mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-26 21:35:20 +07:00
bef6229f36
The R8 is a new Allwinner SoC based on the A13. While both are very similar, there's still a few differences. Introduce a new compatible to deal with them. In order to have a consistent naming, instead of mentioning the Allwinner A series as the machine name, switch to sun4i/sun5i like what is done for the other families. Signed-off-by: Maxime Ripard <maxime.ripard@free-electrons.com> Reviewed-by: Hans de Goede <hdegoede@redhat.com> Reviewed-by: Chen-Yu Tsai <wens@csie.org> Acked-by: Stephen Boyd <sboyd@codeaurora.org>
1221 lines
29 KiB
C
1221 lines
29 KiB
C
/*
|
|
* Copyright 2013 Emilio López
|
|
*
|
|
* Emilio López <emilio@elopez.com.ar>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/clk-provider.h>
|
|
#include <linux/clkdev.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/reset-controller.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/log2.h>
|
|
|
|
#include "clk-factors.h"
|
|
|
|
static DEFINE_SPINLOCK(clk_lock);
|
|
|
|
/**
|
|
* sun6i_a31_ahb1_clk_setup() - Setup function for a31 ahb1 composite clk
|
|
*/
|
|
|
|
#define SUN6I_AHB1_MAX_PARENTS 4
|
|
#define SUN6I_AHB1_MUX_PARENT_PLL6 3
|
|
#define SUN6I_AHB1_MUX_SHIFT 12
|
|
/* un-shifted mask is what mux_clk expects */
|
|
#define SUN6I_AHB1_MUX_MASK 0x3
|
|
#define SUN6I_AHB1_MUX_GET_PARENT(reg) ((reg >> SUN6I_AHB1_MUX_SHIFT) & \
|
|
SUN6I_AHB1_MUX_MASK)
|
|
|
|
#define SUN6I_AHB1_DIV_SHIFT 4
|
|
#define SUN6I_AHB1_DIV_MASK (0x3 << SUN6I_AHB1_DIV_SHIFT)
|
|
#define SUN6I_AHB1_DIV_GET(reg) ((reg & SUN6I_AHB1_DIV_MASK) >> \
|
|
SUN6I_AHB1_DIV_SHIFT)
|
|
#define SUN6I_AHB1_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_DIV_MASK) | \
|
|
(div << SUN6I_AHB1_DIV_SHIFT))
|
|
#define SUN6I_AHB1_PLL6_DIV_SHIFT 6
|
|
#define SUN6I_AHB1_PLL6_DIV_MASK (0x3 << SUN6I_AHB1_PLL6_DIV_SHIFT)
|
|
#define SUN6I_AHB1_PLL6_DIV_GET(reg) ((reg & SUN6I_AHB1_PLL6_DIV_MASK) >> \
|
|
SUN6I_AHB1_PLL6_DIV_SHIFT)
|
|
#define SUN6I_AHB1_PLL6_DIV_SET(reg, div) ((reg & ~SUN6I_AHB1_PLL6_DIV_MASK) | \
|
|
(div << SUN6I_AHB1_PLL6_DIV_SHIFT))
|
|
|
|
struct sun6i_ahb1_clk {
|
|
struct clk_hw hw;
|
|
void __iomem *reg;
|
|
};
|
|
|
|
#define to_sun6i_ahb1_clk(_hw) container_of(_hw, struct sun6i_ahb1_clk, hw)
|
|
|
|
static unsigned long sun6i_ahb1_clk_recalc_rate(struct clk_hw *hw,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
|
|
unsigned long rate;
|
|
u32 reg;
|
|
|
|
/* Fetch the register value */
|
|
reg = readl(ahb1->reg);
|
|
|
|
/* apply pre-divider first if parent is pll6 */
|
|
if (SUN6I_AHB1_MUX_GET_PARENT(reg) == SUN6I_AHB1_MUX_PARENT_PLL6)
|
|
parent_rate /= SUN6I_AHB1_PLL6_DIV_GET(reg) + 1;
|
|
|
|
/* clk divider */
|
|
rate = parent_rate >> SUN6I_AHB1_DIV_GET(reg);
|
|
|
|
return rate;
|
|
}
|
|
|
|
static long sun6i_ahb1_clk_round(unsigned long rate, u8 *divp, u8 *pre_divp,
|
|
u8 parent, unsigned long parent_rate)
|
|
{
|
|
u8 div, calcp, calcm = 1;
|
|
|
|
/*
|
|
* clock can only divide, so we will never be able to achieve
|
|
* frequencies higher than the parent frequency
|
|
*/
|
|
if (parent_rate && rate > parent_rate)
|
|
rate = parent_rate;
|
|
|
|
div = DIV_ROUND_UP(parent_rate, rate);
|
|
|
|
/* calculate pre-divider if parent is pll6 */
|
|
if (parent == SUN6I_AHB1_MUX_PARENT_PLL6) {
|
|
if (div < 4)
|
|
calcp = 0;
|
|
else if (div / 2 < 4)
|
|
calcp = 1;
|
|
else if (div / 4 < 4)
|
|
calcp = 2;
|
|
else
|
|
calcp = 3;
|
|
|
|
calcm = DIV_ROUND_UP(div, 1 << calcp);
|
|
} else {
|
|
calcp = __roundup_pow_of_two(div);
|
|
calcp = calcp > 3 ? 3 : calcp;
|
|
}
|
|
|
|
/* we were asked to pass back divider values */
|
|
if (divp) {
|
|
*divp = calcp;
|
|
*pre_divp = calcm - 1;
|
|
}
|
|
|
|
return (parent_rate / calcm) >> calcp;
|
|
}
|
|
|
|
static int sun6i_ahb1_clk_determine_rate(struct clk_hw *hw,
|
|
struct clk_rate_request *req)
|
|
{
|
|
struct clk_hw *parent, *best_parent = NULL;
|
|
int i, num_parents;
|
|
unsigned long parent_rate, best = 0, child_rate, best_child_rate = 0;
|
|
|
|
/* find the parent that can help provide the fastest rate <= rate */
|
|
num_parents = clk_hw_get_num_parents(hw);
|
|
for (i = 0; i < num_parents; i++) {
|
|
parent = clk_hw_get_parent_by_index(hw, i);
|
|
if (!parent)
|
|
continue;
|
|
if (clk_hw_get_flags(hw) & CLK_SET_RATE_PARENT)
|
|
parent_rate = clk_hw_round_rate(parent, req->rate);
|
|
else
|
|
parent_rate = clk_hw_get_rate(parent);
|
|
|
|
child_rate = sun6i_ahb1_clk_round(req->rate, NULL, NULL, i,
|
|
parent_rate);
|
|
|
|
if (child_rate <= req->rate && child_rate > best_child_rate) {
|
|
best_parent = parent;
|
|
best = parent_rate;
|
|
best_child_rate = child_rate;
|
|
}
|
|
}
|
|
|
|
if (!best_parent)
|
|
return -EINVAL;
|
|
|
|
req->best_parent_hw = best_parent;
|
|
req->best_parent_rate = best;
|
|
req->rate = best_child_rate;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sun6i_ahb1_clk_set_rate(struct clk_hw *hw, unsigned long rate,
|
|
unsigned long parent_rate)
|
|
{
|
|
struct sun6i_ahb1_clk *ahb1 = to_sun6i_ahb1_clk(hw);
|
|
unsigned long flags;
|
|
u8 div, pre_div, parent;
|
|
u32 reg;
|
|
|
|
spin_lock_irqsave(&clk_lock, flags);
|
|
|
|
reg = readl(ahb1->reg);
|
|
|
|
/* need to know which parent is used to apply pre-divider */
|
|
parent = SUN6I_AHB1_MUX_GET_PARENT(reg);
|
|
sun6i_ahb1_clk_round(rate, &div, &pre_div, parent, parent_rate);
|
|
|
|
reg = SUN6I_AHB1_DIV_SET(reg, div);
|
|
reg = SUN6I_AHB1_PLL6_DIV_SET(reg, pre_div);
|
|
writel(reg, ahb1->reg);
|
|
|
|
spin_unlock_irqrestore(&clk_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct clk_ops sun6i_ahb1_clk_ops = {
|
|
.determine_rate = sun6i_ahb1_clk_determine_rate,
|
|
.recalc_rate = sun6i_ahb1_clk_recalc_rate,
|
|
.set_rate = sun6i_ahb1_clk_set_rate,
|
|
};
|
|
|
|
static void __init sun6i_ahb1_clk_setup(struct device_node *node)
|
|
{
|
|
struct clk *clk;
|
|
struct sun6i_ahb1_clk *ahb1;
|
|
struct clk_mux *mux;
|
|
const char *clk_name = node->name;
|
|
const char *parents[SUN6I_AHB1_MAX_PARENTS];
|
|
void __iomem *reg;
|
|
int i;
|
|
|
|
reg = of_io_request_and_map(node, 0, of_node_full_name(node));
|
|
if (IS_ERR(reg))
|
|
return;
|
|
|
|
/* we have a mux, we will have >1 parents */
|
|
i = of_clk_parent_fill(node, parents, SUN6I_AHB1_MAX_PARENTS);
|
|
of_property_read_string(node, "clock-output-names", &clk_name);
|
|
|
|
ahb1 = kzalloc(sizeof(struct sun6i_ahb1_clk), GFP_KERNEL);
|
|
if (!ahb1)
|
|
return;
|
|
|
|
mux = kzalloc(sizeof(struct clk_mux), GFP_KERNEL);
|
|
if (!mux) {
|
|
kfree(ahb1);
|
|
return;
|
|
}
|
|
|
|
/* set up clock properties */
|
|
mux->reg = reg;
|
|
mux->shift = SUN6I_AHB1_MUX_SHIFT;
|
|
mux->mask = SUN6I_AHB1_MUX_MASK;
|
|
mux->lock = &clk_lock;
|
|
ahb1->reg = reg;
|
|
|
|
clk = clk_register_composite(NULL, clk_name, parents, i,
|
|
&mux->hw, &clk_mux_ops,
|
|
&ahb1->hw, &sun6i_ahb1_clk_ops,
|
|
NULL, NULL, 0);
|
|
|
|
if (!IS_ERR(clk)) {
|
|
of_clk_add_provider(node, of_clk_src_simple_get, clk);
|
|
clk_register_clkdev(clk, clk_name, NULL);
|
|
}
|
|
}
|
|
CLK_OF_DECLARE(sun6i_a31_ahb1, "allwinner,sun6i-a31-ahb1-clk", sun6i_ahb1_clk_setup);
|
|
|
|
/* Maximum number of parents our clocks have */
|
|
#define SUNXI_MAX_PARENTS 5
|
|
|
|
/**
|
|
* sun4i_get_pll1_factors() - calculates n, k, m, p factors for PLL1
|
|
* PLL1 rate is calculated as follows
|
|
* rate = (parent_rate * n * (k + 1) >> p) / (m + 1);
|
|
* parent_rate is always 24Mhz
|
|
*/
|
|
|
|
static void sun4i_get_pll1_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u8 div;
|
|
|
|
/* Normalize value to a 6M multiple */
|
|
div = *freq / 6000000;
|
|
*freq = 6000000 * div;
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (n == NULL)
|
|
return;
|
|
|
|
/* m is always zero for pll1 */
|
|
*m = 0;
|
|
|
|
/* k is 1 only on these cases */
|
|
if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
|
|
*k = 1;
|
|
else
|
|
*k = 0;
|
|
|
|
/* p will be 3 for divs under 10 */
|
|
if (div < 10)
|
|
*p = 3;
|
|
|
|
/* p will be 2 for divs between 10 - 20 and odd divs under 32 */
|
|
else if (div < 20 || (div < 32 && (div & 1)))
|
|
*p = 2;
|
|
|
|
/* p will be 1 for even divs under 32, divs under 40 and odd pairs
|
|
* of divs between 40-62 */
|
|
else if (div < 40 || (div < 64 && (div & 2)))
|
|
*p = 1;
|
|
|
|
/* any other entries have p = 0 */
|
|
else
|
|
*p = 0;
|
|
|
|
/* calculate a suitable n based on k and p */
|
|
div <<= *p;
|
|
div /= (*k + 1);
|
|
*n = div / 4;
|
|
}
|
|
|
|
/**
|
|
* sun6i_a31_get_pll1_factors() - calculates n, k and m factors for PLL1
|
|
* PLL1 rate is calculated as follows
|
|
* rate = parent_rate * (n + 1) * (k + 1) / (m + 1);
|
|
* parent_rate should always be 24MHz
|
|
*/
|
|
static void sun6i_a31_get_pll1_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
/*
|
|
* We can operate only on MHz, this will make our life easier
|
|
* later.
|
|
*/
|
|
u32 freq_mhz = *freq / 1000000;
|
|
u32 parent_freq_mhz = parent_rate / 1000000;
|
|
|
|
/*
|
|
* Round down the frequency to the closest multiple of either
|
|
* 6 or 16
|
|
*/
|
|
u32 round_freq_6 = round_down(freq_mhz, 6);
|
|
u32 round_freq_16 = round_down(freq_mhz, 16);
|
|
|
|
if (round_freq_6 > round_freq_16)
|
|
freq_mhz = round_freq_6;
|
|
else
|
|
freq_mhz = round_freq_16;
|
|
|
|
*freq = freq_mhz * 1000000;
|
|
|
|
/*
|
|
* If the factors pointer are null, we were just called to
|
|
* round down the frequency.
|
|
* Exit.
|
|
*/
|
|
if (n == NULL)
|
|
return;
|
|
|
|
/* If the frequency is a multiple of 32 MHz, k is always 3 */
|
|
if (!(freq_mhz % 32))
|
|
*k = 3;
|
|
/* If the frequency is a multiple of 9 MHz, k is always 2 */
|
|
else if (!(freq_mhz % 9))
|
|
*k = 2;
|
|
/* If the frequency is a multiple of 8 MHz, k is always 1 */
|
|
else if (!(freq_mhz % 8))
|
|
*k = 1;
|
|
/* Otherwise, we don't use the k factor */
|
|
else
|
|
*k = 0;
|
|
|
|
/*
|
|
* If the frequency is a multiple of 2 but not a multiple of
|
|
* 3, m is 3. This is the first time we use 6 here, yet we
|
|
* will use it on several other places.
|
|
* We use this number because it's the lowest frequency we can
|
|
* generate (with n = 0, k = 0, m = 3), so every other frequency
|
|
* somehow relates to this frequency.
|
|
*/
|
|
if ((freq_mhz % 6) == 2 || (freq_mhz % 6) == 4)
|
|
*m = 2;
|
|
/*
|
|
* If the frequency is a multiple of 6MHz, but the factor is
|
|
* odd, m will be 3
|
|
*/
|
|
else if ((freq_mhz / 6) & 1)
|
|
*m = 3;
|
|
/* Otherwise, we end up with m = 1 */
|
|
else
|
|
*m = 1;
|
|
|
|
/* Calculate n thanks to the above factors we already got */
|
|
*n = freq_mhz * (*m + 1) / ((*k + 1) * parent_freq_mhz) - 1;
|
|
|
|
/*
|
|
* If n end up being outbound, and that we can still decrease
|
|
* m, do it.
|
|
*/
|
|
if ((*n + 1) > 31 && (*m + 1) > 1) {
|
|
*n = (*n + 1) / 2 - 1;
|
|
*m = (*m + 1) / 2 - 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* sun8i_a23_get_pll1_factors() - calculates n, k, m, p factors for PLL1
|
|
* PLL1 rate is calculated as follows
|
|
* rate = (parent_rate * (n + 1) * (k + 1) >> p) / (m + 1);
|
|
* parent_rate is always 24Mhz
|
|
*/
|
|
|
|
static void sun8i_a23_get_pll1_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u8 div;
|
|
|
|
/* Normalize value to a 6M multiple */
|
|
div = *freq / 6000000;
|
|
*freq = 6000000 * div;
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (n == NULL)
|
|
return;
|
|
|
|
/* m is always zero for pll1 */
|
|
*m = 0;
|
|
|
|
/* k is 1 only on these cases */
|
|
if (*freq >= 768000000 || *freq == 42000000 || *freq == 54000000)
|
|
*k = 1;
|
|
else
|
|
*k = 0;
|
|
|
|
/* p will be 2 for divs under 20 and odd divs under 32 */
|
|
if (div < 20 || (div < 32 && (div & 1)))
|
|
*p = 2;
|
|
|
|
/* p will be 1 for even divs under 32, divs under 40 and odd pairs
|
|
* of divs between 40-62 */
|
|
else if (div < 40 || (div < 64 && (div & 2)))
|
|
*p = 1;
|
|
|
|
/* any other entries have p = 0 */
|
|
else
|
|
*p = 0;
|
|
|
|
/* calculate a suitable n based on k and p */
|
|
div <<= *p;
|
|
div /= (*k + 1);
|
|
*n = div / 4 - 1;
|
|
}
|
|
|
|
/**
|
|
* sun4i_get_pll5_factors() - calculates n, k factors for PLL5
|
|
* PLL5 rate is calculated as follows
|
|
* rate = parent_rate * n * (k + 1)
|
|
* parent_rate is always 24Mhz
|
|
*/
|
|
|
|
static void sun4i_get_pll5_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u8 div;
|
|
|
|
/* Normalize value to a parent_rate multiple (24M) */
|
|
div = *freq / parent_rate;
|
|
*freq = parent_rate * div;
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (n == NULL)
|
|
return;
|
|
|
|
if (div < 31)
|
|
*k = 0;
|
|
else if (div / 2 < 31)
|
|
*k = 1;
|
|
else if (div / 3 < 31)
|
|
*k = 2;
|
|
else
|
|
*k = 3;
|
|
|
|
*n = DIV_ROUND_UP(div, (*k+1));
|
|
}
|
|
|
|
/**
|
|
* sun6i_a31_get_pll6_factors() - calculates n, k factors for A31 PLL6x2
|
|
* PLL6x2 rate is calculated as follows
|
|
* rate = parent_rate * (n + 1) * (k + 1)
|
|
* parent_rate is always 24Mhz
|
|
*/
|
|
|
|
static void sun6i_a31_get_pll6_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u8 div;
|
|
|
|
/* Normalize value to a parent_rate multiple (24M) */
|
|
div = *freq / parent_rate;
|
|
*freq = parent_rate * div;
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (n == NULL)
|
|
return;
|
|
|
|
*k = div / 32;
|
|
if (*k > 3)
|
|
*k = 3;
|
|
|
|
*n = DIV_ROUND_UP(div, (*k+1)) - 1;
|
|
}
|
|
|
|
/**
|
|
* sun5i_a13_get_ahb_factors() - calculates m, p factors for AHB
|
|
* AHB rate is calculated as follows
|
|
* rate = parent_rate >> p
|
|
*/
|
|
|
|
static void sun5i_a13_get_ahb_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u32 div;
|
|
|
|
/* divide only */
|
|
if (parent_rate < *freq)
|
|
*freq = parent_rate;
|
|
|
|
/*
|
|
* user manual says valid speed is 8k ~ 276M, but tests show it
|
|
* can work at speeds up to 300M, just after reparenting to pll6
|
|
*/
|
|
if (*freq < 8000)
|
|
*freq = 8000;
|
|
if (*freq > 300000000)
|
|
*freq = 300000000;
|
|
|
|
div = order_base_2(DIV_ROUND_UP(parent_rate, *freq));
|
|
|
|
/* p = 0 ~ 3 */
|
|
if (div > 3)
|
|
div = 3;
|
|
|
|
*freq = parent_rate >> div;
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (p == NULL)
|
|
return;
|
|
|
|
*p = div;
|
|
}
|
|
|
|
/**
|
|
* sun4i_get_apb1_factors() - calculates m, p factors for APB1
|
|
* APB1 rate is calculated as follows
|
|
* rate = (parent_rate >> p) / (m + 1);
|
|
*/
|
|
|
|
static void sun4i_get_apb1_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u8 calcm, calcp;
|
|
|
|
if (parent_rate < *freq)
|
|
*freq = parent_rate;
|
|
|
|
parent_rate = DIV_ROUND_UP(parent_rate, *freq);
|
|
|
|
/* Invalid rate! */
|
|
if (parent_rate > 32)
|
|
return;
|
|
|
|
if (parent_rate <= 4)
|
|
calcp = 0;
|
|
else if (parent_rate <= 8)
|
|
calcp = 1;
|
|
else if (parent_rate <= 16)
|
|
calcp = 2;
|
|
else
|
|
calcp = 3;
|
|
|
|
calcm = (parent_rate >> calcp) - 1;
|
|
|
|
*freq = (parent_rate >> calcp) / (calcm + 1);
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (n == NULL)
|
|
return;
|
|
|
|
*m = calcm;
|
|
*p = calcp;
|
|
}
|
|
|
|
|
|
|
|
|
|
/**
|
|
* sun7i_a20_get_out_factors() - calculates m, p factors for CLK_OUT_A/B
|
|
* CLK_OUT rate is calculated as follows
|
|
* rate = (parent_rate >> p) / (m + 1);
|
|
*/
|
|
|
|
static void sun7i_a20_get_out_factors(u32 *freq, u32 parent_rate,
|
|
u8 *n, u8 *k, u8 *m, u8 *p)
|
|
{
|
|
u8 div, calcm, calcp;
|
|
|
|
/* These clocks can only divide, so we will never be able to achieve
|
|
* frequencies higher than the parent frequency */
|
|
if (*freq > parent_rate)
|
|
*freq = parent_rate;
|
|
|
|
div = DIV_ROUND_UP(parent_rate, *freq);
|
|
|
|
if (div < 32)
|
|
calcp = 0;
|
|
else if (div / 2 < 32)
|
|
calcp = 1;
|
|
else if (div / 4 < 32)
|
|
calcp = 2;
|
|
else
|
|
calcp = 3;
|
|
|
|
calcm = DIV_ROUND_UP(div, 1 << calcp);
|
|
|
|
*freq = (parent_rate >> calcp) / calcm;
|
|
|
|
/* we were called to round the frequency, we can now return */
|
|
if (n == NULL)
|
|
return;
|
|
|
|
*m = calcm - 1;
|
|
*p = calcp;
|
|
}
|
|
|
|
/**
|
|
* sunxi_factors_clk_setup() - Setup function for factor clocks
|
|
*/
|
|
|
|
static struct clk_factors_config sun4i_pll1_config = {
|
|
.nshift = 8,
|
|
.nwidth = 5,
|
|
.kshift = 4,
|
|
.kwidth = 2,
|
|
.mshift = 0,
|
|
.mwidth = 2,
|
|
.pshift = 16,
|
|
.pwidth = 2,
|
|
};
|
|
|
|
static struct clk_factors_config sun6i_a31_pll1_config = {
|
|
.nshift = 8,
|
|
.nwidth = 5,
|
|
.kshift = 4,
|
|
.kwidth = 2,
|
|
.mshift = 0,
|
|
.mwidth = 2,
|
|
.n_start = 1,
|
|
};
|
|
|
|
static struct clk_factors_config sun8i_a23_pll1_config = {
|
|
.nshift = 8,
|
|
.nwidth = 5,
|
|
.kshift = 4,
|
|
.kwidth = 2,
|
|
.mshift = 0,
|
|
.mwidth = 2,
|
|
.pshift = 16,
|
|
.pwidth = 2,
|
|
.n_start = 1,
|
|
};
|
|
|
|
static struct clk_factors_config sun4i_pll5_config = {
|
|
.nshift = 8,
|
|
.nwidth = 5,
|
|
.kshift = 4,
|
|
.kwidth = 2,
|
|
};
|
|
|
|
static struct clk_factors_config sun6i_a31_pll6_config = {
|
|
.nshift = 8,
|
|
.nwidth = 5,
|
|
.kshift = 4,
|
|
.kwidth = 2,
|
|
.n_start = 1,
|
|
};
|
|
|
|
static struct clk_factors_config sun5i_a13_ahb_config = {
|
|
.pshift = 4,
|
|
.pwidth = 2,
|
|
};
|
|
|
|
static struct clk_factors_config sun4i_apb1_config = {
|
|
.mshift = 0,
|
|
.mwidth = 5,
|
|
.pshift = 16,
|
|
.pwidth = 2,
|
|
};
|
|
|
|
/* user manual says "n" but it's really "p" */
|
|
static struct clk_factors_config sun7i_a20_out_config = {
|
|
.mshift = 8,
|
|
.mwidth = 5,
|
|
.pshift = 20,
|
|
.pwidth = 2,
|
|
};
|
|
|
|
static const struct factors_data sun4i_pll1_data __initconst = {
|
|
.enable = 31,
|
|
.table = &sun4i_pll1_config,
|
|
.getter = sun4i_get_pll1_factors,
|
|
};
|
|
|
|
static const struct factors_data sun6i_a31_pll1_data __initconst = {
|
|
.enable = 31,
|
|
.table = &sun6i_a31_pll1_config,
|
|
.getter = sun6i_a31_get_pll1_factors,
|
|
};
|
|
|
|
static const struct factors_data sun8i_a23_pll1_data __initconst = {
|
|
.enable = 31,
|
|
.table = &sun8i_a23_pll1_config,
|
|
.getter = sun8i_a23_get_pll1_factors,
|
|
};
|
|
|
|
static const struct factors_data sun7i_a20_pll4_data __initconst = {
|
|
.enable = 31,
|
|
.table = &sun4i_pll5_config,
|
|
.getter = sun4i_get_pll5_factors,
|
|
};
|
|
|
|
static const struct factors_data sun4i_pll5_data __initconst = {
|
|
.enable = 31,
|
|
.table = &sun4i_pll5_config,
|
|
.getter = sun4i_get_pll5_factors,
|
|
.name = "pll5",
|
|
};
|
|
|
|
static const struct factors_data sun4i_pll6_data __initconst = {
|
|
.enable = 31,
|
|
.table = &sun4i_pll5_config,
|
|
.getter = sun4i_get_pll5_factors,
|
|
.name = "pll6",
|
|
};
|
|
|
|
static const struct factors_data sun6i_a31_pll6_data __initconst = {
|
|
.enable = 31,
|
|
.table = &sun6i_a31_pll6_config,
|
|
.getter = sun6i_a31_get_pll6_factors,
|
|
.name = "pll6x2",
|
|
};
|
|
|
|
static const struct factors_data sun5i_a13_ahb_data __initconst = {
|
|
.mux = 6,
|
|
.muxmask = BIT(1) | BIT(0),
|
|
.table = &sun5i_a13_ahb_config,
|
|
.getter = sun5i_a13_get_ahb_factors,
|
|
};
|
|
|
|
static const struct factors_data sun4i_apb1_data __initconst = {
|
|
.mux = 24,
|
|
.muxmask = BIT(1) | BIT(0),
|
|
.table = &sun4i_apb1_config,
|
|
.getter = sun4i_get_apb1_factors,
|
|
};
|
|
|
|
static const struct factors_data sun7i_a20_out_data __initconst = {
|
|
.enable = 31,
|
|
.mux = 24,
|
|
.muxmask = BIT(1) | BIT(0),
|
|
.table = &sun7i_a20_out_config,
|
|
.getter = sun7i_a20_get_out_factors,
|
|
};
|
|
|
|
static struct clk * __init sunxi_factors_clk_setup(struct device_node *node,
|
|
const struct factors_data *data)
|
|
{
|
|
void __iomem *reg;
|
|
|
|
reg = of_iomap(node, 0);
|
|
if (!reg) {
|
|
pr_err("Could not get registers for factors-clk: %s\n",
|
|
node->name);
|
|
return NULL;
|
|
}
|
|
|
|
return sunxi_factors_register(node, data, &clk_lock, reg);
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* sunxi_mux_clk_setup() - Setup function for muxes
|
|
*/
|
|
|
|
#define SUNXI_MUX_GATE_WIDTH 2
|
|
|
|
struct mux_data {
|
|
u8 shift;
|
|
};
|
|
|
|
static const struct mux_data sun4i_cpu_mux_data __initconst = {
|
|
.shift = 16,
|
|
};
|
|
|
|
static const struct mux_data sun6i_a31_ahb1_mux_data __initconst = {
|
|
.shift = 12,
|
|
};
|
|
|
|
static void __init sunxi_mux_clk_setup(struct device_node *node,
|
|
struct mux_data *data)
|
|
{
|
|
struct clk *clk;
|
|
const char *clk_name = node->name;
|
|
const char *parents[SUNXI_MAX_PARENTS];
|
|
void __iomem *reg;
|
|
int i;
|
|
|
|
reg = of_iomap(node, 0);
|
|
|
|
i = of_clk_parent_fill(node, parents, SUNXI_MAX_PARENTS);
|
|
of_property_read_string(node, "clock-output-names", &clk_name);
|
|
|
|
clk = clk_register_mux(NULL, clk_name, parents, i,
|
|
CLK_SET_RATE_PARENT, reg,
|
|
data->shift, SUNXI_MUX_GATE_WIDTH,
|
|
0, &clk_lock);
|
|
|
|
if (clk) {
|
|
of_clk_add_provider(node, of_clk_src_simple_get, clk);
|
|
clk_register_clkdev(clk, clk_name, NULL);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* sunxi_divider_clk_setup() - Setup function for simple divider clocks
|
|
*/
|
|
|
|
struct div_data {
|
|
u8 shift;
|
|
u8 pow;
|
|
u8 width;
|
|
const struct clk_div_table *table;
|
|
};
|
|
|
|
static const struct div_data sun4i_axi_data __initconst = {
|
|
.shift = 0,
|
|
.pow = 0,
|
|
.width = 2,
|
|
};
|
|
|
|
static const struct clk_div_table sun8i_a23_axi_table[] __initconst = {
|
|
{ .val = 0, .div = 1 },
|
|
{ .val = 1, .div = 2 },
|
|
{ .val = 2, .div = 3 },
|
|
{ .val = 3, .div = 4 },
|
|
{ .val = 4, .div = 4 },
|
|
{ .val = 5, .div = 4 },
|
|
{ .val = 6, .div = 4 },
|
|
{ .val = 7, .div = 4 },
|
|
{ } /* sentinel */
|
|
};
|
|
|
|
static const struct div_data sun8i_a23_axi_data __initconst = {
|
|
.width = 3,
|
|
.table = sun8i_a23_axi_table,
|
|
};
|
|
|
|
static const struct div_data sun4i_ahb_data __initconst = {
|
|
.shift = 4,
|
|
.pow = 1,
|
|
.width = 2,
|
|
};
|
|
|
|
static const struct clk_div_table sun4i_apb0_table[] __initconst = {
|
|
{ .val = 0, .div = 2 },
|
|
{ .val = 1, .div = 2 },
|
|
{ .val = 2, .div = 4 },
|
|
{ .val = 3, .div = 8 },
|
|
{ } /* sentinel */
|
|
};
|
|
|
|
static const struct div_data sun4i_apb0_data __initconst = {
|
|
.shift = 8,
|
|
.pow = 1,
|
|
.width = 2,
|
|
.table = sun4i_apb0_table,
|
|
};
|
|
|
|
static void __init sunxi_divider_clk_setup(struct device_node *node,
|
|
struct div_data *data)
|
|
{
|
|
struct clk *clk;
|
|
const char *clk_name = node->name;
|
|
const char *clk_parent;
|
|
void __iomem *reg;
|
|
|
|
reg = of_iomap(node, 0);
|
|
|
|
clk_parent = of_clk_get_parent_name(node, 0);
|
|
|
|
of_property_read_string(node, "clock-output-names", &clk_name);
|
|
|
|
clk = clk_register_divider_table(NULL, clk_name, clk_parent, 0,
|
|
reg, data->shift, data->width,
|
|
data->pow ? CLK_DIVIDER_POWER_OF_TWO : 0,
|
|
data->table, &clk_lock);
|
|
if (clk) {
|
|
of_clk_add_provider(node, of_clk_src_simple_get, clk);
|
|
clk_register_clkdev(clk, clk_name, NULL);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
* sunxi_gates_clk_setup() - Setup function for leaf gates on clocks
|
|
*/
|
|
|
|
#define SUNXI_GATES_MAX_SIZE 64
|
|
|
|
struct gates_data {
|
|
DECLARE_BITMAP(mask, SUNXI_GATES_MAX_SIZE);
|
|
};
|
|
|
|
/**
|
|
* sunxi_divs_clk_setup() helper data
|
|
*/
|
|
|
|
#define SUNXI_DIVS_MAX_QTY 4
|
|
#define SUNXI_DIVISOR_WIDTH 2
|
|
|
|
struct divs_data {
|
|
const struct factors_data *factors; /* data for the factor clock */
|
|
int ndivs; /* number of outputs */
|
|
/*
|
|
* List of outputs. Refer to the diagram for sunxi_divs_clk_setup():
|
|
* self or base factor clock refers to the output from the pll
|
|
* itself. The remaining refer to fixed or configurable divider
|
|
* outputs.
|
|
*/
|
|
struct {
|
|
u8 self; /* is it the base factor clock? (only one) */
|
|
u8 fixed; /* is it a fixed divisor? if not... */
|
|
struct clk_div_table *table; /* is it a table based divisor? */
|
|
u8 shift; /* otherwise it's a normal divisor with this shift */
|
|
u8 pow; /* is it power-of-two based? */
|
|
u8 gate; /* is it independently gateable? */
|
|
} div[SUNXI_DIVS_MAX_QTY];
|
|
};
|
|
|
|
static struct clk_div_table pll6_sata_tbl[] = {
|
|
{ .val = 0, .div = 6, },
|
|
{ .val = 1, .div = 12, },
|
|
{ .val = 2, .div = 18, },
|
|
{ .val = 3, .div = 24, },
|
|
{ } /* sentinel */
|
|
};
|
|
|
|
static const struct divs_data pll5_divs_data __initconst = {
|
|
.factors = &sun4i_pll5_data,
|
|
.ndivs = 2,
|
|
.div = {
|
|
{ .shift = 0, .pow = 0, }, /* M, DDR */
|
|
{ .shift = 16, .pow = 1, }, /* P, other */
|
|
/* No output for the base factor clock */
|
|
}
|
|
};
|
|
|
|
static const struct divs_data pll6_divs_data __initconst = {
|
|
.factors = &sun4i_pll6_data,
|
|
.ndivs = 4,
|
|
.div = {
|
|
{ .shift = 0, .table = pll6_sata_tbl, .gate = 14 }, /* M, SATA */
|
|
{ .fixed = 2 }, /* P, other */
|
|
{ .self = 1 }, /* base factor clock, 2x */
|
|
{ .fixed = 4 }, /* pll6 / 4, used as ahb input */
|
|
}
|
|
};
|
|
|
|
static const struct divs_data sun6i_a31_pll6_divs_data __initconst = {
|
|
.factors = &sun6i_a31_pll6_data,
|
|
.ndivs = 2,
|
|
.div = {
|
|
{ .fixed = 2 }, /* normal output */
|
|
{ .self = 1 }, /* base factor clock, 2x */
|
|
}
|
|
};
|
|
|
|
/**
|
|
* sunxi_divs_clk_setup() - Setup function for leaf divisors on clocks
|
|
*
|
|
* These clocks look something like this
|
|
* ________________________
|
|
* | ___divisor 1---|----> to consumer
|
|
* parent >--| pll___/___divisor 2---|----> to consumer
|
|
* | \_______________|____> to consumer
|
|
* |________________________|
|
|
*/
|
|
|
|
static void __init sunxi_divs_clk_setup(struct device_node *node,
|
|
struct divs_data *data)
|
|
{
|
|
struct clk_onecell_data *clk_data;
|
|
const char *parent;
|
|
const char *clk_name;
|
|
struct clk **clks, *pclk;
|
|
struct clk_hw *gate_hw, *rate_hw;
|
|
const struct clk_ops *rate_ops;
|
|
struct clk_gate *gate = NULL;
|
|
struct clk_fixed_factor *fix_factor;
|
|
struct clk_divider *divider;
|
|
void __iomem *reg;
|
|
int ndivs = SUNXI_DIVS_MAX_QTY, i = 0;
|
|
int flags, clkflags;
|
|
|
|
/* if number of children known, use it */
|
|
if (data->ndivs)
|
|
ndivs = data->ndivs;
|
|
|
|
/* Set up factor clock that we will be dividing */
|
|
pclk = sunxi_factors_clk_setup(node, data->factors);
|
|
parent = __clk_get_name(pclk);
|
|
|
|
reg = of_iomap(node, 0);
|
|
|
|
clk_data = kmalloc(sizeof(struct clk_onecell_data), GFP_KERNEL);
|
|
if (!clk_data)
|
|
return;
|
|
|
|
clks = kcalloc(ndivs, sizeof(*clks), GFP_KERNEL);
|
|
if (!clks)
|
|
goto free_clkdata;
|
|
|
|
clk_data->clks = clks;
|
|
|
|
/* It's not a good idea to have automatic reparenting changing
|
|
* our RAM clock! */
|
|
clkflags = !strcmp("pll5", parent) ? 0 : CLK_SET_RATE_PARENT;
|
|
|
|
for (i = 0; i < ndivs; i++) {
|
|
if (of_property_read_string_index(node, "clock-output-names",
|
|
i, &clk_name) != 0)
|
|
break;
|
|
|
|
/* If this is the base factor clock, only update clks */
|
|
if (data->div[i].self) {
|
|
clk_data->clks[i] = pclk;
|
|
continue;
|
|
}
|
|
|
|
gate_hw = NULL;
|
|
rate_hw = NULL;
|
|
rate_ops = NULL;
|
|
|
|
/* If this leaf clock can be gated, create a gate */
|
|
if (data->div[i].gate) {
|
|
gate = kzalloc(sizeof(*gate), GFP_KERNEL);
|
|
if (!gate)
|
|
goto free_clks;
|
|
|
|
gate->reg = reg;
|
|
gate->bit_idx = data->div[i].gate;
|
|
gate->lock = &clk_lock;
|
|
|
|
gate_hw = &gate->hw;
|
|
}
|
|
|
|
/* Leaves can be fixed or configurable divisors */
|
|
if (data->div[i].fixed) {
|
|
fix_factor = kzalloc(sizeof(*fix_factor), GFP_KERNEL);
|
|
if (!fix_factor)
|
|
goto free_gate;
|
|
|
|
fix_factor->mult = 1;
|
|
fix_factor->div = data->div[i].fixed;
|
|
|
|
rate_hw = &fix_factor->hw;
|
|
rate_ops = &clk_fixed_factor_ops;
|
|
} else {
|
|
divider = kzalloc(sizeof(*divider), GFP_KERNEL);
|
|
if (!divider)
|
|
goto free_gate;
|
|
|
|
flags = data->div[i].pow ? CLK_DIVIDER_POWER_OF_TWO : 0;
|
|
|
|
divider->reg = reg;
|
|
divider->shift = data->div[i].shift;
|
|
divider->width = SUNXI_DIVISOR_WIDTH;
|
|
divider->flags = flags;
|
|
divider->lock = &clk_lock;
|
|
divider->table = data->div[i].table;
|
|
|
|
rate_hw = ÷r->hw;
|
|
rate_ops = &clk_divider_ops;
|
|
}
|
|
|
|
/* Wrap the (potential) gate and the divisor on a composite
|
|
* clock to unify them */
|
|
clks[i] = clk_register_composite(NULL, clk_name, &parent, 1,
|
|
NULL, NULL,
|
|
rate_hw, rate_ops,
|
|
gate_hw, &clk_gate_ops,
|
|
clkflags);
|
|
|
|
WARN_ON(IS_ERR(clk_data->clks[i]));
|
|
clk_register_clkdev(clks[i], clk_name, NULL);
|
|
}
|
|
|
|
/* Adjust to the real max */
|
|
clk_data->clk_num = i;
|
|
|
|
of_clk_add_provider(node, of_clk_src_onecell_get, clk_data);
|
|
|
|
return;
|
|
|
|
free_gate:
|
|
kfree(gate);
|
|
free_clks:
|
|
kfree(clks);
|
|
free_clkdata:
|
|
kfree(clk_data);
|
|
}
|
|
|
|
|
|
|
|
/* Matches for factors clocks */
|
|
static const struct of_device_id clk_factors_match[] __initconst = {
|
|
{.compatible = "allwinner,sun4i-a10-pll1-clk", .data = &sun4i_pll1_data,},
|
|
{.compatible = "allwinner,sun6i-a31-pll1-clk", .data = &sun6i_a31_pll1_data,},
|
|
{.compatible = "allwinner,sun8i-a23-pll1-clk", .data = &sun8i_a23_pll1_data,},
|
|
{.compatible = "allwinner,sun7i-a20-pll4-clk", .data = &sun7i_a20_pll4_data,},
|
|
{.compatible = "allwinner,sun5i-a13-ahb-clk", .data = &sun5i_a13_ahb_data,},
|
|
{.compatible = "allwinner,sun4i-a10-apb1-clk", .data = &sun4i_apb1_data,},
|
|
{.compatible = "allwinner,sun7i-a20-out-clk", .data = &sun7i_a20_out_data,},
|
|
{}
|
|
};
|
|
|
|
/* Matches for divider clocks */
|
|
static const struct of_device_id clk_div_match[] __initconst = {
|
|
{.compatible = "allwinner,sun4i-a10-axi-clk", .data = &sun4i_axi_data,},
|
|
{.compatible = "allwinner,sun8i-a23-axi-clk", .data = &sun8i_a23_axi_data,},
|
|
{.compatible = "allwinner,sun4i-a10-ahb-clk", .data = &sun4i_ahb_data,},
|
|
{.compatible = "allwinner,sun4i-a10-apb0-clk", .data = &sun4i_apb0_data,},
|
|
{}
|
|
};
|
|
|
|
/* Matches for divided outputs */
|
|
static const struct of_device_id clk_divs_match[] __initconst = {
|
|
{.compatible = "allwinner,sun4i-a10-pll5-clk", .data = &pll5_divs_data,},
|
|
{.compatible = "allwinner,sun4i-a10-pll6-clk", .data = &pll6_divs_data,},
|
|
{.compatible = "allwinner,sun6i-a31-pll6-clk", .data = &sun6i_a31_pll6_divs_data,},
|
|
{}
|
|
};
|
|
|
|
/* Matches for mux clocks */
|
|
static const struct of_device_id clk_mux_match[] __initconst = {
|
|
{.compatible = "allwinner,sun4i-a10-cpu-clk", .data = &sun4i_cpu_mux_data,},
|
|
{.compatible = "allwinner,sun6i-a31-ahb1-mux-clk", .data = &sun6i_a31_ahb1_mux_data,},
|
|
{}
|
|
};
|
|
|
|
|
|
static void __init of_sunxi_table_clock_setup(const struct of_device_id *clk_match,
|
|
void *function)
|
|
{
|
|
struct device_node *np;
|
|
const struct div_data *data;
|
|
const struct of_device_id *match;
|
|
void (*setup_function)(struct device_node *, const void *) = function;
|
|
|
|
for_each_matching_node_and_match(np, clk_match, &match) {
|
|
data = match->data;
|
|
setup_function(np, data);
|
|
}
|
|
}
|
|
|
|
static void __init sunxi_init_clocks(const char *clocks[], int nclocks)
|
|
{
|
|
unsigned int i;
|
|
|
|
/* Register divided output clocks */
|
|
of_sunxi_table_clock_setup(clk_divs_match, sunxi_divs_clk_setup);
|
|
|
|
/* Register factor clocks */
|
|
of_sunxi_table_clock_setup(clk_factors_match, sunxi_factors_clk_setup);
|
|
|
|
/* Register divider clocks */
|
|
of_sunxi_table_clock_setup(clk_div_match, sunxi_divider_clk_setup);
|
|
|
|
/* Register mux clocks */
|
|
of_sunxi_table_clock_setup(clk_mux_match, sunxi_mux_clk_setup);
|
|
|
|
/* Protect the clocks that needs to stay on */
|
|
for (i = 0; i < nclocks; i++) {
|
|
struct clk *clk = clk_get(NULL, clocks[i]);
|
|
|
|
if (!IS_ERR(clk))
|
|
clk_prepare_enable(clk);
|
|
}
|
|
}
|
|
|
|
static const char *sun4i_a10_critical_clocks[] __initdata = {
|
|
"pll5_ddr",
|
|
};
|
|
|
|
static void __init sun4i_a10_init_clocks(struct device_node *node)
|
|
{
|
|
sunxi_init_clocks(sun4i_a10_critical_clocks,
|
|
ARRAY_SIZE(sun4i_a10_critical_clocks));
|
|
}
|
|
CLK_OF_DECLARE(sun4i_a10_clk_init, "allwinner,sun4i-a10", sun4i_a10_init_clocks);
|
|
|
|
static const char *sun5i_critical_clocks[] __initdata = {
|
|
"cpu",
|
|
"pll5_ddr",
|
|
};
|
|
|
|
static void __init sun5i_init_clocks(struct device_node *node)
|
|
{
|
|
sunxi_init_clocks(sun5i_critical_clocks,
|
|
ARRAY_SIZE(sun5i_critical_clocks));
|
|
}
|
|
CLK_OF_DECLARE(sun5i_a10s_clk_init, "allwinner,sun5i-a10s", sun5i_init_clocks);
|
|
CLK_OF_DECLARE(sun5i_a13_clk_init, "allwinner,sun5i-a13", sun5i_init_clocks);
|
|
CLK_OF_DECLARE(sun5i_r8_clk_init, "allwinner,sun5i-r8", sun5i_init_clocks);
|
|
CLK_OF_DECLARE(sun7i_a20_clk_init, "allwinner,sun7i-a20", sun5i_init_clocks);
|
|
|
|
static const char *sun6i_critical_clocks[] __initdata = {
|
|
"cpu",
|
|
};
|
|
|
|
static void __init sun6i_init_clocks(struct device_node *node)
|
|
{
|
|
sunxi_init_clocks(sun6i_critical_clocks,
|
|
ARRAY_SIZE(sun6i_critical_clocks));
|
|
}
|
|
CLK_OF_DECLARE(sun6i_a31_clk_init, "allwinner,sun6i-a31", sun6i_init_clocks);
|
|
CLK_OF_DECLARE(sun6i_a31s_clk_init, "allwinner,sun6i-a31s", sun6i_init_clocks);
|
|
CLK_OF_DECLARE(sun8i_a23_clk_init, "allwinner,sun8i-a23", sun6i_init_clocks);
|
|
CLK_OF_DECLARE(sun8i_a33_clk_init, "allwinner,sun8i-a33", sun6i_init_clocks);
|
|
|
|
static void __init sun9i_init_clocks(struct device_node *node)
|
|
{
|
|
sunxi_init_clocks(NULL, 0);
|
|
}
|
|
CLK_OF_DECLARE(sun9i_a80_clk_init, "allwinner,sun9i-a80", sun9i_init_clocks);
|