail.
|
|
*/
|
|
static void __iomem *__ioremap_caller(resource_size_t phys_addr,
|
|
unsigned long size, enum page_cache_mode pcm, void *caller)
|
|
{
|
|
unsigned long offset, vaddr;
|
|
resource_size_t pfn, last_pfn, last_addr;
|
|
const resource_size_t unaligned_phys_addr = phys_addr;
|
|
const unsigned long unaligned_size = size;
|
|
struct vm_struct *area;
|
|
enum page_cache_mode new_pcm;
|
|
pgprot_t prot;
|
|
int retval;
|
|
void __iomem *ret_addr;
|
|
|
|
/* Don't allow wraparound or zero size */
|
|
last_addr = phys_addr + size - 1;
|
|
if (!size || last_addr < phys_addr)
|
|
return NULL;
|
|
|
|
if (!phys_addr_valid(phys_addr)) {
|
|
printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
|
|
(unsigned long long)phys_addr);
|
|
WARN_ON_ONCE(1);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Don't remap the low PCI/ISA area, it's always mapped..
|
|
*/
|
|
if (is_ISA_range(phys_addr, last_addr))
|
|
return (__force void __iomem *)phys_to_virt(phys_addr);
|
|
|
|
/*
|
|
* Don't allow anybody to remap normal RAM that we're using..
|
|
*/
|
|
pfn = phys_addr >> PAGE_SHIFT;
|
|
last_pfn = last_addr >> PAGE_SHIFT;
|
|
if (walk_system_ram_range(pfn, last_pfn - pfn + 1, NULL,
|
|
__ioremap_check_ram) == 1) {
|
|
WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
|
|
&phys_addr, &last_addr);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Mappings have to be page-aligned
|
|
*/
|
|
offset = phys_addr & ~PAGE_MASK;
|
|
phys_addr &= PHYSICAL_PAGE_MASK;
|
|
size = PAGE_ALIGN(last_addr+1) - phys_addr;
|
|
|
|
retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
|
|
pcm, &new_pcm);
|
|
if (retval) {
|
|
printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
|
|
return NULL;
|
|
}
|
|
|
|
if (pcm != new_pcm) {
|
|
if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
|
|
printk(KERN_ERR
|
|
"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
|
|
(unsigned long long)phys_addr,
|
|
(unsigned long long)(phys_addr + size),
|
|
pcm, new_pcm);
|
|
goto err_free_memtype;
|
|
}
|
|
pcm = new_pcm;
|
|
}
|
|
|
|
prot = PAGE_KERNEL_IO;
|
|
switch (pcm) {
|
|
case _PAGE_CACHE_MODE_UC:
|
|
default:
|
|
prot = __pgprot(pgprot_val(prot) |
|
|
cachemode2protval(_PAGE_CACHE_MODE_UC));
|
|
break;
|
|
case _PAGE_CACHE_MODE_UC_MINUS:
|
|
prot = __pgprot(pgprot_val(prot) |
|
|
cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
|
|
break;
|
|
case _PAGE_CACHE_MODE_WC:
|
|
prot = __pgprot(pgprot_val(prot) |
|
|
cachemode2protval(_PAGE_CACHE_MODE_WC));
|
|
break;
|
|
case _PAGE_CACHE_MODE_WT:
|
|
prot = __pgprot(pgprot_val(prot) |
|
|
cachemode2protval(_PAGE_CACHE_MODE_WT));
|
|
break;
|
|
case _PAGE_CACHE_MODE_WB:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Ok, go for it..
|
|
*/
|
|
area = get_vm_area_caller(size, VM_IOREMAP, caller);
|
|
if (!area)
|
|
goto err_free_memtype;
|
|
area->phys_addr = phys_addr;
|
|
vaddr = (unsigned long) area->addr;
|
|
|
|
if (kernel_map_sync_memtype(phys_addr, size, pcm))
|
|
goto err_free_area;
|
|
|
|
if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
|
|
goto err_free_area;
|
|
|
|
ret_addr = (void __iomem *) (vaddr + offset);
|
|
mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
|
|
|
|
/*
|
|
* Check if the request spans more than any BAR in the iomem resource
|
|
* tree.
|
|
*/
|
|
if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
|
|
pr_warn("caller %pS mapping multiple BARs\n", caller);
|
|
|
|
return ret_addr;
|
|
err_free_area:
|
|
free_vm_area(area);
|
|
err_free_memtype:
|
|
free_memtype(phys_addr, phys_addr + size);
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* ioremap_nocache - map bus memory into CPU space
|
|
* @phys_addr: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* ioremap_nocache performs a platform specific sequence of operations to
|
|
* make bus memory CPU accessible via the readb/readw/readl/writeb/
|
|
* writew/writel functions and the other mmio helpers. The returned
|
|
* address is not guaranteed to be usable directly as a virtual
|
|
* address.
|
|
*
|
|
* This version of ioremap ensures that the memory is marked uncachable
|
|
* on the CPU as well as honouring existing caching rules from things like
|
|
* the PCI bus. Note that there are other caches and buffers on many
|
|
* busses. In particular driver authors should read up on PCI writes
|
|
*
|
|
* It's useful if some control registers are in such an area and
|
|
* write combining or read caching is not desirable:
|
|
*
|
|
* Must be freed with iounmap.
|
|
*/
|
|
void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
/*
|
|
* Ideally, this should be:
|
|
* pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
|
|
*
|
|
* Till we fix all X drivers to use ioremap_wc(), we will use
|
|
* UC MINUS. Drivers that are certain they need or can already
|
|
* be converted over to strong UC can use ioremap_uc().
|
|
*/
|
|
enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
|
|
|
|
return __ioremap_caller(phys_addr, size, pcm,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_nocache);
|
|
|
|
/**
|
|
* ioremap_uc - map bus memory into CPU space as strongly uncachable
|
|
* @phys_addr: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* ioremap_uc performs a platform specific sequence of operations to
|
|
* make bus memory CPU accessible via the readb/readw/readl/writeb/
|
|
* writew/writel functions and the other mmio helpers. The returned
|
|
* address is not guaranteed to be usable directly as a virtual
|
|
* address.
|
|
*
|
|
* This version of ioremap ensures that the memory is marked with a strong
|
|
* preference as completely uncachable on the CPU when possible. For non-PAT
|
|
* systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
|
|
* systems this will set the PAT entry for the pages as strong UC. This call
|
|
* will honor existing caching rules from things like the PCI bus. Note that
|
|
* there are other caches and buffers on many busses. In particular driver
|
|
* authors should read up on PCI writes.
|
|
*
|
|
* It's useful if some control registers are in such an area and
|
|
* write combining or read caching is not desirable:
|
|
*
|
|
* Must be freed with iounmap.
|
|
*/
|
|
void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
|
|
|
|
return __ioremap_caller(phys_addr, size, pcm,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL_GPL(ioremap_uc);
|
|
|
|
/**
|
|
* ioremap_wc - map memory into CPU space write combined
|
|
* @phys_addr: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* This version of ioremap ensures that the memory is marked write combining.
|
|
* Write combining allows faster writes to some hardware devices.
|
|
*
|
|
* Must be freed with iounmap.
|
|
*/
|
|
void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_wc);
|
|
|
|
/**
|
|
* ioremap_wt - map memory into CPU space write through
|
|
* @phys_addr: bus address of the memory
|
|
* @size: size of the resource to map
|
|
*
|
|
* This version of ioremap ensures that the memory is marked write through.
|
|
* Write through stores data into memory while keeping the cache up-to-date.
|
|
*
|
|
* Must be freed with iounmap.
|
|
*/
|
|
void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_wt);
|
|
|
|
void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
|
|
{
|
|
return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_cache);
|
|
|
|
void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
|
|
unsigned long prot_val)
|
|
{
|
|
return __ioremap_caller(phys_addr, size,
|
|
pgprot2cachemode(__pgprot(prot_val)),
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(ioremap_prot);
|
|
|
|
/**
|
|
* iounmap - Free a IO remapping
|
|
* @addr: virtual address from ioremap_*
|
|
*
|
|
* Caller must ensure there is only one unmapping for the same pointer.
|
|
*/
|
|
void iounmap(volatile void __iomem *addr)
|
|
{
|
|
struct vm_struct *p, *o;
|
|
|
|
if ((void __force *)addr <= high_memory)
|
|
return;
|
|
|
|
/*
|
|
* __ioremap special-cases the PCI/ISA range by not instantiating a
|
|
* vm_area and by simply returning an address into the kernel mapping
|
|
* of ISA space. So handle that here.
|
|
*/
|
|
if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
|
|
(void __force *)addr < phys_to_virt(ISA_END_ADDRESS))
|
|
return;
|
|
|
|
addr = (volatile void __iomem *)
|
|
(PAGE_MASK & (unsigned long __force)addr);
|
|
|
|
mmiotrace_iounmap(addr);
|
|
|
|
/* Use the vm area unlocked, assuming the caller
|
|
ensures there isn't another iounmap for the same address
|
|
in parallel. Reuse of the virtual address is prevented by
|
|
leaving it in the global lists until we're done with it.
|
|
cpa takes care of the direct mappings. */
|
|
p = find_vm_area((void __force *)addr);
|
|
|
|
if (!p) {
|
|
printk(KERN_ERR "iounmap: bad address %p\n", addr);
|
|
dump_stack();
|
|
return;
|
|
}
|
|
|
|
free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
|
|
|
|
/* Finally remove it */
|
|
o = remove_vm_area((void __force *)addr);
|
|
BUG_ON(p != o || o == NULL);
|
|
kfree(p);
|
|
}
|
|
EXPORT_SYMBOL(iounmap);
|
|
|
|
int __init arch_ioremap_pud_supported(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return boot_cpu_has(X86_FEATURE_GBPAGES);
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
int __init arch_ioremap_pmd_supported(void)
|
|
{
|
|
return boot_cpu_has(X86_FEATURE_PSE);
|
|
}
|
|
|
|
/*
|
|
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
|
|
* access
|
|
*/
|
|
void *xlate_dev_mem_ptr(phys_addr_t phys)
|
|
{
|
|
unsigned long start = phys & PAGE_MASK;
|
|
unsigned long offset = phys & ~PAGE_MASK;
|
|
void *vaddr;
|
|
|
|
/* If page is RAM, we can use __va. Otherwise ioremap and unmap. */
|
|
if (page_is_ram(start >> PAGE_SHIFT))
|
|
return __va(phys);
|
|
|
|
vaddr = ioremap_cache(start, PAGE_SIZE);
|
|
/* Only add the offset on success and return NULL if the ioremap() failed: */
|
|
if (vaddr)
|
|
vaddr += offset;
|
|
|
|
return vaddr;
|
|
}
|
|
|
|
void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
|
|
{
|
|
if (page_is_ram(phys >> PAGE_SHIFT))
|
|
return;
|
|
|
|
iounmap((void __iomem *)((unsigned long)addr & PAGE_MASK));
|
|
}
|
|
|
|
static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
|
|
|
|
static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
|
|
{
|
|
/* Don't assume we're using swapper_pg_dir at this point */
|
|
pgd_t *base = __va(read_cr3_pa());
|
|
pgd_t *pgd = &base[pgd_index(addr)];
|
|
p4d_t *p4d = p4d_offset(pgd, addr);
|
|
pud_t *pud = pud_offset(p4d, addr);
|
|
pmd_t *pmd = pmd_offset(pud, addr);
|
|
|
|
return pmd;
|
|
}
|
|
|
|
static inline pte_t * __init early_ioremap_pte(unsigned long addr)
|
|
{
|
|
return &bm_pte[pte_index(addr)];
|
|
}
|
|
|
|
bool __init is_early_ioremap_ptep(pte_t *ptep)
|
|
{
|
|
return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
|
|
}
|
|
|
|
void __init early_ioremap_init(void)
|
|
{
|
|
pmd_t *pmd;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
|
|
#else
|
|
WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
|
|
#endif
|
|
|
|
early_ioremap_setup();
|
|
|
|
pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
|
|
memset(bm_pte, 0, sizeof(bm_pte));
|
|
pmd_populate_kernel(&init_mm, pmd, bm_pte);
|
|
|
|
/*
|
|
* The boot-ioremap range spans multiple pmds, for which
|
|
* we are not prepared:
|
|
*/
|
|
#define __FIXADDR_TOP (-PAGE_SIZE)
|
|
BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
|
|
!= (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
|
|
#undef __FIXADDR_TOP
|
|
if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
|
|
WARN_ON(1);
|
|
printk(KERN_WARNING "pmd %p != %p\n",
|
|
pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
|
|
printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_BEGIN));
|
|
printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
|
|
fix_to_virt(FIX_BTMAP_END));
|
|
|
|
printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
|
|
printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
|
|
FIX_BTMAP_BEGIN);
|
|
}
|
|
}
|
|
|
|
void __init __early_set_fixmap(enum fixed_addresses idx,
|
|
phys_addr_t phys, pgprot_t flags)
|
|
{
|
|
unsigned long addr = __fix_to_virt(idx);
|
|
pte_t *pte;
|
|
|
|
if (idx >= __end_of_fixed_addresses) {
|
|
BUG();
|
|
return;
|
|
}
|
|
pte = early_ioremap_pte(addr);
|
|
|
|
if (pgprot_val(flags))
|
|
set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
|
|
else
|
|
pte_clear(&init_mm, addr, pte);
|
|
__flush_tlb_one(addr);
|
|
}
|