mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 10:54:48 +07:00
22ec1a2aea
As done for /proc/kcore in commitdf04abfd18
("fs/proc/kcore.c: Add bounce buffer for ktext data") this adds a bounce buffer when reading memory via /dev/mem. This is needed to allow kernel text memory to be read out when built with CONFIG_HARDENED_USERCOPY (which refuses to read out kernel text) and without CONFIG_STRICT_DEVMEM (which would have refused to read any RAM contents at all). Since this build configuration isn't common (most systems with CONFIG_HARDENED_USERCOPY also have CONFIG_STRICT_DEVMEM), this also tries to inform Kconfig about the recommended settings. This patch is modified from Brad Spengler/PaX Team's changes to /dev/mem code in the last public patch of grsecurity/PaX based on my understanding of the code. Changes or omissions from the original code are mine and don't reflect the original grsecurity/PaX code. Reported-by: Michael Holzheu <holzheu@linux.vnet.ibm.com> Fixes:f5509cc18d
("mm: Hardened usercopy") Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
946 lines
20 KiB
C
946 lines
20 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/drivers/char/mem.c
|
|
*
|
|
* Copyright (C) 1991, 1992 Linus Torvalds
|
|
*
|
|
* Added devfs support.
|
|
* Jan-11-1998, C. Scott Ananian <cananian@alumni.princeton.edu>
|
|
* Shared /dev/zero mmapping support, Feb 2000, Kanoj Sarcar <kanoj@sgi.com>
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/miscdevice.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/mman.h>
|
|
#include <linux/random.h>
|
|
#include <linux/init.h>
|
|
#include <linux/raw.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/device.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/backing-dev.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/splice.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/export.h>
|
|
#include <linux/io.h>
|
|
#include <linux/uio.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
|
|
#ifdef CONFIG_IA64
|
|
# include <linux/efi.h>
|
|
#endif
|
|
|
|
#define DEVPORT_MINOR 4
|
|
|
|
static inline unsigned long size_inside_page(unsigned long start,
|
|
unsigned long size)
|
|
{
|
|
unsigned long sz;
|
|
|
|
sz = PAGE_SIZE - (start & (PAGE_SIZE - 1));
|
|
|
|
return min(sz, size);
|
|
}
|
|
|
|
#ifndef ARCH_HAS_VALID_PHYS_ADDR_RANGE
|
|
static inline int valid_phys_addr_range(phys_addr_t addr, size_t count)
|
|
{
|
|
return addr + count <= __pa(high_memory);
|
|
}
|
|
|
|
static inline int valid_mmap_phys_addr_range(unsigned long pfn, size_t size)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_STRICT_DEVMEM
|
|
static inline int page_is_allowed(unsigned long pfn)
|
|
{
|
|
return devmem_is_allowed(pfn);
|
|
}
|
|
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
|
|
{
|
|
u64 from = ((u64)pfn) << PAGE_SHIFT;
|
|
u64 to = from + size;
|
|
u64 cursor = from;
|
|
|
|
while (cursor < to) {
|
|
if (!devmem_is_allowed(pfn))
|
|
return 0;
|
|
cursor += PAGE_SIZE;
|
|
pfn++;
|
|
}
|
|
return 1;
|
|
}
|
|
#else
|
|
static inline int page_is_allowed(unsigned long pfn)
|
|
{
|
|
return 1;
|
|
}
|
|
static inline int range_is_allowed(unsigned long pfn, unsigned long size)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
#ifndef unxlate_dev_mem_ptr
|
|
#define unxlate_dev_mem_ptr unxlate_dev_mem_ptr
|
|
void __weak unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* This funcion reads the *physical* memory. The f_pos points directly to the
|
|
* memory location.
|
|
*/
|
|
static ssize_t read_mem(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
phys_addr_t p = *ppos;
|
|
ssize_t read, sz;
|
|
void *ptr;
|
|
char *bounce;
|
|
int err;
|
|
|
|
if (p != *ppos)
|
|
return 0;
|
|
|
|
if (!valid_phys_addr_range(p, count))
|
|
return -EFAULT;
|
|
read = 0;
|
|
#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
|
|
/* we don't have page 0 mapped on sparc and m68k.. */
|
|
if (p < PAGE_SIZE) {
|
|
sz = size_inside_page(p, count);
|
|
if (sz > 0) {
|
|
if (clear_user(buf, sz))
|
|
return -EFAULT;
|
|
buf += sz;
|
|
p += sz;
|
|
count -= sz;
|
|
read += sz;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bounce = kmalloc(PAGE_SIZE, GFP_KERNEL);
|
|
if (!bounce)
|
|
return -ENOMEM;
|
|
|
|
while (count > 0) {
|
|
unsigned long remaining;
|
|
int allowed;
|
|
|
|
sz = size_inside_page(p, count);
|
|
|
|
err = -EPERM;
|
|
allowed = page_is_allowed(p >> PAGE_SHIFT);
|
|
if (!allowed)
|
|
goto failed;
|
|
|
|
err = -EFAULT;
|
|
if (allowed == 2) {
|
|
/* Show zeros for restricted memory. */
|
|
remaining = clear_user(buf, sz);
|
|
} else {
|
|
/*
|
|
* On ia64 if a page has been mapped somewhere as
|
|
* uncached, then it must also be accessed uncached
|
|
* by the kernel or data corruption may occur.
|
|
*/
|
|
ptr = xlate_dev_mem_ptr(p);
|
|
if (!ptr)
|
|
goto failed;
|
|
|
|
err = probe_kernel_read(bounce, ptr, sz);
|
|
unxlate_dev_mem_ptr(p, ptr);
|
|
if (err)
|
|
goto failed;
|
|
|
|
remaining = copy_to_user(buf, bounce, sz);
|
|
}
|
|
|
|
if (remaining)
|
|
goto failed;
|
|
|
|
buf += sz;
|
|
p += sz;
|
|
count -= sz;
|
|
read += sz;
|
|
}
|
|
kfree(bounce);
|
|
|
|
*ppos += read;
|
|
return read;
|
|
|
|
failed:
|
|
kfree(bounce);
|
|
return err;
|
|
}
|
|
|
|
static ssize_t write_mem(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
phys_addr_t p = *ppos;
|
|
ssize_t written, sz;
|
|
unsigned long copied;
|
|
void *ptr;
|
|
|
|
if (p != *ppos)
|
|
return -EFBIG;
|
|
|
|
if (!valid_phys_addr_range(p, count))
|
|
return -EFAULT;
|
|
|
|
written = 0;
|
|
|
|
#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
|
|
/* we don't have page 0 mapped on sparc and m68k.. */
|
|
if (p < PAGE_SIZE) {
|
|
sz = size_inside_page(p, count);
|
|
/* Hmm. Do something? */
|
|
buf += sz;
|
|
p += sz;
|
|
count -= sz;
|
|
written += sz;
|
|
}
|
|
#endif
|
|
|
|
while (count > 0) {
|
|
int allowed;
|
|
|
|
sz = size_inside_page(p, count);
|
|
|
|
allowed = page_is_allowed(p >> PAGE_SHIFT);
|
|
if (!allowed)
|
|
return -EPERM;
|
|
|
|
/* Skip actual writing when a page is marked as restricted. */
|
|
if (allowed == 1) {
|
|
/*
|
|
* On ia64 if a page has been mapped somewhere as
|
|
* uncached, then it must also be accessed uncached
|
|
* by the kernel or data corruption may occur.
|
|
*/
|
|
ptr = xlate_dev_mem_ptr(p);
|
|
if (!ptr) {
|
|
if (written)
|
|
break;
|
|
return -EFAULT;
|
|
}
|
|
|
|
copied = copy_from_user(ptr, buf, sz);
|
|
unxlate_dev_mem_ptr(p, ptr);
|
|
if (copied) {
|
|
written += sz - copied;
|
|
if (written)
|
|
break;
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
buf += sz;
|
|
p += sz;
|
|
count -= sz;
|
|
written += sz;
|
|
}
|
|
|
|
*ppos += written;
|
|
return written;
|
|
}
|
|
|
|
int __weak phys_mem_access_prot_allowed(struct file *file,
|
|
unsigned long pfn, unsigned long size, pgprot_t *vma_prot)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
#ifndef __HAVE_PHYS_MEM_ACCESS_PROT
|
|
|
|
/*
|
|
* Architectures vary in how they handle caching for addresses
|
|
* outside of main memory.
|
|
*
|
|
*/
|
|
#ifdef pgprot_noncached
|
|
static int uncached_access(struct file *file, phys_addr_t addr)
|
|
{
|
|
#if defined(CONFIG_IA64)
|
|
/*
|
|
* On ia64, we ignore O_DSYNC because we cannot tolerate memory
|
|
* attribute aliases.
|
|
*/
|
|
return !(efi_mem_attributes(addr) & EFI_MEMORY_WB);
|
|
#elif defined(CONFIG_MIPS)
|
|
{
|
|
extern int __uncached_access(struct file *file,
|
|
unsigned long addr);
|
|
|
|
return __uncached_access(file, addr);
|
|
}
|
|
#else
|
|
/*
|
|
* Accessing memory above the top the kernel knows about or through a
|
|
* file pointer
|
|
* that was marked O_DSYNC will be done non-cached.
|
|
*/
|
|
if (file->f_flags & O_DSYNC)
|
|
return 1;
|
|
return addr >= __pa(high_memory);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
static pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
|
|
unsigned long size, pgprot_t vma_prot)
|
|
{
|
|
#ifdef pgprot_noncached
|
|
phys_addr_t offset = pfn << PAGE_SHIFT;
|
|
|
|
if (uncached_access(file, offset))
|
|
return pgprot_noncached(vma_prot);
|
|
#endif
|
|
return vma_prot;
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_MMU
|
|
static unsigned long get_unmapped_area_mem(struct file *file,
|
|
unsigned long addr,
|
|
unsigned long len,
|
|
unsigned long pgoff,
|
|
unsigned long flags)
|
|
{
|
|
if (!valid_mmap_phys_addr_range(pgoff, len))
|
|
return (unsigned long) -EINVAL;
|
|
return pgoff << PAGE_SHIFT;
|
|
}
|
|
|
|
/* permit direct mmap, for read, write or exec */
|
|
static unsigned memory_mmap_capabilities(struct file *file)
|
|
{
|
|
return NOMMU_MAP_DIRECT |
|
|
NOMMU_MAP_READ | NOMMU_MAP_WRITE | NOMMU_MAP_EXEC;
|
|
}
|
|
|
|
static unsigned zero_mmap_capabilities(struct file *file)
|
|
{
|
|
return NOMMU_MAP_COPY;
|
|
}
|
|
|
|
/* can't do an in-place private mapping if there's no MMU */
|
|
static inline int private_mapping_ok(struct vm_area_struct *vma)
|
|
{
|
|
return vma->vm_flags & VM_MAYSHARE;
|
|
}
|
|
#else
|
|
|
|
static inline int private_mapping_ok(struct vm_area_struct *vma)
|
|
{
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
static const struct vm_operations_struct mmap_mem_ops = {
|
|
#ifdef CONFIG_HAVE_IOREMAP_PROT
|
|
.access = generic_access_phys
|
|
#endif
|
|
};
|
|
|
|
static int mmap_mem(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
size_t size = vma->vm_end - vma->vm_start;
|
|
phys_addr_t offset = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
|
|
|
|
/* Does it even fit in phys_addr_t? */
|
|
if (offset >> PAGE_SHIFT != vma->vm_pgoff)
|
|
return -EINVAL;
|
|
|
|
/* It's illegal to wrap around the end of the physical address space. */
|
|
if (offset + (phys_addr_t)size - 1 < offset)
|
|
return -EINVAL;
|
|
|
|
if (!valid_mmap_phys_addr_range(vma->vm_pgoff, size))
|
|
return -EINVAL;
|
|
|
|
if (!private_mapping_ok(vma))
|
|
return -ENOSYS;
|
|
|
|
if (!range_is_allowed(vma->vm_pgoff, size))
|
|
return -EPERM;
|
|
|
|
if (!phys_mem_access_prot_allowed(file, vma->vm_pgoff, size,
|
|
&vma->vm_page_prot))
|
|
return -EINVAL;
|
|
|
|
vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_pgoff,
|
|
size,
|
|
vma->vm_page_prot);
|
|
|
|
vma->vm_ops = &mmap_mem_ops;
|
|
|
|
/* Remap-pfn-range will mark the range VM_IO */
|
|
if (remap_pfn_range(vma,
|
|
vma->vm_start,
|
|
vma->vm_pgoff,
|
|
size,
|
|
vma->vm_page_prot)) {
|
|
return -EAGAIN;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int mmap_kmem(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
/* Turn a kernel-virtual address into a physical page frame */
|
|
pfn = __pa((u64)vma->vm_pgoff << PAGE_SHIFT) >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* RED-PEN: on some architectures there is more mapped memory than
|
|
* available in mem_map which pfn_valid checks for. Perhaps should add a
|
|
* new macro here.
|
|
*
|
|
* RED-PEN: vmalloc is not supported right now.
|
|
*/
|
|
if (!pfn_valid(pfn))
|
|
return -EIO;
|
|
|
|
vma->vm_pgoff = pfn;
|
|
return mmap_mem(file, vma);
|
|
}
|
|
|
|
/*
|
|
* This function reads the *virtual* memory as seen by the kernel.
|
|
*/
|
|
static ssize_t read_kmem(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
unsigned long p = *ppos;
|
|
ssize_t low_count, read, sz;
|
|
char *kbuf; /* k-addr because vread() takes vmlist_lock rwlock */
|
|
int err = 0;
|
|
|
|
read = 0;
|
|
if (p < (unsigned long) high_memory) {
|
|
low_count = count;
|
|
if (count > (unsigned long)high_memory - p)
|
|
low_count = (unsigned long)high_memory - p;
|
|
|
|
#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
|
|
/* we don't have page 0 mapped on sparc and m68k.. */
|
|
if (p < PAGE_SIZE && low_count > 0) {
|
|
sz = size_inside_page(p, low_count);
|
|
if (clear_user(buf, sz))
|
|
return -EFAULT;
|
|
buf += sz;
|
|
p += sz;
|
|
read += sz;
|
|
low_count -= sz;
|
|
count -= sz;
|
|
}
|
|
#endif
|
|
while (low_count > 0) {
|
|
sz = size_inside_page(p, low_count);
|
|
|
|
/*
|
|
* On ia64 if a page has been mapped somewhere as
|
|
* uncached, then it must also be accessed uncached
|
|
* by the kernel or data corruption may occur
|
|
*/
|
|
kbuf = xlate_dev_kmem_ptr((void *)p);
|
|
if (!virt_addr_valid(kbuf))
|
|
return -ENXIO;
|
|
|
|
if (copy_to_user(buf, kbuf, sz))
|
|
return -EFAULT;
|
|
buf += sz;
|
|
p += sz;
|
|
read += sz;
|
|
low_count -= sz;
|
|
count -= sz;
|
|
}
|
|
}
|
|
|
|
if (count > 0) {
|
|
kbuf = (char *)__get_free_page(GFP_KERNEL);
|
|
if (!kbuf)
|
|
return -ENOMEM;
|
|
while (count > 0) {
|
|
sz = size_inside_page(p, count);
|
|
if (!is_vmalloc_or_module_addr((void *)p)) {
|
|
err = -ENXIO;
|
|
break;
|
|
}
|
|
sz = vread(kbuf, (char *)p, sz);
|
|
if (!sz)
|
|
break;
|
|
if (copy_to_user(buf, kbuf, sz)) {
|
|
err = -EFAULT;
|
|
break;
|
|
}
|
|
count -= sz;
|
|
buf += sz;
|
|
read += sz;
|
|
p += sz;
|
|
}
|
|
free_page((unsigned long)kbuf);
|
|
}
|
|
*ppos = p;
|
|
return read ? read : err;
|
|
}
|
|
|
|
|
|
static ssize_t do_write_kmem(unsigned long p, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
ssize_t written, sz;
|
|
unsigned long copied;
|
|
|
|
written = 0;
|
|
#ifdef __ARCH_HAS_NO_PAGE_ZERO_MAPPED
|
|
/* we don't have page 0 mapped on sparc and m68k.. */
|
|
if (p < PAGE_SIZE) {
|
|
sz = size_inside_page(p, count);
|
|
/* Hmm. Do something? */
|
|
buf += sz;
|
|
p += sz;
|
|
count -= sz;
|
|
written += sz;
|
|
}
|
|
#endif
|
|
|
|
while (count > 0) {
|
|
void *ptr;
|
|
|
|
sz = size_inside_page(p, count);
|
|
|
|
/*
|
|
* On ia64 if a page has been mapped somewhere as uncached, then
|
|
* it must also be accessed uncached by the kernel or data
|
|
* corruption may occur.
|
|
*/
|
|
ptr = xlate_dev_kmem_ptr((void *)p);
|
|
if (!virt_addr_valid(ptr))
|
|
return -ENXIO;
|
|
|
|
copied = copy_from_user(ptr, buf, sz);
|
|
if (copied) {
|
|
written += sz - copied;
|
|
if (written)
|
|
break;
|
|
return -EFAULT;
|
|
}
|
|
buf += sz;
|
|
p += sz;
|
|
count -= sz;
|
|
written += sz;
|
|
}
|
|
|
|
*ppos += written;
|
|
return written;
|
|
}
|
|
|
|
/*
|
|
* This function writes to the *virtual* memory as seen by the kernel.
|
|
*/
|
|
static ssize_t write_kmem(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
unsigned long p = *ppos;
|
|
ssize_t wrote = 0;
|
|
ssize_t virtr = 0;
|
|
char *kbuf; /* k-addr because vwrite() takes vmlist_lock rwlock */
|
|
int err = 0;
|
|
|
|
if (p < (unsigned long) high_memory) {
|
|
unsigned long to_write = min_t(unsigned long, count,
|
|
(unsigned long)high_memory - p);
|
|
wrote = do_write_kmem(p, buf, to_write, ppos);
|
|
if (wrote != to_write)
|
|
return wrote;
|
|
p += wrote;
|
|
buf += wrote;
|
|
count -= wrote;
|
|
}
|
|
|
|
if (count > 0) {
|
|
kbuf = (char *)__get_free_page(GFP_KERNEL);
|
|
if (!kbuf)
|
|
return wrote ? wrote : -ENOMEM;
|
|
while (count > 0) {
|
|
unsigned long sz = size_inside_page(p, count);
|
|
unsigned long n;
|
|
|
|
if (!is_vmalloc_or_module_addr((void *)p)) {
|
|
err = -ENXIO;
|
|
break;
|
|
}
|
|
n = copy_from_user(kbuf, buf, sz);
|
|
if (n) {
|
|
err = -EFAULT;
|
|
break;
|
|
}
|
|
vwrite(kbuf, (char *)p, sz);
|
|
count -= sz;
|
|
buf += sz;
|
|
virtr += sz;
|
|
p += sz;
|
|
}
|
|
free_page((unsigned long)kbuf);
|
|
}
|
|
|
|
*ppos = p;
|
|
return virtr + wrote ? : err;
|
|
}
|
|
|
|
static ssize_t read_port(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
unsigned long i = *ppos;
|
|
char __user *tmp = buf;
|
|
|
|
if (!access_ok(VERIFY_WRITE, buf, count))
|
|
return -EFAULT;
|
|
while (count-- > 0 && i < 65536) {
|
|
if (__put_user(inb(i), tmp) < 0)
|
|
return -EFAULT;
|
|
i++;
|
|
tmp++;
|
|
}
|
|
*ppos = i;
|
|
return tmp-buf;
|
|
}
|
|
|
|
static ssize_t write_port(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
unsigned long i = *ppos;
|
|
const char __user *tmp = buf;
|
|
|
|
if (!access_ok(VERIFY_READ, buf, count))
|
|
return -EFAULT;
|
|
while (count-- > 0 && i < 65536) {
|
|
char c;
|
|
|
|
if (__get_user(c, tmp)) {
|
|
if (tmp > buf)
|
|
break;
|
|
return -EFAULT;
|
|
}
|
|
outb(c, i);
|
|
i++;
|
|
tmp++;
|
|
}
|
|
*ppos = i;
|
|
return tmp-buf;
|
|
}
|
|
|
|
static ssize_t read_null(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t write_null(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
return count;
|
|
}
|
|
|
|
static ssize_t read_iter_null(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t write_iter_null(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
size_t count = iov_iter_count(from);
|
|
iov_iter_advance(from, count);
|
|
return count;
|
|
}
|
|
|
|
static int pipe_to_null(struct pipe_inode_info *info, struct pipe_buffer *buf,
|
|
struct splice_desc *sd)
|
|
{
|
|
return sd->len;
|
|
}
|
|
|
|
static ssize_t splice_write_null(struct pipe_inode_info *pipe, struct file *out,
|
|
loff_t *ppos, size_t len, unsigned int flags)
|
|
{
|
|
return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_null);
|
|
}
|
|
|
|
static ssize_t read_iter_zero(struct kiocb *iocb, struct iov_iter *iter)
|
|
{
|
|
size_t written = 0;
|
|
|
|
while (iov_iter_count(iter)) {
|
|
size_t chunk = iov_iter_count(iter), n;
|
|
|
|
if (chunk > PAGE_SIZE)
|
|
chunk = PAGE_SIZE; /* Just for latency reasons */
|
|
n = iov_iter_zero(chunk, iter);
|
|
if (!n && iov_iter_count(iter))
|
|
return written ? written : -EFAULT;
|
|
written += n;
|
|
if (signal_pending(current))
|
|
return written ? written : -ERESTARTSYS;
|
|
cond_resched();
|
|
}
|
|
return written;
|
|
}
|
|
|
|
static int mmap_zero(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
#ifndef CONFIG_MMU
|
|
return -ENOSYS;
|
|
#endif
|
|
if (vma->vm_flags & VM_SHARED)
|
|
return shmem_zero_setup(vma);
|
|
return 0;
|
|
}
|
|
|
|
static unsigned long get_unmapped_area_zero(struct file *file,
|
|
unsigned long addr, unsigned long len,
|
|
unsigned long pgoff, unsigned long flags)
|
|
{
|
|
#ifdef CONFIG_MMU
|
|
if (flags & MAP_SHARED) {
|
|
/*
|
|
* mmap_zero() will call shmem_zero_setup() to create a file,
|
|
* so use shmem's get_unmapped_area in case it can be huge;
|
|
* and pass NULL for file as in mmap.c's get_unmapped_area(),
|
|
* so as not to confuse shmem with our handle on "/dev/zero".
|
|
*/
|
|
return shmem_get_unmapped_area(NULL, addr, len, pgoff, flags);
|
|
}
|
|
|
|
/* Otherwise flags & MAP_PRIVATE: with no shmem object beneath it */
|
|
return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
|
|
#else
|
|
return -ENOSYS;
|
|
#endif
|
|
}
|
|
|
|
static ssize_t write_full(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
return -ENOSPC;
|
|
}
|
|
|
|
/*
|
|
* Special lseek() function for /dev/null and /dev/zero. Most notably, you
|
|
* can fopen() both devices with "a" now. This was previously impossible.
|
|
* -- SRB.
|
|
*/
|
|
static loff_t null_lseek(struct file *file, loff_t offset, int orig)
|
|
{
|
|
return file->f_pos = 0;
|
|
}
|
|
|
|
/*
|
|
* The memory devices use the full 32/64 bits of the offset, and so we cannot
|
|
* check against negative addresses: they are ok. The return value is weird,
|
|
* though, in that case (0).
|
|
*
|
|
* also note that seeking relative to the "end of file" isn't supported:
|
|
* it has no meaning, so it returns -EINVAL.
|
|
*/
|
|
static loff_t memory_lseek(struct file *file, loff_t offset, int orig)
|
|
{
|
|
loff_t ret;
|
|
|
|
inode_lock(file_inode(file));
|
|
switch (orig) {
|
|
case SEEK_CUR:
|
|
offset += file->f_pos;
|
|
case SEEK_SET:
|
|
/* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */
|
|
if ((unsigned long long)offset >= -MAX_ERRNO) {
|
|
ret = -EOVERFLOW;
|
|
break;
|
|
}
|
|
file->f_pos = offset;
|
|
ret = file->f_pos;
|
|
force_successful_syscall_return();
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
}
|
|
inode_unlock(file_inode(file));
|
|
return ret;
|
|
}
|
|
|
|
static int open_port(struct inode *inode, struct file *filp)
|
|
{
|
|
return capable(CAP_SYS_RAWIO) ? 0 : -EPERM;
|
|
}
|
|
|
|
#define zero_lseek null_lseek
|
|
#define full_lseek null_lseek
|
|
#define write_zero write_null
|
|
#define write_iter_zero write_iter_null
|
|
#define open_mem open_port
|
|
#define open_kmem open_mem
|
|
|
|
static const struct file_operations __maybe_unused mem_fops = {
|
|
.llseek = memory_lseek,
|
|
.read = read_mem,
|
|
.write = write_mem,
|
|
.mmap = mmap_mem,
|
|
.open = open_mem,
|
|
#ifndef CONFIG_MMU
|
|
.get_unmapped_area = get_unmapped_area_mem,
|
|
.mmap_capabilities = memory_mmap_capabilities,
|
|
#endif
|
|
};
|
|
|
|
static const struct file_operations __maybe_unused kmem_fops = {
|
|
.llseek = memory_lseek,
|
|
.read = read_kmem,
|
|
.write = write_kmem,
|
|
.mmap = mmap_kmem,
|
|
.open = open_kmem,
|
|
#ifndef CONFIG_MMU
|
|
.get_unmapped_area = get_unmapped_area_mem,
|
|
.mmap_capabilities = memory_mmap_capabilities,
|
|
#endif
|
|
};
|
|
|
|
static const struct file_operations null_fops = {
|
|
.llseek = null_lseek,
|
|
.read = read_null,
|
|
.write = write_null,
|
|
.read_iter = read_iter_null,
|
|
.write_iter = write_iter_null,
|
|
.splice_write = splice_write_null,
|
|
};
|
|
|
|
static const struct file_operations __maybe_unused port_fops = {
|
|
.llseek = memory_lseek,
|
|
.read = read_port,
|
|
.write = write_port,
|
|
.open = open_port,
|
|
};
|
|
|
|
static const struct file_operations zero_fops = {
|
|
.llseek = zero_lseek,
|
|
.write = write_zero,
|
|
.read_iter = read_iter_zero,
|
|
.write_iter = write_iter_zero,
|
|
.mmap = mmap_zero,
|
|
.get_unmapped_area = get_unmapped_area_zero,
|
|
#ifndef CONFIG_MMU
|
|
.mmap_capabilities = zero_mmap_capabilities,
|
|
#endif
|
|
};
|
|
|
|
static const struct file_operations full_fops = {
|
|
.llseek = full_lseek,
|
|
.read_iter = read_iter_zero,
|
|
.write = write_full,
|
|
};
|
|
|
|
static const struct memdev {
|
|
const char *name;
|
|
umode_t mode;
|
|
const struct file_operations *fops;
|
|
fmode_t fmode;
|
|
} devlist[] = {
|
|
#ifdef CONFIG_DEVMEM
|
|
[1] = { "mem", 0, &mem_fops, FMODE_UNSIGNED_OFFSET },
|
|
#endif
|
|
#ifdef CONFIG_DEVKMEM
|
|
[2] = { "kmem", 0, &kmem_fops, FMODE_UNSIGNED_OFFSET },
|
|
#endif
|
|
[3] = { "null", 0666, &null_fops, 0 },
|
|
#ifdef CONFIG_DEVPORT
|
|
[4] = { "port", 0, &port_fops, 0 },
|
|
#endif
|
|
[5] = { "zero", 0666, &zero_fops, 0 },
|
|
[7] = { "full", 0666, &full_fops, 0 },
|
|
[8] = { "random", 0666, &random_fops, 0 },
|
|
[9] = { "urandom", 0666, &urandom_fops, 0 },
|
|
#ifdef CONFIG_PRINTK
|
|
[11] = { "kmsg", 0644, &kmsg_fops, 0 },
|
|
#endif
|
|
};
|
|
|
|
static int memory_open(struct inode *inode, struct file *filp)
|
|
{
|
|
int minor;
|
|
const struct memdev *dev;
|
|
|
|
minor = iminor(inode);
|
|
if (minor >= ARRAY_SIZE(devlist))
|
|
return -ENXIO;
|
|
|
|
dev = &devlist[minor];
|
|
if (!dev->fops)
|
|
return -ENXIO;
|
|
|
|
filp->f_op = dev->fops;
|
|
filp->f_mode |= dev->fmode;
|
|
|
|
if (dev->fops->open)
|
|
return dev->fops->open(inode, filp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations memory_fops = {
|
|
.open = memory_open,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static char *mem_devnode(struct device *dev, umode_t *mode)
|
|
{
|
|
if (mode && devlist[MINOR(dev->devt)].mode)
|
|
*mode = devlist[MINOR(dev->devt)].mode;
|
|
return NULL;
|
|
}
|
|
|
|
static struct class *mem_class;
|
|
|
|
static int __init chr_dev_init(void)
|
|
{
|
|
int minor;
|
|
|
|
if (register_chrdev(MEM_MAJOR, "mem", &memory_fops))
|
|
printk("unable to get major %d for memory devs\n", MEM_MAJOR);
|
|
|
|
mem_class = class_create(THIS_MODULE, "mem");
|
|
if (IS_ERR(mem_class))
|
|
return PTR_ERR(mem_class);
|
|
|
|
mem_class->devnode = mem_devnode;
|
|
for (minor = 1; minor < ARRAY_SIZE(devlist); minor++) {
|
|
if (!devlist[minor].name)
|
|
continue;
|
|
|
|
/*
|
|
* Create /dev/port?
|
|
*/
|
|
if ((minor == DEVPORT_MINOR) && !arch_has_dev_port())
|
|
continue;
|
|
|
|
device_create(mem_class, NULL, MKDEV(MEM_MAJOR, minor),
|
|
NULL, devlist[minor].name);
|
|
}
|
|
|
|
return tty_init();
|
|
}
|
|
|
|
fs_initcall(chr_dev_init);
|