linux_dsm_epyc7002/fs/ocfs2/file.c
David Howells a528d35e8b statx: Add a system call to make enhanced file info available
Add a system call to make extended file information available, including
file creation and some attribute flags where available through the
underlying filesystem.

The getattr inode operation is altered to take two additional arguments: a
u32 request_mask and an unsigned int flags that indicate the
synchronisation mode.  This change is propagated to the vfs_getattr*()
function.

Functions like vfs_stat() are now inline wrappers around new functions
vfs_statx() and vfs_statx_fd() to reduce stack usage.

========
OVERVIEW
========

The idea was initially proposed as a set of xattrs that could be retrieved
with getxattr(), but the general preference proved to be for a new syscall
with an extended stat structure.

A number of requests were gathered for features to be included.  The
following have been included:

 (1) Make the fields a consistent size on all arches and make them large.

 (2) Spare space, request flags and information flags are provided for
     future expansion.

 (3) Better support for the y2038 problem [Arnd Bergmann] (tv_sec is an
     __s64).

 (4) Creation time: The SMB protocol carries the creation time, which could
     be exported by Samba, which will in turn help CIFS make use of
     FS-Cache as that can be used for coherency data (stx_btime).

     This is also specified in NFSv4 as a recommended attribute and could
     be exported by NFSD [Steve French].

 (5) Lightweight stat: Ask for just those details of interest, and allow a
     netfs (such as NFS) to approximate anything not of interest, possibly
     without going to the server [Trond Myklebust, Ulrich Drepper, Andreas
     Dilger] (AT_STATX_DONT_SYNC).

 (6) Heavyweight stat: Force a netfs to go to the server, even if it thinks
     its cached attributes are up to date [Trond Myklebust]
     (AT_STATX_FORCE_SYNC).

And the following have been left out for future extension:

 (7) Data version number: Could be used by userspace NFS servers [Aneesh
     Kumar].

     Can also be used to modify fill_post_wcc() in NFSD which retrieves
     i_version directly, but has just called vfs_getattr().  It could get
     it from the kstat struct if it used vfs_xgetattr() instead.

     (There's disagreement on the exact semantics of a single field, since
     not all filesystems do this the same way).

 (8) BSD stat compatibility: Including more fields from the BSD stat such
     as creation time (st_btime) and inode generation number (st_gen)
     [Jeremy Allison, Bernd Schubert].

 (9) Inode generation number: Useful for FUSE and userspace NFS servers
     [Bernd Schubert].

     (This was asked for but later deemed unnecessary with the
     open-by-handle capability available and caused disagreement as to
     whether it's a security hole or not).

(10) Extra coherency data may be useful in making backups [Andreas Dilger].

     (No particular data were offered, but things like last backup
     timestamp, the data version number and the DOS archive bit would come
     into this category).

(11) Allow the filesystem to indicate what it can/cannot provide: A
     filesystem can now say it doesn't support a standard stat feature if
     that isn't available, so if, for instance, inode numbers or UIDs don't
     exist or are fabricated locally...

     (This requires a separate system call - I have an fsinfo() call idea
     for this).

(12) Store a 16-byte volume ID in the superblock that can be returned in
     struct xstat [Steve French].

     (Deferred to fsinfo).

(13) Include granularity fields in the time data to indicate the
     granularity of each of the times (NFSv4 time_delta) [Steve French].

     (Deferred to fsinfo).

(14) FS_IOC_GETFLAGS value.  These could be translated to BSD's st_flags.
     Note that the Linux IOC flags are a mess and filesystems such as Ext4
     define flags that aren't in linux/fs.h, so translation in the kernel
     may be a necessity (or, possibly, we provide the filesystem type too).

     (Some attributes are made available in stx_attributes, but the general
     feeling was that the IOC flags were to ext[234]-specific and shouldn't
     be exposed through statx this way).

(15) Mask of features available on file (eg: ACLs, seclabel) [Brad Boyer,
     Michael Kerrisk].

     (Deferred, probably to fsinfo.  Finding out if there's an ACL or
     seclabal might require extra filesystem operations).

(16) Femtosecond-resolution timestamps [Dave Chinner].

     (A __reserved field has been left in the statx_timestamp struct for
     this - if there proves to be a need).

(17) A set multiple attributes syscall to go with this.

===============
NEW SYSTEM CALL
===============

The new system call is:

	int ret = statx(int dfd,
			const char *filename,
			unsigned int flags,
			unsigned int mask,
			struct statx *buffer);

The dfd, filename and flags parameters indicate the file to query, in a
similar way to fstatat().  There is no equivalent of lstat() as that can be
emulated with statx() by passing AT_SYMLINK_NOFOLLOW in flags.  There is
also no equivalent of fstat() as that can be emulated by passing a NULL
filename to statx() with the fd of interest in dfd.

Whether or not statx() synchronises the attributes with the backing store
can be controlled by OR'ing a value into the flags argument (this typically
only affects network filesystems):

 (1) AT_STATX_SYNC_AS_STAT tells statx() to behave as stat() does in this
     respect.

 (2) AT_STATX_FORCE_SYNC will require a network filesystem to synchronise
     its attributes with the server - which might require data writeback to
     occur to get the timestamps correct.

 (3) AT_STATX_DONT_SYNC will suppress synchronisation with the server in a
     network filesystem.  The resulting values should be considered
     approximate.

mask is a bitmask indicating the fields in struct statx that are of
interest to the caller.  The user should set this to STATX_BASIC_STATS to
get the basic set returned by stat().  It should be noted that asking for
more information may entail extra I/O operations.

buffer points to the destination for the data.  This must be 256 bytes in
size.

======================
MAIN ATTRIBUTES RECORD
======================

The following structures are defined in which to return the main attribute
set:

	struct statx_timestamp {
		__s64	tv_sec;
		__s32	tv_nsec;
		__s32	__reserved;
	};

	struct statx {
		__u32	stx_mask;
		__u32	stx_blksize;
		__u64	stx_attributes;
		__u32	stx_nlink;
		__u32	stx_uid;
		__u32	stx_gid;
		__u16	stx_mode;
		__u16	__spare0[1];
		__u64	stx_ino;
		__u64	stx_size;
		__u64	stx_blocks;
		__u64	__spare1[1];
		struct statx_timestamp	stx_atime;
		struct statx_timestamp	stx_btime;
		struct statx_timestamp	stx_ctime;
		struct statx_timestamp	stx_mtime;
		__u32	stx_rdev_major;
		__u32	stx_rdev_minor;
		__u32	stx_dev_major;
		__u32	stx_dev_minor;
		__u64	__spare2[14];
	};

The defined bits in request_mask and stx_mask are:

	STATX_TYPE		Want/got stx_mode & S_IFMT
	STATX_MODE		Want/got stx_mode & ~S_IFMT
	STATX_NLINK		Want/got stx_nlink
	STATX_UID		Want/got stx_uid
	STATX_GID		Want/got stx_gid
	STATX_ATIME		Want/got stx_atime{,_ns}
	STATX_MTIME		Want/got stx_mtime{,_ns}
	STATX_CTIME		Want/got stx_ctime{,_ns}
	STATX_INO		Want/got stx_ino
	STATX_SIZE		Want/got stx_size
	STATX_BLOCKS		Want/got stx_blocks
	STATX_BASIC_STATS	[The stuff in the normal stat struct]
	STATX_BTIME		Want/got stx_btime{,_ns}
	STATX_ALL		[All currently available stuff]

stx_btime is the file creation time, stx_mask is a bitmask indicating the
data provided and __spares*[] are where as-yet undefined fields can be
placed.

Time fields are structures with separate seconds and nanoseconds fields
plus a reserved field in case we want to add even finer resolution.  Note
that times will be negative if before 1970; in such a case, the nanosecond
fields will also be negative if not zero.

The bits defined in the stx_attributes field convey information about a
file, how it is accessed, where it is and what it does.  The following
attributes map to FS_*_FL flags and are the same numerical value:

	STATX_ATTR_COMPRESSED		File is compressed by the fs
	STATX_ATTR_IMMUTABLE		File is marked immutable
	STATX_ATTR_APPEND		File is append-only
	STATX_ATTR_NODUMP		File is not to be dumped
	STATX_ATTR_ENCRYPTED		File requires key to decrypt in fs

Within the kernel, the supported flags are listed by:

	KSTAT_ATTR_FS_IOC_FLAGS

[Are any other IOC flags of sufficient general interest to be exposed
through this interface?]

New flags include:

	STATX_ATTR_AUTOMOUNT		Object is an automount trigger

These are for the use of GUI tools that might want to mark files specially,
depending on what they are.

Fields in struct statx come in a number of classes:

 (0) stx_dev_*, stx_blksize.

     These are local system information and are always available.

 (1) stx_mode, stx_nlinks, stx_uid, stx_gid, stx_[amc]time, stx_ino,
     stx_size, stx_blocks.

     These will be returned whether the caller asks for them or not.  The
     corresponding bits in stx_mask will be set to indicate whether they
     actually have valid values.

     If the caller didn't ask for them, then they may be approximated.  For
     example, NFS won't waste any time updating them from the server,
     unless as a byproduct of updating something requested.

     If the values don't actually exist for the underlying object (such as
     UID or GID on a DOS file), then the bit won't be set in the stx_mask,
     even if the caller asked for the value.  In such a case, the returned
     value will be a fabrication.

     Note that there are instances where the type might not be valid, for
     instance Windows reparse points.

 (2) stx_rdev_*.

     This will be set only if stx_mode indicates we're looking at a
     blockdev or a chardev, otherwise will be 0.

 (3) stx_btime.

     Similar to (1), except this will be set to 0 if it doesn't exist.

=======
TESTING
=======

The following test program can be used to test the statx system call:

	samples/statx/test-statx.c

Just compile and run, passing it paths to the files you want to examine.
The file is built automatically if CONFIG_SAMPLES is enabled.

Here's some example output.  Firstly, an NFS directory that crosses to
another FSID.  Note that the AUTOMOUNT attribute is set because transiting
this directory will cause d_automount to be invoked by the VFS.

	[root@andromeda ~]# /tmp/test-statx -A /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:26           Inode: 1703937     Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000
	Attributes: 0000000000001000 (-------- -------- -------- -------- -------- -------- ---m---- --------)

Secondly, the result of automounting on that directory.

	[root@andromeda ~]# /tmp/test-statx /warthog/data
	statx(/warthog/data) = 0
	results=7ff
	  Size: 4096            Blocks: 8          IO Block: 1048576  directory
	Device: 00:27           Inode: 2           Links: 125
	Access: (3777/drwxrwxrwx)  Uid:     0   Gid:  4041
	Access: 2016-11-24 09:02:12.219699527+0000
	Modify: 2016-11-17 10:44:36.225653653+0000
	Change: 2016-11-17 10:44:36.225653653+0000

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2017-03-02 20:51:15 -05:00

2601 lines
63 KiB
C

/* -*- mode: c; c-basic-offset: 8; -*-
* vim: noexpandtab sw=8 ts=8 sts=0:
*
* file.c
*
* File open, close, extend, truncate
*
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/capability.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>
#include <linux/uio.h>
#include <linux/sched.h>
#include <linux/splice.h>
#include <linux/mount.h>
#include <linux/writeback.h>
#include <linux/falloc.h>
#include <linux/quotaops.h>
#include <linux/blkdev.h>
#include <linux/backing-dev.h>
#include <cluster/masklog.h>
#include "ocfs2.h"
#include "alloc.h"
#include "aops.h"
#include "dir.h"
#include "dlmglue.h"
#include "extent_map.h"
#include "file.h"
#include "sysfile.h"
#include "inode.h"
#include "ioctl.h"
#include "journal.h"
#include "locks.h"
#include "mmap.h"
#include "suballoc.h"
#include "super.h"
#include "xattr.h"
#include "acl.h"
#include "quota.h"
#include "refcounttree.h"
#include "ocfs2_trace.h"
#include "buffer_head_io.h"
static int ocfs2_init_file_private(struct inode *inode, struct file *file)
{
struct ocfs2_file_private *fp;
fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL);
if (!fp)
return -ENOMEM;
fp->fp_file = file;
mutex_init(&fp->fp_mutex);
ocfs2_file_lock_res_init(&fp->fp_flock, fp);
file->private_data = fp;
return 0;
}
static void ocfs2_free_file_private(struct inode *inode, struct file *file)
{
struct ocfs2_file_private *fp = file->private_data;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (fp) {
ocfs2_simple_drop_lockres(osb, &fp->fp_flock);
ocfs2_lock_res_free(&fp->fp_flock);
kfree(fp);
file->private_data = NULL;
}
}
static int ocfs2_file_open(struct inode *inode, struct file *file)
{
int status;
int mode = file->f_flags;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
trace_ocfs2_file_open(inode, file, file->f_path.dentry,
(unsigned long long)OCFS2_I(inode)->ip_blkno,
file->f_path.dentry->d_name.len,
file->f_path.dentry->d_name.name, mode);
if (file->f_mode & FMODE_WRITE) {
status = dquot_initialize(inode);
if (status)
goto leave;
}
spin_lock(&oi->ip_lock);
/* Check that the inode hasn't been wiped from disk by another
* node. If it hasn't then we're safe as long as we hold the
* spin lock until our increment of open count. */
if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_DELETED) {
spin_unlock(&oi->ip_lock);
status = -ENOENT;
goto leave;
}
if (mode & O_DIRECT)
oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT;
oi->ip_open_count++;
spin_unlock(&oi->ip_lock);
status = ocfs2_init_file_private(inode, file);
if (status) {
/*
* We want to set open count back if we're failing the
* open.
*/
spin_lock(&oi->ip_lock);
oi->ip_open_count--;
spin_unlock(&oi->ip_lock);
}
leave:
return status;
}
static int ocfs2_file_release(struct inode *inode, struct file *file)
{
struct ocfs2_inode_info *oi = OCFS2_I(inode);
spin_lock(&oi->ip_lock);
if (!--oi->ip_open_count)
oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT;
trace_ocfs2_file_release(inode, file, file->f_path.dentry,
oi->ip_blkno,
file->f_path.dentry->d_name.len,
file->f_path.dentry->d_name.name,
oi->ip_open_count);
spin_unlock(&oi->ip_lock);
ocfs2_free_file_private(inode, file);
return 0;
}
static int ocfs2_dir_open(struct inode *inode, struct file *file)
{
return ocfs2_init_file_private(inode, file);
}
static int ocfs2_dir_release(struct inode *inode, struct file *file)
{
ocfs2_free_file_private(inode, file);
return 0;
}
static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end,
int datasync)
{
int err = 0;
struct inode *inode = file->f_mapping->host;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_inode_info *oi = OCFS2_I(inode);
journal_t *journal = osb->journal->j_journal;
int ret;
tid_t commit_tid;
bool needs_barrier = false;
trace_ocfs2_sync_file(inode, file, file->f_path.dentry,
OCFS2_I(inode)->ip_blkno,
file->f_path.dentry->d_name.len,
file->f_path.dentry->d_name.name,
(unsigned long long)datasync);
if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
return -EROFS;
err = filemap_write_and_wait_range(inode->i_mapping, start, end);
if (err)
return err;
commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid;
if (journal->j_flags & JBD2_BARRIER &&
!jbd2_trans_will_send_data_barrier(journal, commit_tid))
needs_barrier = true;
err = jbd2_complete_transaction(journal, commit_tid);
if (needs_barrier) {
ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
if (!err)
err = ret;
}
if (err)
mlog_errno(err);
return (err < 0) ? -EIO : 0;
}
int ocfs2_should_update_atime(struct inode *inode,
struct vfsmount *vfsmnt)
{
struct timespec now;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
return 0;
if ((inode->i_flags & S_NOATIME) ||
((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)))
return 0;
/*
* We can be called with no vfsmnt structure - NFSD will
* sometimes do this.
*
* Note that our action here is different than touch_atime() -
* if we can't tell whether this is a noatime mount, then we
* don't know whether to trust the value of s_atime_quantum.
*/
if (vfsmnt == NULL)
return 0;
if ((vfsmnt->mnt_flags & MNT_NOATIME) ||
((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)))
return 0;
if (vfsmnt->mnt_flags & MNT_RELATIME) {
if ((timespec_compare(&inode->i_atime, &inode->i_mtime) <= 0) ||
(timespec_compare(&inode->i_atime, &inode->i_ctime) <= 0))
return 1;
return 0;
}
now = current_time(inode);
if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum))
return 0;
else
return 1;
}
int ocfs2_update_inode_atime(struct inode *inode,
struct buffer_head *bh)
{
int ret;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
handle_t *handle;
struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data;
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret) {
mlog_errno(ret);
goto out_commit;
}
/*
* Don't use ocfs2_mark_inode_dirty() here as we don't always
* have i_mutex to guard against concurrent changes to other
* inode fields.
*/
inode->i_atime = current_time(inode);
di->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
ocfs2_update_inode_fsync_trans(handle, inode, 0);
ocfs2_journal_dirty(handle, bh);
out_commit:
ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
out:
return ret;
}
int ocfs2_set_inode_size(handle_t *handle,
struct inode *inode,
struct buffer_head *fe_bh,
u64 new_i_size)
{
int status;
i_size_write(inode, new_i_size);
inode->i_blocks = ocfs2_inode_sector_count(inode);
inode->i_ctime = inode->i_mtime = current_time(inode);
status = ocfs2_mark_inode_dirty(handle, inode, fe_bh);
if (status < 0) {
mlog_errno(status);
goto bail;
}
bail:
return status;
}
int ocfs2_simple_size_update(struct inode *inode,
struct buffer_head *di_bh,
u64 new_i_size)
{
int ret;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
handle_t *handle = NULL;
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
ret = ocfs2_set_inode_size(handle, inode, di_bh,
new_i_size);
if (ret < 0)
mlog_errno(ret);
ocfs2_update_inode_fsync_trans(handle, inode, 0);
ocfs2_commit_trans(osb, handle);
out:
return ret;
}
static int ocfs2_cow_file_pos(struct inode *inode,
struct buffer_head *fe_bh,
u64 offset)
{
int status;
u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
unsigned int num_clusters = 0;
unsigned int ext_flags = 0;
/*
* If the new offset is aligned to the range of the cluster, there is
* no space for ocfs2_zero_range_for_truncate to fill, so no need to
* CoW either.
*/
if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0)
return 0;
status = ocfs2_get_clusters(inode, cpos, &phys,
&num_clusters, &ext_flags);
if (status) {
mlog_errno(status);
goto out;
}
if (!(ext_flags & OCFS2_EXT_REFCOUNTED))
goto out;
return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1);
out:
return status;
}
static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb,
struct inode *inode,
struct buffer_head *fe_bh,
u64 new_i_size)
{
int status;
handle_t *handle;
struct ocfs2_dinode *di;
u64 cluster_bytes;
/*
* We need to CoW the cluster contains the offset if it is reflinked
* since we will call ocfs2_zero_range_for_truncate later which will
* write "0" from offset to the end of the cluster.
*/
status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size);
if (status) {
mlog_errno(status);
return status;
}
/* TODO: This needs to actually orphan the inode in this
* transaction. */
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
goto out;
}
status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto out_commit;
}
/*
* Do this before setting i_size.
*/
cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size);
status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size,
cluster_bytes);
if (status) {
mlog_errno(status);
goto out_commit;
}
i_size_write(inode, new_i_size);
inode->i_ctime = inode->i_mtime = current_time(inode);
di = (struct ocfs2_dinode *) fe_bh->b_data;
di->i_size = cpu_to_le64(new_i_size);
di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec);
di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
ocfs2_update_inode_fsync_trans(handle, inode, 0);
ocfs2_journal_dirty(handle, fe_bh);
out_commit:
ocfs2_commit_trans(osb, handle);
out:
return status;
}
int ocfs2_truncate_file(struct inode *inode,
struct buffer_head *di_bh,
u64 new_i_size)
{
int status = 0;
struct ocfs2_dinode *fe = NULL;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
/* We trust di_bh because it comes from ocfs2_inode_lock(), which
* already validated it */
fe = (struct ocfs2_dinode *) di_bh->b_data;
trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)le64_to_cpu(fe->i_size),
(unsigned long long)new_i_size);
mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode),
"Inode %llu, inode i_size = %lld != di "
"i_size = %llu, i_flags = 0x%x\n",
(unsigned long long)OCFS2_I(inode)->ip_blkno,
i_size_read(inode),
(unsigned long long)le64_to_cpu(fe->i_size),
le32_to_cpu(fe->i_flags));
if (new_i_size > le64_to_cpu(fe->i_size)) {
trace_ocfs2_truncate_file_error(
(unsigned long long)le64_to_cpu(fe->i_size),
(unsigned long long)new_i_size);
status = -EINVAL;
mlog_errno(status);
goto bail;
}
down_write(&OCFS2_I(inode)->ip_alloc_sem);
ocfs2_resv_discard(&osb->osb_la_resmap,
&OCFS2_I(inode)->ip_la_data_resv);
/*
* The inode lock forced other nodes to sync and drop their
* pages, which (correctly) happens even if we have a truncate
* without allocation change - ocfs2 cluster sizes can be much
* greater than page size, so we have to truncate them
* anyway.
*/
unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1);
truncate_inode_pages(inode->i_mapping, new_i_size);
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
status = ocfs2_truncate_inline(inode, di_bh, new_i_size,
i_size_read(inode), 1);
if (status)
mlog_errno(status);
goto bail_unlock_sem;
}
/* alright, we're going to need to do a full blown alloc size
* change. Orphan the inode so that recovery can complete the
* truncate if necessary. This does the task of marking
* i_size. */
status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size);
if (status < 0) {
mlog_errno(status);
goto bail_unlock_sem;
}
status = ocfs2_commit_truncate(osb, inode, di_bh);
if (status < 0) {
mlog_errno(status);
goto bail_unlock_sem;
}
/* TODO: orphan dir cleanup here. */
bail_unlock_sem:
up_write(&OCFS2_I(inode)->ip_alloc_sem);
bail:
if (!status && OCFS2_I(inode)->ip_clusters == 0)
status = ocfs2_try_remove_refcount_tree(inode, di_bh);
return status;
}
/*
* extend file allocation only here.
* we'll update all the disk stuff, and oip->alloc_size
*
* expect stuff to be locked, a transaction started and enough data /
* metadata reservations in the contexts.
*
* Will return -EAGAIN, and a reason if a restart is needed.
* If passed in, *reason will always be set, even in error.
*/
int ocfs2_add_inode_data(struct ocfs2_super *osb,
struct inode *inode,
u32 *logical_offset,
u32 clusters_to_add,
int mark_unwritten,
struct buffer_head *fe_bh,
handle_t *handle,
struct ocfs2_alloc_context *data_ac,
struct ocfs2_alloc_context *meta_ac,
enum ocfs2_alloc_restarted *reason_ret)
{
int ret;
struct ocfs2_extent_tree et;
ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh);
ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset,
clusters_to_add, mark_unwritten,
data_ac, meta_ac, reason_ret);
return ret;
}
static int __ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
u32 clusters_to_add, int mark_unwritten)
{
int status = 0;
int restart_func = 0;
int credits;
u32 prev_clusters;
struct buffer_head *bh = NULL;
struct ocfs2_dinode *fe = NULL;
handle_t *handle = NULL;
struct ocfs2_alloc_context *data_ac = NULL;
struct ocfs2_alloc_context *meta_ac = NULL;
enum ocfs2_alloc_restarted why = RESTART_NONE;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_extent_tree et;
int did_quota = 0;
/*
* Unwritten extent only exists for file systems which
* support holes.
*/
BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb));
status = ocfs2_read_inode_block(inode, &bh);
if (status < 0) {
mlog_errno(status);
goto leave;
}
fe = (struct ocfs2_dinode *) bh->b_data;
restart_all:
BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters);
ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh);
status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0,
&data_ac, &meta_ac);
if (status) {
mlog_errno(status);
goto leave;
}
credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list);
handle = ocfs2_start_trans(osb, credits);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
handle = NULL;
mlog_errno(status);
goto leave;
}
restarted_transaction:
trace_ocfs2_extend_allocation(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)i_size_read(inode),
le32_to_cpu(fe->i_clusters), clusters_to_add,
why, restart_func);
status = dquot_alloc_space_nodirty(inode,
ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
if (status)
goto leave;
did_quota = 1;
/* reserve a write to the file entry early on - that we if we
* run out of credits in the allocation path, we can still
* update i_size. */
status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (status < 0) {
mlog_errno(status);
goto leave;
}
prev_clusters = OCFS2_I(inode)->ip_clusters;
status = ocfs2_add_inode_data(osb,
inode,
&logical_start,
clusters_to_add,
mark_unwritten,
bh,
handle,
data_ac,
meta_ac,
&why);
if ((status < 0) && (status != -EAGAIN)) {
if (status != -ENOSPC)
mlog_errno(status);
goto leave;
}
ocfs2_update_inode_fsync_trans(handle, inode, 1);
ocfs2_journal_dirty(handle, bh);
spin_lock(&OCFS2_I(inode)->ip_lock);
clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters);
spin_unlock(&OCFS2_I(inode)->ip_lock);
/* Release unused quota reservation */
dquot_free_space(inode,
ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
did_quota = 0;
if (why != RESTART_NONE && clusters_to_add) {
if (why == RESTART_META) {
restart_func = 1;
status = 0;
} else {
BUG_ON(why != RESTART_TRANS);
status = ocfs2_allocate_extend_trans(handle, 1);
if (status < 0) {
/* handle still has to be committed at
* this point. */
status = -ENOMEM;
mlog_errno(status);
goto leave;
}
goto restarted_transaction;
}
}
trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno,
le32_to_cpu(fe->i_clusters),
(unsigned long long)le64_to_cpu(fe->i_size),
OCFS2_I(inode)->ip_clusters,
(unsigned long long)i_size_read(inode));
leave:
if (status < 0 && did_quota)
dquot_free_space(inode,
ocfs2_clusters_to_bytes(osb->sb, clusters_to_add));
if (handle) {
ocfs2_commit_trans(osb, handle);
handle = NULL;
}
if (data_ac) {
ocfs2_free_alloc_context(data_ac);
data_ac = NULL;
}
if (meta_ac) {
ocfs2_free_alloc_context(meta_ac);
meta_ac = NULL;
}
if ((!status) && restart_func) {
restart_func = 0;
goto restart_all;
}
brelse(bh);
bh = NULL;
return status;
}
int ocfs2_extend_allocation(struct inode *inode, u32 logical_start,
u32 clusters_to_add, int mark_unwritten)
{
return __ocfs2_extend_allocation(inode, logical_start,
clusters_to_add, mark_unwritten);
}
/*
* While a write will already be ordering the data, a truncate will not.
* Thus, we need to explicitly order the zeroed pages.
*/
static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode,
struct buffer_head *di_bh)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
handle_t *handle = NULL;
int ret = 0;
if (!ocfs2_should_order_data(inode))
goto out;
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
ret = ocfs2_jbd2_file_inode(handle, inode);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret)
mlog_errno(ret);
ocfs2_update_inode_fsync_trans(handle, inode, 1);
out:
if (ret) {
if (!IS_ERR(handle))
ocfs2_commit_trans(osb, handle);
handle = ERR_PTR(ret);
}
return handle;
}
/* Some parts of this taken from generic_cont_expand, which turned out
* to be too fragile to do exactly what we need without us having to
* worry about recursive locking in ->write_begin() and ->write_end(). */
static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from,
u64 abs_to, struct buffer_head *di_bh)
{
struct address_space *mapping = inode->i_mapping;
struct page *page;
unsigned long index = abs_from >> PAGE_SHIFT;
handle_t *handle;
int ret = 0;
unsigned zero_from, zero_to, block_start, block_end;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
BUG_ON(abs_from >= abs_to);
BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT));
BUG_ON(abs_from & (inode->i_blkbits - 1));
handle = ocfs2_zero_start_ordered_transaction(inode, di_bh);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
goto out;
}
page = find_or_create_page(mapping, index, GFP_NOFS);
if (!page) {
ret = -ENOMEM;
mlog_errno(ret);
goto out_commit_trans;
}
/* Get the offsets within the page that we want to zero */
zero_from = abs_from & (PAGE_SIZE - 1);
zero_to = abs_to & (PAGE_SIZE - 1);
if (!zero_to)
zero_to = PAGE_SIZE;
trace_ocfs2_write_zero_page(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)abs_from,
(unsigned long long)abs_to,
index, zero_from, zero_to);
/* We know that zero_from is block aligned */
for (block_start = zero_from; block_start < zero_to;
block_start = block_end) {
block_end = block_start + i_blocksize(inode);
/*
* block_start is block-aligned. Bump it by one to force
* __block_write_begin and block_commit_write to zero the
* whole block.
*/
ret = __block_write_begin(page, block_start + 1, 0,
ocfs2_get_block);
if (ret < 0) {
mlog_errno(ret);
goto out_unlock;
}
/* must not update i_size! */
ret = block_commit_write(page, block_start + 1,
block_start + 1);
if (ret < 0)
mlog_errno(ret);
else
ret = 0;
}
/*
* fs-writeback will release the dirty pages without page lock
* whose offset are over inode size, the release happens at
* block_write_full_page().
*/
i_size_write(inode, abs_to);
inode->i_blocks = ocfs2_inode_sector_count(inode);
di->i_size = cpu_to_le64((u64)i_size_read(inode));
inode->i_mtime = inode->i_ctime = current_time(inode);
di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
di->i_mtime_nsec = di->i_ctime_nsec;
if (handle) {
ocfs2_journal_dirty(handle, di_bh);
ocfs2_update_inode_fsync_trans(handle, inode, 1);
}
out_unlock:
unlock_page(page);
put_page(page);
out_commit_trans:
if (handle)
ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle);
out:
return ret;
}
/*
* Find the next range to zero. We do this in terms of bytes because
* that's what ocfs2_zero_extend() wants, and it is dealing with the
* pagecache. We may return multiple extents.
*
* zero_start and zero_end are ocfs2_zero_extend()s current idea of what
* needs to be zeroed. range_start and range_end return the next zeroing
* range. A subsequent call should pass the previous range_end as its
* zero_start. If range_end is 0, there's nothing to do.
*
* Unwritten extents are skipped over. Refcounted extents are CoWd.
*/
static int ocfs2_zero_extend_get_range(struct inode *inode,
struct buffer_head *di_bh,
u64 zero_start, u64 zero_end,
u64 *range_start, u64 *range_end)
{
int rc = 0, needs_cow = 0;
u32 p_cpos, zero_clusters = 0;
u32 zero_cpos =
zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end);
unsigned int num_clusters = 0;
unsigned int ext_flags = 0;
while (zero_cpos < last_cpos) {
rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos,
&num_clusters, &ext_flags);
if (rc) {
mlog_errno(rc);
goto out;
}
if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
zero_clusters = num_clusters;
if (ext_flags & OCFS2_EXT_REFCOUNTED)
needs_cow = 1;
break;
}
zero_cpos += num_clusters;
}
if (!zero_clusters) {
*range_end = 0;
goto out;
}
while ((zero_cpos + zero_clusters) < last_cpos) {
rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters,
&p_cpos, &num_clusters,
&ext_flags);
if (rc) {
mlog_errno(rc);
goto out;
}
if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN))
break;
if (ext_flags & OCFS2_EXT_REFCOUNTED)
needs_cow = 1;
zero_clusters += num_clusters;
}
if ((zero_cpos + zero_clusters) > last_cpos)
zero_clusters = last_cpos - zero_cpos;
if (needs_cow) {
rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos,
zero_clusters, UINT_MAX);
if (rc) {
mlog_errno(rc);
goto out;
}
}
*range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos);
*range_end = ocfs2_clusters_to_bytes(inode->i_sb,
zero_cpos + zero_clusters);
out:
return rc;
}
/*
* Zero one range returned from ocfs2_zero_extend_get_range(). The caller
* has made sure that the entire range needs zeroing.
*/
static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start,
u64 range_end, struct buffer_head *di_bh)
{
int rc = 0;
u64 next_pos;
u64 zero_pos = range_start;
trace_ocfs2_zero_extend_range(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)range_start,
(unsigned long long)range_end);
BUG_ON(range_start >= range_end);
while (zero_pos < range_end) {
next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE;
if (next_pos > range_end)
next_pos = range_end;
rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh);
if (rc < 0) {
mlog_errno(rc);
break;
}
zero_pos = next_pos;
/*
* Very large extends have the potential to lock up
* the cpu for extended periods of time.
*/
cond_resched();
}
return rc;
}
int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh,
loff_t zero_to_size)
{
int ret = 0;
u64 zero_start, range_start = 0, range_end = 0;
struct super_block *sb = inode->i_sb;
zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode));
trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)zero_start,
(unsigned long long)i_size_read(inode));
while (zero_start < zero_to_size) {
ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start,
zero_to_size,
&range_start,
&range_end);
if (ret) {
mlog_errno(ret);
break;
}
if (!range_end)
break;
/* Trim the ends */
if (range_start < zero_start)
range_start = zero_start;
if (range_end > zero_to_size)
range_end = zero_to_size;
ret = ocfs2_zero_extend_range(inode, range_start,
range_end, di_bh);
if (ret) {
mlog_errno(ret);
break;
}
zero_start = range_end;
}
return ret;
}
int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh,
u64 new_i_size, u64 zero_to)
{
int ret;
u32 clusters_to_add;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
/*
* Only quota files call this without a bh, and they can't be
* refcounted.
*/
BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode));
BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE));
clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size);
if (clusters_to_add < oi->ip_clusters)
clusters_to_add = 0;
else
clusters_to_add -= oi->ip_clusters;
if (clusters_to_add) {
ret = __ocfs2_extend_allocation(inode, oi->ip_clusters,
clusters_to_add, 0);
if (ret) {
mlog_errno(ret);
goto out;
}
}
/*
* Call this even if we don't add any clusters to the tree. We
* still need to zero the area between the old i_size and the
* new i_size.
*/
ret = ocfs2_zero_extend(inode, di_bh, zero_to);
if (ret < 0)
mlog_errno(ret);
out:
return ret;
}
static int ocfs2_extend_file(struct inode *inode,
struct buffer_head *di_bh,
u64 new_i_size)
{
int ret = 0;
struct ocfs2_inode_info *oi = OCFS2_I(inode);
BUG_ON(!di_bh);
/* setattr sometimes calls us like this. */
if (new_i_size == 0)
goto out;
if (i_size_read(inode) == new_i_size)
goto out;
BUG_ON(new_i_size < i_size_read(inode));
/*
* The alloc sem blocks people in read/write from reading our
* allocation until we're done changing it. We depend on
* i_mutex to block other extend/truncate calls while we're
* here. We even have to hold it for sparse files because there
* might be some tail zeroing.
*/
down_write(&oi->ip_alloc_sem);
if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
/*
* We can optimize small extends by keeping the inodes
* inline data.
*/
if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) {
up_write(&oi->ip_alloc_sem);
goto out_update_size;
}
ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
if (ret) {
up_write(&oi->ip_alloc_sem);
mlog_errno(ret);
goto out;
}
}
if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
ret = ocfs2_zero_extend(inode, di_bh, new_i_size);
else
ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size,
new_i_size);
up_write(&oi->ip_alloc_sem);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
out_update_size:
ret = ocfs2_simple_size_update(inode, di_bh, new_i_size);
if (ret < 0)
mlog_errno(ret);
out:
return ret;
}
int ocfs2_setattr(struct dentry *dentry, struct iattr *attr)
{
int status = 0, size_change;
int inode_locked = 0;
struct inode *inode = d_inode(dentry);
struct super_block *sb = inode->i_sb;
struct ocfs2_super *osb = OCFS2_SB(sb);
struct buffer_head *bh = NULL;
handle_t *handle = NULL;
struct dquot *transfer_to[MAXQUOTAS] = { };
int qtype;
int had_lock;
struct ocfs2_lock_holder oh;
trace_ocfs2_setattr(inode, dentry,
(unsigned long long)OCFS2_I(inode)->ip_blkno,
dentry->d_name.len, dentry->d_name.name,
attr->ia_valid, attr->ia_mode,
from_kuid(&init_user_ns, attr->ia_uid),
from_kgid(&init_user_ns, attr->ia_gid));
/* ensuring we don't even attempt to truncate a symlink */
if (S_ISLNK(inode->i_mode))
attr->ia_valid &= ~ATTR_SIZE;
#define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \
| ATTR_GID | ATTR_UID | ATTR_MODE)
if (!(attr->ia_valid & OCFS2_VALID_ATTRS))
return 0;
status = setattr_prepare(dentry, attr);
if (status)
return status;
if (is_quota_modification(inode, attr)) {
status = dquot_initialize(inode);
if (status)
return status;
}
size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE;
if (size_change) {
status = ocfs2_rw_lock(inode, 1);
if (status < 0) {
mlog_errno(status);
goto bail;
}
}
had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh);
if (had_lock < 0) {
status = had_lock;
goto bail_unlock_rw;
} else if (had_lock) {
/*
* As far as we know, ocfs2_setattr() could only be the first
* VFS entry point in the call chain of recursive cluster
* locking issue.
*
* For instance:
* chmod_common()
* notify_change()
* ocfs2_setattr()
* posix_acl_chmod()
* ocfs2_iop_get_acl()
*
* But, we're not 100% sure if it's always true, because the
* ordering of the VFS entry points in the call chain is out
* of our control. So, we'd better dump the stack here to
* catch the other cases of recursive locking.
*/
mlog(ML_ERROR, "Another case of recursive locking:\n");
dump_stack();
}
inode_locked = 1;
if (size_change) {
status = inode_newsize_ok(inode, attr->ia_size);
if (status)
goto bail_unlock;
inode_dio_wait(inode);
if (i_size_read(inode) >= attr->ia_size) {
if (ocfs2_should_order_data(inode)) {
status = ocfs2_begin_ordered_truncate(inode,
attr->ia_size);
if (status)
goto bail_unlock;
}
status = ocfs2_truncate_file(inode, bh, attr->ia_size);
} else
status = ocfs2_extend_file(inode, bh, attr->ia_size);
if (status < 0) {
if (status != -ENOSPC)
mlog_errno(status);
status = -ENOSPC;
goto bail_unlock;
}
}
if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
(attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
/*
* Gather pointers to quota structures so that allocation /
* freeing of quota structures happens here and not inside
* dquot_transfer() where we have problems with lock ordering
*/
if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)
&& OCFS2_HAS_RO_COMPAT_FEATURE(sb,
OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) {
transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid));
if (IS_ERR(transfer_to[USRQUOTA])) {
status = PTR_ERR(transfer_to[USRQUOTA]);
goto bail_unlock;
}
}
if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid)
&& OCFS2_HAS_RO_COMPAT_FEATURE(sb,
OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) {
transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid));
if (IS_ERR(transfer_to[GRPQUOTA])) {
status = PTR_ERR(transfer_to[GRPQUOTA]);
goto bail_unlock;
}
}
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS +
2 * ocfs2_quota_trans_credits(sb));
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
goto bail_unlock;
}
status = __dquot_transfer(inode, transfer_to);
if (status < 0)
goto bail_commit;
} else {
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
status = PTR_ERR(handle);
mlog_errno(status);
goto bail_unlock;
}
}
setattr_copy(inode, attr);
mark_inode_dirty(inode);
status = ocfs2_mark_inode_dirty(handle, inode, bh);
if (status < 0)
mlog_errno(status);
bail_commit:
ocfs2_commit_trans(osb, handle);
bail_unlock:
if (status && inode_locked) {
ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
inode_locked = 0;
}
bail_unlock_rw:
if (size_change)
ocfs2_rw_unlock(inode, 1);
bail:
/* Release quota pointers in case we acquired them */
for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++)
dqput(transfer_to[qtype]);
if (!status && attr->ia_valid & ATTR_MODE) {
status = ocfs2_acl_chmod(inode, bh);
if (status < 0)
mlog_errno(status);
}
if (inode_locked)
ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock);
brelse(bh);
return status;
}
int ocfs2_getattr(const struct path *path, struct kstat *stat,
u32 request_mask, unsigned int flags)
{
struct inode *inode = d_inode(path->dentry);
struct super_block *sb = path->dentry->d_sb;
struct ocfs2_super *osb = sb->s_fs_info;
int err;
err = ocfs2_inode_revalidate(path->dentry);
if (err) {
if (err != -ENOENT)
mlog_errno(err);
goto bail;
}
generic_fillattr(inode, stat);
/*
* If there is inline data in the inode, the inode will normally not
* have data blocks allocated (it may have an external xattr block).
* Report at least one sector for such files, so tools like tar, rsync,
* others don't incorrectly think the file is completely sparse.
*/
if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
stat->blocks += (stat->size + 511)>>9;
/* We set the blksize from the cluster size for performance */
stat->blksize = osb->s_clustersize;
bail:
return err;
}
int ocfs2_permission(struct inode *inode, int mask)
{
int ret, had_lock;
struct ocfs2_lock_holder oh;
if (mask & MAY_NOT_BLOCK)
return -ECHILD;
had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh);
if (had_lock < 0) {
ret = had_lock;
goto out;
} else if (had_lock) {
/* See comments in ocfs2_setattr() for details.
* The call chain of this case could be:
* do_sys_open()
* may_open()
* inode_permission()
* ocfs2_permission()
* ocfs2_iop_get_acl()
*/
mlog(ML_ERROR, "Another case of recursive locking:\n");
dump_stack();
}
ret = generic_permission(inode, mask);
ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock);
out:
return ret;
}
static int __ocfs2_write_remove_suid(struct inode *inode,
struct buffer_head *bh)
{
int ret;
handle_t *handle;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_dinode *di;
trace_ocfs2_write_remove_suid(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
inode->i_mode);
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh,
OCFS2_JOURNAL_ACCESS_WRITE);
if (ret < 0) {
mlog_errno(ret);
goto out_trans;
}
inode->i_mode &= ~S_ISUID;
if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP))
inode->i_mode &= ~S_ISGID;
di = (struct ocfs2_dinode *) bh->b_data;
di->i_mode = cpu_to_le16(inode->i_mode);
ocfs2_update_inode_fsync_trans(handle, inode, 0);
ocfs2_journal_dirty(handle, bh);
out_trans:
ocfs2_commit_trans(osb, handle);
out:
return ret;
}
static int ocfs2_write_remove_suid(struct inode *inode)
{
int ret;
struct buffer_head *bh = NULL;
ret = ocfs2_read_inode_block(inode, &bh);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ret = __ocfs2_write_remove_suid(inode, bh);
out:
brelse(bh);
return ret;
}
/*
* Allocate enough extents to cover the region starting at byte offset
* start for len bytes. Existing extents are skipped, any extents
* added are marked as "unwritten".
*/
static int ocfs2_allocate_unwritten_extents(struct inode *inode,
u64 start, u64 len)
{
int ret;
u32 cpos, phys_cpos, clusters, alloc_size;
u64 end = start + len;
struct buffer_head *di_bh = NULL;
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
ret = ocfs2_read_inode_block(inode, &di_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* Nothing to do if the requested reservation range
* fits within the inode.
*/
if (ocfs2_size_fits_inline_data(di_bh, end))
goto out;
ret = ocfs2_convert_inline_data_to_extents(inode, di_bh);
if (ret) {
mlog_errno(ret);
goto out;
}
}
/*
* We consider both start and len to be inclusive.
*/
cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len);
clusters -= cpos;
while (clusters) {
ret = ocfs2_get_clusters(inode, cpos, &phys_cpos,
&alloc_size, NULL);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* Hole or existing extent len can be arbitrary, so
* cap it to our own allocation request.
*/
if (alloc_size > clusters)
alloc_size = clusters;
if (phys_cpos) {
/*
* We already have an allocation at this
* region so we can safely skip it.
*/
goto next;
}
ret = __ocfs2_extend_allocation(inode, cpos, alloc_size, 1);
if (ret) {
if (ret != -ENOSPC)
mlog_errno(ret);
goto out;
}
next:
cpos += alloc_size;
clusters -= alloc_size;
}
ret = 0;
out:
brelse(di_bh);
return ret;
}
/*
* Truncate a byte range, avoiding pages within partial clusters. This
* preserves those pages for the zeroing code to write to.
*/
static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start,
u64 byte_len)
{
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
loff_t start, end;
struct address_space *mapping = inode->i_mapping;
start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start);
end = byte_start + byte_len;
end = end & ~(osb->s_clustersize - 1);
if (start < end) {
unmap_mapping_range(mapping, start, end - start, 0);
truncate_inode_pages_range(mapping, start, end - 1);
}
}
static int ocfs2_zero_partial_clusters(struct inode *inode,
u64 start, u64 len)
{
int ret = 0;
u64 tmpend = 0;
u64 end = start + len;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
unsigned int csize = osb->s_clustersize;
handle_t *handle;
/*
* The "start" and "end" values are NOT necessarily part of
* the range whose allocation is being deleted. Rather, this
* is what the user passed in with the request. We must zero
* partial clusters here. There's no need to worry about
* physical allocation - the zeroing code knows to skip holes.
*/
trace_ocfs2_zero_partial_clusters(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)start, (unsigned long long)end);
/*
* If both edges are on a cluster boundary then there's no
* zeroing required as the region is part of the allocation to
* be truncated.
*/
if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0)
goto out;
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out;
}
/*
* If start is on a cluster boundary and end is somewhere in another
* cluster, we have not COWed the cluster starting at start, unless
* end is also within the same cluster. So, in this case, we skip this
* first call to ocfs2_zero_range_for_truncate() truncate and move on
* to the next one.
*/
if ((start & (csize - 1)) != 0) {
/*
* We want to get the byte offset of the end of the 1st
* cluster.
*/
tmpend = (u64)osb->s_clustersize +
(start & ~(osb->s_clustersize - 1));
if (tmpend > end)
tmpend = end;
trace_ocfs2_zero_partial_clusters_range1(
(unsigned long long)start,
(unsigned long long)tmpend);
ret = ocfs2_zero_range_for_truncate(inode, handle, start,
tmpend);
if (ret)
mlog_errno(ret);
}
if (tmpend < end) {
/*
* This may make start and end equal, but the zeroing
* code will skip any work in that case so there's no
* need to catch it up here.
*/
start = end & ~(osb->s_clustersize - 1);
trace_ocfs2_zero_partial_clusters_range2(
(unsigned long long)start, (unsigned long long)end);
ret = ocfs2_zero_range_for_truncate(inode, handle, start, end);
if (ret)
mlog_errno(ret);
}
ocfs2_update_inode_fsync_trans(handle, inode, 1);
ocfs2_commit_trans(osb, handle);
out:
return ret;
}
static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos)
{
int i;
struct ocfs2_extent_rec *rec = NULL;
for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) {
rec = &el->l_recs[i];
if (le32_to_cpu(rec->e_cpos) < pos)
break;
}
return i;
}
/*
* Helper to calculate the punching pos and length in one run, we handle the
* following three cases in order:
*
* - remove the entire record
* - remove a partial record
* - no record needs to be removed (hole-punching completed)
*/
static void ocfs2_calc_trunc_pos(struct inode *inode,
struct ocfs2_extent_list *el,
struct ocfs2_extent_rec *rec,
u32 trunc_start, u32 *trunc_cpos,
u32 *trunc_len, u32 *trunc_end,
u64 *blkno, int *done)
{
int ret = 0;
u32 coff, range;
range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec);
if (le32_to_cpu(rec->e_cpos) >= trunc_start) {
/*
* remove an entire extent record.
*/
*trunc_cpos = le32_to_cpu(rec->e_cpos);
/*
* Skip holes if any.
*/
if (range < *trunc_end)
*trunc_end = range;
*trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos);
*blkno = le64_to_cpu(rec->e_blkno);
*trunc_end = le32_to_cpu(rec->e_cpos);
} else if (range > trunc_start) {
/*
* remove a partial extent record, which means we're
* removing the last extent record.
*/
*trunc_cpos = trunc_start;
/*
* skip hole if any.
*/
if (range < *trunc_end)
*trunc_end = range;
*trunc_len = *trunc_end - trunc_start;
coff = trunc_start - le32_to_cpu(rec->e_cpos);
*blkno = le64_to_cpu(rec->e_blkno) +
ocfs2_clusters_to_blocks(inode->i_sb, coff);
*trunc_end = trunc_start;
} else {
/*
* It may have two following possibilities:
*
* - last record has been removed
* - trunc_start was within a hole
*
* both two cases mean the completion of hole punching.
*/
ret = 1;
}
*done = ret;
}
int ocfs2_remove_inode_range(struct inode *inode,
struct buffer_head *di_bh, u64 byte_start,
u64 byte_len)
{
int ret = 0, flags = 0, done = 0, i;
u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos;
u32 cluster_in_el;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_cached_dealloc_ctxt dealloc;
struct address_space *mapping = inode->i_mapping;
struct ocfs2_extent_tree et;
struct ocfs2_path *path = NULL;
struct ocfs2_extent_list *el = NULL;
struct ocfs2_extent_rec *rec = NULL;
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc);
ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
ocfs2_init_dealloc_ctxt(&dealloc);
trace_ocfs2_remove_inode_range(
(unsigned long long)OCFS2_I(inode)->ip_blkno,
(unsigned long long)byte_start,
(unsigned long long)byte_len);
if (byte_len == 0)
return 0;
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
ret = ocfs2_truncate_inline(inode, di_bh, byte_start,
byte_start + byte_len, 0);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* There's no need to get fancy with the page cache
* truncate of an inline-data inode. We're talking
* about less than a page here, which will be cached
* in the dinode buffer anyway.
*/
unmap_mapping_range(mapping, 0, 0, 0);
truncate_inode_pages(mapping, 0);
goto out;
}
/*
* For reflinks, we may need to CoW 2 clusters which might be
* partially zero'd later, if hole's start and end offset were
* within one cluster(means is not exactly aligned to clustersize).
*/
if (ocfs2_is_refcount_inode(inode)) {
ret = ocfs2_cow_file_pos(inode, di_bh, byte_start);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len);
if (ret) {
mlog_errno(ret);
goto out;
}
}
trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start);
trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits;
cluster_in_el = trunc_end;
ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len);
if (ret) {
mlog_errno(ret);
goto out;
}
path = ocfs2_new_path_from_et(&et);
if (!path) {
ret = -ENOMEM;
mlog_errno(ret);
goto out;
}
while (trunc_end > trunc_start) {
ret = ocfs2_find_path(INODE_CACHE(inode), path,
cluster_in_el);
if (ret) {
mlog_errno(ret);
goto out;
}
el = path_leaf_el(path);
i = ocfs2_find_rec(el, trunc_end);
/*
* Need to go to previous extent block.
*/
if (i < 0) {
if (path->p_tree_depth == 0)
break;
ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb,
path,
&cluster_in_el);
if (ret) {
mlog_errno(ret);
goto out;
}
/*
* We've reached the leftmost extent block,
* it's safe to leave.
*/
if (cluster_in_el == 0)
break;
/*
* The 'pos' searched for previous extent block is
* always one cluster less than actual trunc_end.
*/
trunc_end = cluster_in_el + 1;
ocfs2_reinit_path(path, 1);
continue;
} else
rec = &el->l_recs[i];
ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos,
&trunc_len, &trunc_end, &blkno, &done);
if (done)
break;
flags = rec->e_flags;
phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno);
ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos,
phys_cpos, trunc_len, flags,
&dealloc, refcount_loc, false);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
cluster_in_el = trunc_end;
ocfs2_reinit_path(path, 1);
}
ocfs2_truncate_cluster_pages(inode, byte_start, byte_len);
out:
ocfs2_free_path(path);
ocfs2_schedule_truncate_log_flush(osb, 1);
ocfs2_run_deallocs(osb, &dealloc);
return ret;
}
/*
* Parts of this function taken from xfs_change_file_space()
*/
static int __ocfs2_change_file_space(struct file *file, struct inode *inode,
loff_t f_pos, unsigned int cmd,
struct ocfs2_space_resv *sr,
int change_size)
{
int ret;
s64 llen;
loff_t size;
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct buffer_head *di_bh = NULL;
handle_t *handle;
unsigned long long max_off = inode->i_sb->s_maxbytes;
if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb))
return -EROFS;
inode_lock(inode);
/*
* This prevents concurrent writes on other nodes
*/
ret = ocfs2_rw_lock(inode, 1);
if (ret) {
mlog_errno(ret);
goto out;
}
ret = ocfs2_inode_lock(inode, &di_bh, 1);
if (ret) {
mlog_errno(ret);
goto out_rw_unlock;
}
if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) {
ret = -EPERM;
goto out_inode_unlock;
}
switch (sr->l_whence) {
case 0: /*SEEK_SET*/
break;
case 1: /*SEEK_CUR*/
sr->l_start += f_pos;
break;
case 2: /*SEEK_END*/
sr->l_start += i_size_read(inode);
break;
default:
ret = -EINVAL;
goto out_inode_unlock;
}
sr->l_whence = 0;
llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len;
if (sr->l_start < 0
|| sr->l_start > max_off
|| (sr->l_start + llen) < 0
|| (sr->l_start + llen) > max_off) {
ret = -EINVAL;
goto out_inode_unlock;
}
size = sr->l_start + sr->l_len;
if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 ||
cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) {
if (sr->l_len <= 0) {
ret = -EINVAL;
goto out_inode_unlock;
}
}
if (file && should_remove_suid(file->f_path.dentry)) {
ret = __ocfs2_write_remove_suid(inode, di_bh);
if (ret) {
mlog_errno(ret);
goto out_inode_unlock;
}
}
down_write(&OCFS2_I(inode)->ip_alloc_sem);
switch (cmd) {
case OCFS2_IOC_RESVSP:
case OCFS2_IOC_RESVSP64:
/*
* This takes unsigned offsets, but the signed ones we
* pass have been checked against overflow above.
*/
ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start,
sr->l_len);
break;
case OCFS2_IOC_UNRESVSP:
case OCFS2_IOC_UNRESVSP64:
ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start,
sr->l_len);
break;
default:
ret = -EINVAL;
}
up_write(&OCFS2_I(inode)->ip_alloc_sem);
if (ret) {
mlog_errno(ret);
goto out_inode_unlock;
}
/*
* We update c/mtime for these changes
*/
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
mlog_errno(ret);
goto out_inode_unlock;
}
if (change_size && i_size_read(inode) < size)
i_size_write(inode, size);
inode->i_ctime = inode->i_mtime = current_time(inode);
ret = ocfs2_mark_inode_dirty(handle, inode, di_bh);
if (ret < 0)
mlog_errno(ret);
if (file && (file->f_flags & O_SYNC))
handle->h_sync = 1;
ocfs2_commit_trans(osb, handle);
out_inode_unlock:
brelse(di_bh);
ocfs2_inode_unlock(inode, 1);
out_rw_unlock:
ocfs2_rw_unlock(inode, 1);
out:
inode_unlock(inode);
return ret;
}
int ocfs2_change_file_space(struct file *file, unsigned int cmd,
struct ocfs2_space_resv *sr)
{
struct inode *inode = file_inode(file);
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
int ret;
if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) &&
!ocfs2_writes_unwritten_extents(osb))
return -ENOTTY;
else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) &&
!ocfs2_sparse_alloc(osb))
return -ENOTTY;
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (!(file->f_mode & FMODE_WRITE))
return -EBADF;
ret = mnt_want_write_file(file);
if (ret)
return ret;
ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0);
mnt_drop_write_file(file);
return ret;
}
static long ocfs2_fallocate(struct file *file, int mode, loff_t offset,
loff_t len)
{
struct inode *inode = file_inode(file);
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
struct ocfs2_space_resv sr;
int change_size = 1;
int cmd = OCFS2_IOC_RESVSP64;
if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
return -EOPNOTSUPP;
if (!ocfs2_writes_unwritten_extents(osb))
return -EOPNOTSUPP;
if (mode & FALLOC_FL_KEEP_SIZE)
change_size = 0;
if (mode & FALLOC_FL_PUNCH_HOLE)
cmd = OCFS2_IOC_UNRESVSP64;
sr.l_whence = 0;
sr.l_start = (s64)offset;
sr.l_len = (s64)len;
return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr,
change_size);
}
int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos,
size_t count)
{
int ret = 0;
unsigned int extent_flags;
u32 cpos, clusters, extent_len, phys_cpos;
struct super_block *sb = inode->i_sb;
if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) ||
!ocfs2_is_refcount_inode(inode) ||
OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
return 0;
cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits;
clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos;
while (clusters) {
ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len,
&extent_flags);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) {
ret = 1;
break;
}
if (extent_len > clusters)
extent_len = clusters;
clusters -= extent_len;
cpos += extent_len;
}
out:
return ret;
}
static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos)
{
int blockmask = inode->i_sb->s_blocksize - 1;
loff_t final_size = pos + count;
if ((pos & blockmask) || (final_size & blockmask))
return 1;
return 0;
}
static int ocfs2_prepare_inode_for_refcount(struct inode *inode,
struct file *file,
loff_t pos, size_t count,
int *meta_level)
{
int ret;
struct buffer_head *di_bh = NULL;
u32 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits;
u32 clusters =
ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos;
ret = ocfs2_inode_lock(inode, &di_bh, 1);
if (ret) {
mlog_errno(ret);
goto out;
}
*meta_level = 1;
ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX);
if (ret)
mlog_errno(ret);
out:
brelse(di_bh);
return ret;
}
static int ocfs2_prepare_inode_for_write(struct file *file,
loff_t pos,
size_t count)
{
int ret = 0, meta_level = 0;
struct dentry *dentry = file->f_path.dentry;
struct inode *inode = d_inode(dentry);
loff_t end;
/*
* We start with a read level meta lock and only jump to an ex
* if we need to make modifications here.
*/
for(;;) {
ret = ocfs2_inode_lock(inode, NULL, meta_level);
if (ret < 0) {
meta_level = -1;
mlog_errno(ret);
goto out;
}
/* Clear suid / sgid if necessary. We do this here
* instead of later in the write path because
* remove_suid() calls ->setattr without any hint that
* we may have already done our cluster locking. Since
* ocfs2_setattr() *must* take cluster locks to
* proceed, this will lead us to recursively lock the
* inode. There's also the dinode i_size state which
* can be lost via setattr during extending writes (we
* set inode->i_size at the end of a write. */
if (should_remove_suid(dentry)) {
if (meta_level == 0) {
ocfs2_inode_unlock(inode, meta_level);
meta_level = 1;
continue;
}
ret = ocfs2_write_remove_suid(inode);
if (ret < 0) {
mlog_errno(ret);
goto out_unlock;
}
}
end = pos + count;
ret = ocfs2_check_range_for_refcount(inode, pos, count);
if (ret == 1) {
ocfs2_inode_unlock(inode, meta_level);
meta_level = -1;
ret = ocfs2_prepare_inode_for_refcount(inode,
file,
pos,
count,
&meta_level);
}
if (ret < 0) {
mlog_errno(ret);
goto out_unlock;
}
break;
}
out_unlock:
trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno,
pos, count);
if (meta_level >= 0)
ocfs2_inode_unlock(inode, meta_level);
out:
return ret;
}
static ssize_t ocfs2_file_write_iter(struct kiocb *iocb,
struct iov_iter *from)
{
int direct_io, rw_level;
ssize_t written = 0;
ssize_t ret;
size_t count = iov_iter_count(from);
struct file *file = iocb->ki_filp;
struct inode *inode = file_inode(file);
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
int full_coherency = !(osb->s_mount_opt &
OCFS2_MOUNT_COHERENCY_BUFFERED);
void *saved_ki_complete = NULL;
int append_write = ((iocb->ki_pos + count) >=
i_size_read(inode) ? 1 : 0);
trace_ocfs2_file_aio_write(inode, file, file->f_path.dentry,
(unsigned long long)OCFS2_I(inode)->ip_blkno,
file->f_path.dentry->d_name.len,
file->f_path.dentry->d_name.name,
(unsigned int)from->nr_segs); /* GRRRRR */
if (count == 0)
return 0;
direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0;
inode_lock(inode);
/*
* Concurrent O_DIRECT writes are allowed with
* mount_option "coherency=buffered".
* For append write, we must take rw EX.
*/
rw_level = (!direct_io || full_coherency || append_write);
ret = ocfs2_rw_lock(inode, rw_level);
if (ret < 0) {
mlog_errno(ret);
goto out_mutex;
}
/*
* O_DIRECT writes with "coherency=full" need to take EX cluster
* inode_lock to guarantee coherency.
*/
if (direct_io && full_coherency) {
/*
* We need to take and drop the inode lock to force
* other nodes to drop their caches. Buffered I/O
* already does this in write_begin().
*/
ret = ocfs2_inode_lock(inode, NULL, 1);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
ocfs2_inode_unlock(inode, 1);
}
ret = generic_write_checks(iocb, from);
if (ret <= 0) {
if (ret)
mlog_errno(ret);
goto out;
}
count = ret;
ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
if (direct_io && !is_sync_kiocb(iocb) &&
ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) {
/*
* Make it a sync io if it's an unaligned aio.
*/
saved_ki_complete = xchg(&iocb->ki_complete, NULL);
}
/* communicate with ocfs2_dio_end_io */
ocfs2_iocb_set_rw_locked(iocb, rw_level);
written = __generic_file_write_iter(iocb, from);
/* buffered aio wouldn't have proper lock coverage today */
BUG_ON(written == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
/*
* deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io
* function pointer which is called when o_direct io completes so that
* it can unlock our rw lock.
* Unfortunately there are error cases which call end_io and others
* that don't. so we don't have to unlock the rw_lock if either an
* async dio is going to do it in the future or an end_io after an
* error has already done it.
*/
if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) {
rw_level = -1;
}
if (unlikely(written <= 0))
goto out;
if (((file->f_flags & O_DSYNC) && !direct_io) ||
IS_SYNC(inode)) {
ret = filemap_fdatawrite_range(file->f_mapping,
iocb->ki_pos - written,
iocb->ki_pos - 1);
if (ret < 0)
written = ret;
if (!ret) {
ret = jbd2_journal_force_commit(osb->journal->j_journal);
if (ret < 0)
written = ret;
}
if (!ret)
ret = filemap_fdatawait_range(file->f_mapping,
iocb->ki_pos - written,
iocb->ki_pos - 1);
}
out:
if (saved_ki_complete)
xchg(&iocb->ki_complete, saved_ki_complete);
if (rw_level != -1)
ocfs2_rw_unlock(inode, rw_level);
out_mutex:
inode_unlock(inode);
if (written)
ret = written;
return ret;
}
static ssize_t ocfs2_file_read_iter(struct kiocb *iocb,
struct iov_iter *to)
{
int ret = 0, rw_level = -1, lock_level = 0;
struct file *filp = iocb->ki_filp;
struct inode *inode = file_inode(filp);
trace_ocfs2_file_aio_read(inode, filp, filp->f_path.dentry,
(unsigned long long)OCFS2_I(inode)->ip_blkno,
filp->f_path.dentry->d_name.len,
filp->f_path.dentry->d_name.name,
to->nr_segs); /* GRRRRR */
if (!inode) {
ret = -EINVAL;
mlog_errno(ret);
goto bail;
}
/*
* buffered reads protect themselves in ->readpage(). O_DIRECT reads
* need locks to protect pending reads from racing with truncate.
*/
if (iocb->ki_flags & IOCB_DIRECT) {
ret = ocfs2_rw_lock(inode, 0);
if (ret < 0) {
mlog_errno(ret);
goto bail;
}
rw_level = 0;
/* communicate with ocfs2_dio_end_io */
ocfs2_iocb_set_rw_locked(iocb, rw_level);
}
/*
* We're fine letting folks race truncates and extending
* writes with read across the cluster, just like they can
* locally. Hence no rw_lock during read.
*
* Take and drop the meta data lock to update inode fields
* like i_size. This allows the checks down below
* generic_file_aio_read() a chance of actually working.
*/
ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level);
if (ret < 0) {
mlog_errno(ret);
goto bail;
}
ocfs2_inode_unlock(inode, lock_level);
ret = generic_file_read_iter(iocb, to);
trace_generic_file_aio_read_ret(ret);
/* buffered aio wouldn't have proper lock coverage today */
BUG_ON(ret == -EIOCBQUEUED && !(iocb->ki_flags & IOCB_DIRECT));
/* see ocfs2_file_write_iter */
if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) {
rw_level = -1;
}
bail:
if (rw_level != -1)
ocfs2_rw_unlock(inode, rw_level);
return ret;
}
/* Refer generic_file_llseek_unlocked() */
static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence)
{
struct inode *inode = file->f_mapping->host;
int ret = 0;
inode_lock(inode);
switch (whence) {
case SEEK_SET:
break;
case SEEK_END:
/* SEEK_END requires the OCFS2 inode lock for the file
* because it references the file's size.
*/
ret = ocfs2_inode_lock(inode, NULL, 0);
if (ret < 0) {
mlog_errno(ret);
goto out;
}
offset += i_size_read(inode);
ocfs2_inode_unlock(inode, 0);
break;
case SEEK_CUR:
if (offset == 0) {
offset = file->f_pos;
goto out;
}
offset += file->f_pos;
break;
case SEEK_DATA:
case SEEK_HOLE:
ret = ocfs2_seek_data_hole_offset(file, &offset, whence);
if (ret)
goto out;
break;
default:
ret = -EINVAL;
goto out;
}
offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
out:
inode_unlock(inode);
if (ret)
return ret;
return offset;
}
static int ocfs2_file_clone_range(struct file *file_in,
loff_t pos_in,
struct file *file_out,
loff_t pos_out,
u64 len)
{
return ocfs2_reflink_remap_range(file_in, pos_in, file_out, pos_out,
len, false);
}
static ssize_t ocfs2_file_dedupe_range(struct file *src_file,
u64 loff,
u64 len,
struct file *dst_file,
u64 dst_loff)
{
int error;
error = ocfs2_reflink_remap_range(src_file, loff, dst_file, dst_loff,
len, true);
if (error)
return error;
return len;
}
const struct inode_operations ocfs2_file_iops = {
.setattr = ocfs2_setattr,
.getattr = ocfs2_getattr,
.permission = ocfs2_permission,
.listxattr = ocfs2_listxattr,
.fiemap = ocfs2_fiemap,
.get_acl = ocfs2_iop_get_acl,
.set_acl = ocfs2_iop_set_acl,
};
const struct inode_operations ocfs2_special_file_iops = {
.setattr = ocfs2_setattr,
.getattr = ocfs2_getattr,
.permission = ocfs2_permission,
.get_acl = ocfs2_iop_get_acl,
.set_acl = ocfs2_iop_set_acl,
};
/*
* Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with
* ocfs2_fops_no_plocks and ocfs2_dops_no_plocks!
*/
const struct file_operations ocfs2_fops = {
.llseek = ocfs2_file_llseek,
.mmap = ocfs2_mmap,
.fsync = ocfs2_sync_file,
.release = ocfs2_file_release,
.open = ocfs2_file_open,
.read_iter = ocfs2_file_read_iter,
.write_iter = ocfs2_file_write_iter,
.unlocked_ioctl = ocfs2_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ocfs2_compat_ioctl,
#endif
.lock = ocfs2_lock,
.flock = ocfs2_flock,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
.fallocate = ocfs2_fallocate,
.clone_file_range = ocfs2_file_clone_range,
.dedupe_file_range = ocfs2_file_dedupe_range,
};
const struct file_operations ocfs2_dops = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.iterate = ocfs2_readdir,
.fsync = ocfs2_sync_file,
.release = ocfs2_dir_release,
.open = ocfs2_dir_open,
.unlocked_ioctl = ocfs2_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ocfs2_compat_ioctl,
#endif
.lock = ocfs2_lock,
.flock = ocfs2_flock,
};
/*
* POSIX-lockless variants of our file_operations.
*
* These will be used if the underlying cluster stack does not support
* posix file locking, if the user passes the "localflocks" mount
* option, or if we have a local-only fs.
*
* ocfs2_flock is in here because all stacks handle UNIX file locks,
* so we still want it in the case of no stack support for
* plocks. Internally, it will do the right thing when asked to ignore
* the cluster.
*/
const struct file_operations ocfs2_fops_no_plocks = {
.llseek = ocfs2_file_llseek,
.mmap = ocfs2_mmap,
.fsync = ocfs2_sync_file,
.release = ocfs2_file_release,
.open = ocfs2_file_open,
.read_iter = ocfs2_file_read_iter,
.write_iter = ocfs2_file_write_iter,
.unlocked_ioctl = ocfs2_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ocfs2_compat_ioctl,
#endif
.flock = ocfs2_flock,
.splice_read = generic_file_splice_read,
.splice_write = iter_file_splice_write,
.fallocate = ocfs2_fallocate,
.clone_file_range = ocfs2_file_clone_range,
.dedupe_file_range = ocfs2_file_dedupe_range,
};
const struct file_operations ocfs2_dops_no_plocks = {
.llseek = generic_file_llseek,
.read = generic_read_dir,
.iterate = ocfs2_readdir,
.fsync = ocfs2_sync_file,
.release = ocfs2_dir_release,
.open = ocfs2_dir_open,
.unlocked_ioctl = ocfs2_ioctl,
#ifdef CONFIG_COMPAT
.compat_ioctl = ocfs2_compat_ioctl,
#endif
.flock = ocfs2_flock,
};