mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
505 lines
13 KiB
C
505 lines
13 KiB
C
/* arch/sparc64/mm/tsb.c
|
|
*
|
|
* Copyright (C) 2006, 2008 David S. Miller <davem@davemloft.net>
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/preempt.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/system.h>
|
|
#include <asm/page.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/tlb.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/tsb.h>
|
|
#include <asm/oplib.h>
|
|
|
|
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
|
|
|
|
static inline unsigned long tsb_hash(unsigned long vaddr, unsigned long hash_shift, unsigned long nentries)
|
|
{
|
|
vaddr >>= hash_shift;
|
|
return vaddr & (nentries - 1);
|
|
}
|
|
|
|
static inline int tag_compare(unsigned long tag, unsigned long vaddr)
|
|
{
|
|
return (tag == (vaddr >> 22));
|
|
}
|
|
|
|
/* TSB flushes need only occur on the processor initiating the address
|
|
* space modification, not on each cpu the address space has run on.
|
|
* Only the TLB flush needs that treatment.
|
|
*/
|
|
|
|
void flush_tsb_kernel_range(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long v;
|
|
|
|
for (v = start; v < end; v += PAGE_SIZE) {
|
|
unsigned long hash = tsb_hash(v, PAGE_SHIFT,
|
|
KERNEL_TSB_NENTRIES);
|
|
struct tsb *ent = &swapper_tsb[hash];
|
|
|
|
if (tag_compare(ent->tag, v))
|
|
ent->tag = (1UL << TSB_TAG_INVALID_BIT);
|
|
}
|
|
}
|
|
|
|
static void __flush_tsb_one(struct mmu_gather *mp, unsigned long hash_shift, unsigned long tsb, unsigned long nentries)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < mp->tlb_nr; i++) {
|
|
unsigned long v = mp->vaddrs[i];
|
|
unsigned long tag, ent, hash;
|
|
|
|
v &= ~0x1UL;
|
|
|
|
hash = tsb_hash(v, hash_shift, nentries);
|
|
ent = tsb + (hash * sizeof(struct tsb));
|
|
tag = (v >> 22UL);
|
|
|
|
tsb_flush(ent, tag);
|
|
}
|
|
}
|
|
|
|
void flush_tsb_user(struct mmu_gather *mp)
|
|
{
|
|
struct mm_struct *mm = mp->mm;
|
|
unsigned long nentries, base, flags;
|
|
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
base = (unsigned long) mm->context.tsb_block[MM_TSB_BASE].tsb;
|
|
nentries = mm->context.tsb_block[MM_TSB_BASE].tsb_nentries;
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
|
|
base = __pa(base);
|
|
__flush_tsb_one(mp, PAGE_SHIFT, base, nentries);
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
if (mm->context.tsb_block[MM_TSB_HUGE].tsb) {
|
|
base = (unsigned long) mm->context.tsb_block[MM_TSB_HUGE].tsb;
|
|
nentries = mm->context.tsb_block[MM_TSB_HUGE].tsb_nentries;
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor)
|
|
base = __pa(base);
|
|
__flush_tsb_one(mp, HPAGE_SHIFT, base, nentries);
|
|
}
|
|
#endif
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
}
|
|
|
|
#if defined(CONFIG_SPARC64_PAGE_SIZE_8KB)
|
|
#define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_8K
|
|
#define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_8K
|
|
#elif defined(CONFIG_SPARC64_PAGE_SIZE_64KB)
|
|
#define HV_PGSZ_IDX_BASE HV_PGSZ_IDX_64K
|
|
#define HV_PGSZ_MASK_BASE HV_PGSZ_MASK_64K
|
|
#else
|
|
#error Broken base page size setting...
|
|
#endif
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
#if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
|
|
#define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_64K
|
|
#define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_64K
|
|
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_512K)
|
|
#define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_512K
|
|
#define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_512K
|
|
#elif defined(CONFIG_HUGETLB_PAGE_SIZE_4MB)
|
|
#define HV_PGSZ_IDX_HUGE HV_PGSZ_IDX_4MB
|
|
#define HV_PGSZ_MASK_HUGE HV_PGSZ_MASK_4MB
|
|
#else
|
|
#error Broken huge page size setting...
|
|
#endif
|
|
#endif
|
|
|
|
static void setup_tsb_params(struct mm_struct *mm, unsigned long tsb_idx, unsigned long tsb_bytes)
|
|
{
|
|
unsigned long tsb_reg, base, tsb_paddr;
|
|
unsigned long page_sz, tte;
|
|
|
|
mm->context.tsb_block[tsb_idx].tsb_nentries =
|
|
tsb_bytes / sizeof(struct tsb);
|
|
|
|
base = TSBMAP_BASE;
|
|
tte = pgprot_val(PAGE_KERNEL_LOCKED);
|
|
tsb_paddr = __pa(mm->context.tsb_block[tsb_idx].tsb);
|
|
BUG_ON(tsb_paddr & (tsb_bytes - 1UL));
|
|
|
|
/* Use the smallest page size that can map the whole TSB
|
|
* in one TLB entry.
|
|
*/
|
|
switch (tsb_bytes) {
|
|
case 8192 << 0:
|
|
tsb_reg = 0x0UL;
|
|
#ifdef DCACHE_ALIASING_POSSIBLE
|
|
base += (tsb_paddr & 8192);
|
|
#endif
|
|
page_sz = 8192;
|
|
break;
|
|
|
|
case 8192 << 1:
|
|
tsb_reg = 0x1UL;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 2:
|
|
tsb_reg = 0x2UL;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 3:
|
|
tsb_reg = 0x3UL;
|
|
page_sz = 64 * 1024;
|
|
break;
|
|
|
|
case 8192 << 4:
|
|
tsb_reg = 0x4UL;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 5:
|
|
tsb_reg = 0x5UL;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 6:
|
|
tsb_reg = 0x6UL;
|
|
page_sz = 512 * 1024;
|
|
break;
|
|
|
|
case 8192 << 7:
|
|
tsb_reg = 0x7UL;
|
|
page_sz = 4 * 1024 * 1024;
|
|
break;
|
|
|
|
default:
|
|
printk(KERN_ERR "TSB[%s:%d]: Impossible TSB size %lu, killing process.\n",
|
|
current->comm, current->pid, tsb_bytes);
|
|
do_exit(SIGSEGV);
|
|
};
|
|
tte |= pte_sz_bits(page_sz);
|
|
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
|
|
/* Physical mapping, no locked TLB entry for TSB. */
|
|
tsb_reg |= tsb_paddr;
|
|
|
|
mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
|
|
mm->context.tsb_block[tsb_idx].tsb_map_vaddr = 0;
|
|
mm->context.tsb_block[tsb_idx].tsb_map_pte = 0;
|
|
} else {
|
|
tsb_reg |= base;
|
|
tsb_reg |= (tsb_paddr & (page_sz - 1UL));
|
|
tte |= (tsb_paddr & ~(page_sz - 1UL));
|
|
|
|
mm->context.tsb_block[tsb_idx].tsb_reg_val = tsb_reg;
|
|
mm->context.tsb_block[tsb_idx].tsb_map_vaddr = base;
|
|
mm->context.tsb_block[tsb_idx].tsb_map_pte = tte;
|
|
}
|
|
|
|
/* Setup the Hypervisor TSB descriptor. */
|
|
if (tlb_type == hypervisor) {
|
|
struct hv_tsb_descr *hp = &mm->context.tsb_descr[tsb_idx];
|
|
|
|
switch (tsb_idx) {
|
|
case MM_TSB_BASE:
|
|
hp->pgsz_idx = HV_PGSZ_IDX_BASE;
|
|
break;
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
case MM_TSB_HUGE:
|
|
hp->pgsz_idx = HV_PGSZ_IDX_HUGE;
|
|
break;
|
|
#endif
|
|
default:
|
|
BUG();
|
|
};
|
|
hp->assoc = 1;
|
|
hp->num_ttes = tsb_bytes / 16;
|
|
hp->ctx_idx = 0;
|
|
switch (tsb_idx) {
|
|
case MM_TSB_BASE:
|
|
hp->pgsz_mask = HV_PGSZ_MASK_BASE;
|
|
break;
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
case MM_TSB_HUGE:
|
|
hp->pgsz_mask = HV_PGSZ_MASK_HUGE;
|
|
break;
|
|
#endif
|
|
default:
|
|
BUG();
|
|
};
|
|
hp->tsb_base = tsb_paddr;
|
|
hp->resv = 0;
|
|
}
|
|
}
|
|
|
|
static struct kmem_cache *tsb_caches[8] __read_mostly;
|
|
|
|
static const char *tsb_cache_names[8] = {
|
|
"tsb_8KB",
|
|
"tsb_16KB",
|
|
"tsb_32KB",
|
|
"tsb_64KB",
|
|
"tsb_128KB",
|
|
"tsb_256KB",
|
|
"tsb_512KB",
|
|
"tsb_1MB",
|
|
};
|
|
|
|
void __init pgtable_cache_init(void)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
unsigned long size = 8192 << i;
|
|
const char *name = tsb_cache_names[i];
|
|
|
|
tsb_caches[i] = kmem_cache_create(name,
|
|
size, size,
|
|
0, NULL);
|
|
if (!tsb_caches[i]) {
|
|
prom_printf("Could not create %s cache\n", name);
|
|
prom_halt();
|
|
}
|
|
}
|
|
}
|
|
|
|
int sysctl_tsb_ratio = -2;
|
|
|
|
static unsigned long tsb_size_to_rss_limit(unsigned long new_size)
|
|
{
|
|
unsigned long num_ents = (new_size / sizeof(struct tsb));
|
|
|
|
if (sysctl_tsb_ratio < 0)
|
|
return num_ents - (num_ents >> -sysctl_tsb_ratio);
|
|
else
|
|
return num_ents + (num_ents >> sysctl_tsb_ratio);
|
|
}
|
|
|
|
/* When the RSS of an address space exceeds tsb_rss_limit for a TSB,
|
|
* do_sparc64_fault() invokes this routine to try and grow it.
|
|
*
|
|
* When we reach the maximum TSB size supported, we stick ~0UL into
|
|
* tsb_rss_limit for that TSB so the grow checks in do_sparc64_fault()
|
|
* will not trigger any longer.
|
|
*
|
|
* The TSB can be anywhere from 8K to 1MB in size, in increasing powers
|
|
* of two. The TSB must be aligned to it's size, so f.e. a 512K TSB
|
|
* must be 512K aligned. It also must be physically contiguous, so we
|
|
* cannot use vmalloc().
|
|
*
|
|
* The idea here is to grow the TSB when the RSS of the process approaches
|
|
* the number of entries that the current TSB can hold at once. Currently,
|
|
* we trigger when the RSS hits 3/4 of the TSB capacity.
|
|
*/
|
|
void tsb_grow(struct mm_struct *mm, unsigned long tsb_index, unsigned long rss)
|
|
{
|
|
unsigned long max_tsb_size = 1 * 1024 * 1024;
|
|
unsigned long new_size, old_size, flags;
|
|
struct tsb *old_tsb, *new_tsb;
|
|
unsigned long new_cache_index, old_cache_index;
|
|
unsigned long new_rss_limit;
|
|
gfp_t gfp_flags;
|
|
|
|
if (max_tsb_size > (PAGE_SIZE << MAX_ORDER))
|
|
max_tsb_size = (PAGE_SIZE << MAX_ORDER);
|
|
|
|
new_cache_index = 0;
|
|
for (new_size = 8192; new_size < max_tsb_size; new_size <<= 1UL) {
|
|
new_rss_limit = tsb_size_to_rss_limit(new_size);
|
|
if (new_rss_limit > rss)
|
|
break;
|
|
new_cache_index++;
|
|
}
|
|
|
|
if (new_size == max_tsb_size)
|
|
new_rss_limit = ~0UL;
|
|
|
|
retry_tsb_alloc:
|
|
gfp_flags = GFP_KERNEL;
|
|
if (new_size > (PAGE_SIZE * 2))
|
|
gfp_flags = __GFP_NOWARN | __GFP_NORETRY;
|
|
|
|
new_tsb = kmem_cache_alloc_node(tsb_caches[new_cache_index],
|
|
gfp_flags, numa_node_id());
|
|
if (unlikely(!new_tsb)) {
|
|
/* Not being able to fork due to a high-order TSB
|
|
* allocation failure is very bad behavior. Just back
|
|
* down to a 0-order allocation and force no TSB
|
|
* growing for this address space.
|
|
*/
|
|
if (mm->context.tsb_block[tsb_index].tsb == NULL &&
|
|
new_cache_index > 0) {
|
|
new_cache_index = 0;
|
|
new_size = 8192;
|
|
new_rss_limit = ~0UL;
|
|
goto retry_tsb_alloc;
|
|
}
|
|
|
|
/* If we failed on a TSB grow, we are under serious
|
|
* memory pressure so don't try to grow any more.
|
|
*/
|
|
if (mm->context.tsb_block[tsb_index].tsb != NULL)
|
|
mm->context.tsb_block[tsb_index].tsb_rss_limit = ~0UL;
|
|
return;
|
|
}
|
|
|
|
/* Mark all tags as invalid. */
|
|
tsb_init(new_tsb, new_size);
|
|
|
|
/* Ok, we are about to commit the changes. If we are
|
|
* growing an existing TSB the locking is very tricky,
|
|
* so WATCH OUT!
|
|
*
|
|
* We have to hold mm->context.lock while committing to the
|
|
* new TSB, this synchronizes us with processors in
|
|
* flush_tsb_user() and switch_mm() for this address space.
|
|
*
|
|
* But even with that lock held, processors run asynchronously
|
|
* accessing the old TSB via TLB miss handling. This is OK
|
|
* because those actions are just propagating state from the
|
|
* Linux page tables into the TSB, page table mappings are not
|
|
* being changed. If a real fault occurs, the processor will
|
|
* synchronize with us when it hits flush_tsb_user(), this is
|
|
* also true for the case where vmscan is modifying the page
|
|
* tables. The only thing we need to be careful with is to
|
|
* skip any locked TSB entries during copy_tsb().
|
|
*
|
|
* When we finish committing to the new TSB, we have to drop
|
|
* the lock and ask all other cpus running this address space
|
|
* to run tsb_context_switch() to see the new TSB table.
|
|
*/
|
|
spin_lock_irqsave(&mm->context.lock, flags);
|
|
|
|
old_tsb = mm->context.tsb_block[tsb_index].tsb;
|
|
old_cache_index =
|
|
(mm->context.tsb_block[tsb_index].tsb_reg_val & 0x7UL);
|
|
old_size = (mm->context.tsb_block[tsb_index].tsb_nentries *
|
|
sizeof(struct tsb));
|
|
|
|
|
|
/* Handle multiple threads trying to grow the TSB at the same time.
|
|
* One will get in here first, and bump the size and the RSS limit.
|
|
* The others will get in here next and hit this check.
|
|
*/
|
|
if (unlikely(old_tsb &&
|
|
(rss < mm->context.tsb_block[tsb_index].tsb_rss_limit))) {
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
|
|
kmem_cache_free(tsb_caches[new_cache_index], new_tsb);
|
|
return;
|
|
}
|
|
|
|
mm->context.tsb_block[tsb_index].tsb_rss_limit = new_rss_limit;
|
|
|
|
if (old_tsb) {
|
|
extern void copy_tsb(unsigned long old_tsb_base,
|
|
unsigned long old_tsb_size,
|
|
unsigned long new_tsb_base,
|
|
unsigned long new_tsb_size);
|
|
unsigned long old_tsb_base = (unsigned long) old_tsb;
|
|
unsigned long new_tsb_base = (unsigned long) new_tsb;
|
|
|
|
if (tlb_type == cheetah_plus || tlb_type == hypervisor) {
|
|
old_tsb_base = __pa(old_tsb_base);
|
|
new_tsb_base = __pa(new_tsb_base);
|
|
}
|
|
copy_tsb(old_tsb_base, old_size, new_tsb_base, new_size);
|
|
}
|
|
|
|
mm->context.tsb_block[tsb_index].tsb = new_tsb;
|
|
setup_tsb_params(mm, tsb_index, new_size);
|
|
|
|
spin_unlock_irqrestore(&mm->context.lock, flags);
|
|
|
|
/* If old_tsb is NULL, we're being invoked for the first time
|
|
* from init_new_context().
|
|
*/
|
|
if (old_tsb) {
|
|
/* Reload it on the local cpu. */
|
|
tsb_context_switch(mm);
|
|
|
|
/* Now force other processors to do the same. */
|
|
preempt_disable();
|
|
smp_tsb_sync(mm);
|
|
preempt_enable();
|
|
|
|
/* Now it is safe to free the old tsb. */
|
|
kmem_cache_free(tsb_caches[old_cache_index], old_tsb);
|
|
}
|
|
}
|
|
|
|
int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
unsigned long huge_pte_count;
|
|
#endif
|
|
unsigned int i;
|
|
|
|
spin_lock_init(&mm->context.lock);
|
|
|
|
mm->context.sparc64_ctx_val = 0UL;
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
/* We reset it to zero because the fork() page copying
|
|
* will re-increment the counters as the parent PTEs are
|
|
* copied into the child address space.
|
|
*/
|
|
huge_pte_count = mm->context.huge_pte_count;
|
|
mm->context.huge_pte_count = 0;
|
|
#endif
|
|
|
|
/* copy_mm() copies over the parent's mm_struct before calling
|
|
* us, so we need to zero out the TSB pointer or else tsb_grow()
|
|
* will be confused and think there is an older TSB to free up.
|
|
*/
|
|
for (i = 0; i < MM_NUM_TSBS; i++)
|
|
mm->context.tsb_block[i].tsb = NULL;
|
|
|
|
/* If this is fork, inherit the parent's TSB size. We would
|
|
* grow it to that size on the first page fault anyways.
|
|
*/
|
|
tsb_grow(mm, MM_TSB_BASE, get_mm_rss(mm));
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
if (unlikely(huge_pte_count))
|
|
tsb_grow(mm, MM_TSB_HUGE, huge_pte_count);
|
|
#endif
|
|
|
|
if (unlikely(!mm->context.tsb_block[MM_TSB_BASE].tsb))
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tsb_destroy_one(struct tsb_config *tp)
|
|
{
|
|
unsigned long cache_index;
|
|
|
|
if (!tp->tsb)
|
|
return;
|
|
cache_index = tp->tsb_reg_val & 0x7UL;
|
|
kmem_cache_free(tsb_caches[cache_index], tp->tsb);
|
|
tp->tsb = NULL;
|
|
tp->tsb_reg_val = 0UL;
|
|
}
|
|
|
|
void destroy_context(struct mm_struct *mm)
|
|
{
|
|
unsigned long flags, i;
|
|
|
|
for (i = 0; i < MM_NUM_TSBS; i++)
|
|
tsb_destroy_one(&mm->context.tsb_block[i]);
|
|
|
|
spin_lock_irqsave(&ctx_alloc_lock, flags);
|
|
|
|
if (CTX_VALID(mm->context)) {
|
|
unsigned long nr = CTX_NRBITS(mm->context);
|
|
mmu_context_bmap[nr>>6] &= ~(1UL << (nr & 63));
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ctx_alloc_lock, flags);
|
|
}
|