mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-18 16:26:54 +07:00
75b3cb2bb0
Users and sysadmins usually want to know what is the device utilization as a level 0 indication if they are efficiently using the device. Add a new opcode to the INFO IOCTL that will return the device utilization over the last period of 100-1000ms. The return value is 0-100, representing as percentage the total utilization rate. Signed-off-by: Oded Gabbay <oded.gabbay@gmail.com> Reviewed-by: Omer Shpigelman <oshpigelman@habana.ai>
657 lines
16 KiB
C
657 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/*
|
|
* Copyright 2016-2019 HabanaLabs, Ltd.
|
|
* All Rights Reserved.
|
|
*/
|
|
|
|
#include "habanalabs.h"
|
|
|
|
#include <linux/slab.h>
|
|
|
|
/*
|
|
* hl_queue_add_ptr - add to pi or ci and checks if it wraps around
|
|
*
|
|
* @ptr: the current pi/ci value
|
|
* @val: the amount to add
|
|
*
|
|
* Add val to ptr. It can go until twice the queue length.
|
|
*/
|
|
inline u32 hl_hw_queue_add_ptr(u32 ptr, u16 val)
|
|
{
|
|
ptr += val;
|
|
ptr &= ((HL_QUEUE_LENGTH << 1) - 1);
|
|
return ptr;
|
|
}
|
|
|
|
static inline int queue_free_slots(struct hl_hw_queue *q, u32 queue_len)
|
|
{
|
|
int delta = (q->pi - q->ci);
|
|
|
|
if (delta >= 0)
|
|
return (queue_len - delta);
|
|
else
|
|
return (abs(delta) - queue_len);
|
|
}
|
|
|
|
void hl_int_hw_queue_update_ci(struct hl_cs *cs)
|
|
{
|
|
struct hl_device *hdev = cs->ctx->hdev;
|
|
struct hl_hw_queue *q;
|
|
int i;
|
|
|
|
hdev->asic_funcs->hw_queues_lock(hdev);
|
|
|
|
if (hdev->disabled)
|
|
goto out;
|
|
|
|
q = &hdev->kernel_queues[0];
|
|
for (i = 0 ; i < HL_MAX_QUEUES ; i++, q++) {
|
|
if (q->queue_type == QUEUE_TYPE_INT) {
|
|
q->ci += cs->jobs_in_queue_cnt[i];
|
|
q->ci &= ((q->int_queue_len << 1) - 1);
|
|
}
|
|
}
|
|
|
|
out:
|
|
hdev->asic_funcs->hw_queues_unlock(hdev);
|
|
}
|
|
|
|
/*
|
|
* ext_queue_submit_bd - Submit a buffer descriptor to an external queue
|
|
*
|
|
* @hdev: pointer to habanalabs device structure
|
|
* @q: pointer to habanalabs queue structure
|
|
* @ctl: BD's control word
|
|
* @len: BD's length
|
|
* @ptr: BD's pointer
|
|
*
|
|
* This function assumes there is enough space on the queue to submit a new
|
|
* BD to it. It initializes the next BD and calls the device specific
|
|
* function to set the pi (and doorbell)
|
|
*
|
|
* This function must be called when the scheduler mutex is taken
|
|
*
|
|
*/
|
|
static void ext_queue_submit_bd(struct hl_device *hdev, struct hl_hw_queue *q,
|
|
u32 ctl, u32 len, u64 ptr)
|
|
{
|
|
struct hl_bd *bd;
|
|
|
|
bd = (struct hl_bd *) (uintptr_t) q->kernel_address;
|
|
bd += hl_pi_2_offset(q->pi);
|
|
bd->ctl = cpu_to_le32(ctl);
|
|
bd->len = cpu_to_le32(len);
|
|
bd->ptr = cpu_to_le64(ptr);
|
|
|
|
q->pi = hl_queue_inc_ptr(q->pi);
|
|
hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
|
|
}
|
|
|
|
/*
|
|
* ext_queue_sanity_checks - perform some sanity checks on external queue
|
|
*
|
|
* @hdev : pointer to hl_device structure
|
|
* @q : pointer to hl_hw_queue structure
|
|
* @num_of_entries : how many entries to check for space
|
|
* @reserve_cq_entry : whether to reserve an entry in the cq
|
|
*
|
|
* H/W queues spinlock should be taken before calling this function
|
|
*
|
|
* Perform the following:
|
|
* - Make sure we have enough space in the h/w queue
|
|
* - Make sure we have enough space in the completion queue
|
|
* - Reserve space in the completion queue (needs to be reversed if there
|
|
* is a failure down the road before the actual submission of work). Only
|
|
* do this action if reserve_cq_entry is true
|
|
*
|
|
*/
|
|
static int ext_queue_sanity_checks(struct hl_device *hdev,
|
|
struct hl_hw_queue *q, int num_of_entries,
|
|
bool reserve_cq_entry)
|
|
{
|
|
atomic_t *free_slots =
|
|
&hdev->completion_queue[q->hw_queue_id].free_slots_cnt;
|
|
int free_slots_cnt;
|
|
|
|
/* Check we have enough space in the queue */
|
|
free_slots_cnt = queue_free_slots(q, HL_QUEUE_LENGTH);
|
|
|
|
if (free_slots_cnt < num_of_entries) {
|
|
dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
|
|
q->hw_queue_id, num_of_entries);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
if (reserve_cq_entry) {
|
|
/*
|
|
* Check we have enough space in the completion queue
|
|
* Add -1 to counter (decrement) unless counter was already 0
|
|
* In that case, CQ is full so we can't submit a new CB because
|
|
* we won't get ack on its completion
|
|
* atomic_add_unless will return 0 if counter was already 0
|
|
*/
|
|
if (atomic_add_negative(num_of_entries * -1, free_slots)) {
|
|
dev_dbg(hdev->dev, "No space for %d on CQ %d\n",
|
|
num_of_entries, q->hw_queue_id);
|
|
atomic_add(num_of_entries, free_slots);
|
|
return -EAGAIN;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* int_queue_sanity_checks - perform some sanity checks on internal queue
|
|
*
|
|
* @hdev : pointer to hl_device structure
|
|
* @q : pointer to hl_hw_queue structure
|
|
* @num_of_entries : how many entries to check for space
|
|
*
|
|
* H/W queues spinlock should be taken before calling this function
|
|
*
|
|
* Perform the following:
|
|
* - Make sure we have enough space in the h/w queue
|
|
*
|
|
*/
|
|
static int int_queue_sanity_checks(struct hl_device *hdev,
|
|
struct hl_hw_queue *q,
|
|
int num_of_entries)
|
|
{
|
|
int free_slots_cnt;
|
|
|
|
/* Check we have enough space in the queue */
|
|
free_slots_cnt = queue_free_slots(q, q->int_queue_len);
|
|
|
|
if (free_slots_cnt < num_of_entries) {
|
|
dev_dbg(hdev->dev, "Queue %d doesn't have room for %d CBs\n",
|
|
q->hw_queue_id, num_of_entries);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hl_hw_queue_send_cb_no_cmpl - send a single CB (not a JOB) without completion
|
|
*
|
|
* @hdev: pointer to hl_device structure
|
|
* @hw_queue_id: Queue's type
|
|
* @cb_size: size of CB
|
|
* @cb_ptr: pointer to CB location
|
|
*
|
|
* This function sends a single CB, that must NOT generate a completion entry
|
|
*
|
|
*/
|
|
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
|
|
u32 cb_size, u64 cb_ptr)
|
|
{
|
|
struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
|
|
int rc;
|
|
|
|
/*
|
|
* The CPU queue is a synchronous queue with an effective depth of
|
|
* a single entry (although it is allocated with room for multiple
|
|
* entries). Therefore, there is a different lock, called
|
|
* send_cpu_message_lock, that serializes accesses to the CPU queue.
|
|
* As a result, we don't need to lock the access to the entire H/W
|
|
* queues module when submitting a JOB to the CPU queue
|
|
*/
|
|
if (q->queue_type != QUEUE_TYPE_CPU)
|
|
hdev->asic_funcs->hw_queues_lock(hdev);
|
|
|
|
if (hdev->disabled) {
|
|
rc = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
rc = ext_queue_sanity_checks(hdev, q, 1, false);
|
|
if (rc)
|
|
goto out;
|
|
|
|
ext_queue_submit_bd(hdev, q, 0, cb_size, cb_ptr);
|
|
|
|
out:
|
|
if (q->queue_type != QUEUE_TYPE_CPU)
|
|
hdev->asic_funcs->hw_queues_unlock(hdev);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* ext_hw_queue_schedule_job - submit an JOB to an external queue
|
|
*
|
|
* @job: pointer to the job that needs to be submitted to the queue
|
|
*
|
|
* This function must be called when the scheduler mutex is taken
|
|
*
|
|
*/
|
|
static void ext_hw_queue_schedule_job(struct hl_cs_job *job)
|
|
{
|
|
struct hl_device *hdev = job->cs->ctx->hdev;
|
|
struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
|
|
struct hl_cq_entry cq_pkt;
|
|
struct hl_cq *cq;
|
|
u64 cq_addr;
|
|
struct hl_cb *cb;
|
|
u32 ctl;
|
|
u32 len;
|
|
u64 ptr;
|
|
|
|
/*
|
|
* Update the JOB ID inside the BD CTL so the device would know what
|
|
* to write in the completion queue
|
|
*/
|
|
ctl = ((q->pi << BD_CTL_SHADOW_INDEX_SHIFT) & BD_CTL_SHADOW_INDEX_MASK);
|
|
|
|
cb = job->patched_cb;
|
|
len = job->job_cb_size;
|
|
ptr = cb->bus_address;
|
|
|
|
cq_pkt.data = cpu_to_le32(
|
|
((q->pi << CQ_ENTRY_SHADOW_INDEX_SHIFT)
|
|
& CQ_ENTRY_SHADOW_INDEX_MASK) |
|
|
(1 << CQ_ENTRY_SHADOW_INDEX_VALID_SHIFT) |
|
|
(1 << CQ_ENTRY_READY_SHIFT));
|
|
|
|
/*
|
|
* No need to protect pi_offset because scheduling to the
|
|
* H/W queues is done under the scheduler mutex
|
|
*
|
|
* No need to check if CQ is full because it was already
|
|
* checked in hl_queue_sanity_checks
|
|
*/
|
|
cq = &hdev->completion_queue[q->hw_queue_id];
|
|
cq_addr = cq->bus_address + cq->pi * sizeof(struct hl_cq_entry);
|
|
|
|
hdev->asic_funcs->add_end_of_cb_packets(hdev, cb->kernel_address, len,
|
|
cq_addr,
|
|
le32_to_cpu(cq_pkt.data),
|
|
q->hw_queue_id);
|
|
|
|
q->shadow_queue[hl_pi_2_offset(q->pi)] = job;
|
|
|
|
cq->pi = hl_cq_inc_ptr(cq->pi);
|
|
|
|
ext_queue_submit_bd(hdev, q, ctl, len, ptr);
|
|
}
|
|
|
|
/*
|
|
* int_hw_queue_schedule_job - submit an JOB to an internal queue
|
|
*
|
|
* @job: pointer to the job that needs to be submitted to the queue
|
|
*
|
|
* This function must be called when the scheduler mutex is taken
|
|
*
|
|
*/
|
|
static void int_hw_queue_schedule_job(struct hl_cs_job *job)
|
|
{
|
|
struct hl_device *hdev = job->cs->ctx->hdev;
|
|
struct hl_hw_queue *q = &hdev->kernel_queues[job->hw_queue_id];
|
|
struct hl_bd bd;
|
|
__le64 *pi;
|
|
|
|
bd.ctl = 0;
|
|
bd.len = cpu_to_le32(job->job_cb_size);
|
|
bd.ptr = cpu_to_le64((u64) (uintptr_t) job->user_cb);
|
|
|
|
pi = (__le64 *) (uintptr_t) (q->kernel_address +
|
|
((q->pi & (q->int_queue_len - 1)) * sizeof(bd)));
|
|
|
|
q->pi++;
|
|
q->pi &= ((q->int_queue_len << 1) - 1);
|
|
|
|
hdev->asic_funcs->pqe_write(hdev, pi, &bd);
|
|
|
|
hdev->asic_funcs->ring_doorbell(hdev, q->hw_queue_id, q->pi);
|
|
}
|
|
|
|
/*
|
|
* hl_hw_queue_schedule_cs - schedule a command submission
|
|
*
|
|
* @job : pointer to the CS
|
|
*
|
|
*/
|
|
int hl_hw_queue_schedule_cs(struct hl_cs *cs)
|
|
{
|
|
struct hl_device *hdev = cs->ctx->hdev;
|
|
struct hl_cs_job *job, *tmp;
|
|
struct hl_hw_queue *q;
|
|
int rc = 0, i, cq_cnt;
|
|
|
|
hdev->asic_funcs->hw_queues_lock(hdev);
|
|
|
|
if (hl_device_disabled_or_in_reset(hdev)) {
|
|
dev_err(hdev->dev,
|
|
"device is disabled or in reset, CS rejected!\n");
|
|
rc = -EPERM;
|
|
goto out;
|
|
}
|
|
|
|
q = &hdev->kernel_queues[0];
|
|
/* This loop assumes all external queues are consecutive */
|
|
for (i = 0, cq_cnt = 0 ; i < HL_MAX_QUEUES ; i++, q++) {
|
|
if (q->queue_type == QUEUE_TYPE_EXT) {
|
|
if (cs->jobs_in_queue_cnt[i]) {
|
|
rc = ext_queue_sanity_checks(hdev, q,
|
|
cs->jobs_in_queue_cnt[i], true);
|
|
if (rc)
|
|
goto unroll_cq_resv;
|
|
cq_cnt++;
|
|
}
|
|
} else if (q->queue_type == QUEUE_TYPE_INT) {
|
|
if (cs->jobs_in_queue_cnt[i]) {
|
|
rc = int_queue_sanity_checks(hdev, q,
|
|
cs->jobs_in_queue_cnt[i]);
|
|
if (rc)
|
|
goto unroll_cq_resv;
|
|
}
|
|
}
|
|
}
|
|
|
|
spin_lock(&hdev->hw_queues_mirror_lock);
|
|
list_add_tail(&cs->mirror_node, &hdev->hw_queues_mirror_list);
|
|
|
|
/* Queue TDR if the CS is the first entry and if timeout is wanted */
|
|
if ((hdev->timeout_jiffies != MAX_SCHEDULE_TIMEOUT) &&
|
|
(list_first_entry(&hdev->hw_queues_mirror_list,
|
|
struct hl_cs, mirror_node) == cs)) {
|
|
cs->tdr_active = true;
|
|
schedule_delayed_work(&cs->work_tdr, hdev->timeout_jiffies);
|
|
spin_unlock(&hdev->hw_queues_mirror_lock);
|
|
} else {
|
|
spin_unlock(&hdev->hw_queues_mirror_lock);
|
|
}
|
|
|
|
if (!hdev->cs_active_cnt++) {
|
|
struct hl_device_idle_busy_ts *ts;
|
|
|
|
ts = &hdev->idle_busy_ts_arr[hdev->idle_busy_ts_idx];
|
|
ts->busy_to_idle_ts = ktime_set(0, 0);
|
|
ts->idle_to_busy_ts = ktime_get();
|
|
}
|
|
|
|
list_for_each_entry_safe(job, tmp, &cs->job_list, cs_node)
|
|
if (job->ext_queue)
|
|
ext_hw_queue_schedule_job(job);
|
|
else
|
|
int_hw_queue_schedule_job(job);
|
|
|
|
cs->submitted = true;
|
|
|
|
goto out;
|
|
|
|
unroll_cq_resv:
|
|
/* This loop assumes all external queues are consecutive */
|
|
q = &hdev->kernel_queues[0];
|
|
for (i = 0 ; (i < HL_MAX_QUEUES) && (cq_cnt > 0) ; i++, q++) {
|
|
if ((q->queue_type == QUEUE_TYPE_EXT) &&
|
|
(cs->jobs_in_queue_cnt[i])) {
|
|
atomic_t *free_slots =
|
|
&hdev->completion_queue[i].free_slots_cnt;
|
|
atomic_add(cs->jobs_in_queue_cnt[i], free_slots);
|
|
cq_cnt--;
|
|
}
|
|
}
|
|
|
|
out:
|
|
hdev->asic_funcs->hw_queues_unlock(hdev);
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* hl_hw_queue_inc_ci_kernel - increment ci for kernel's queue
|
|
*
|
|
* @hdev: pointer to hl_device structure
|
|
* @hw_queue_id: which queue to increment its ci
|
|
*/
|
|
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id)
|
|
{
|
|
struct hl_hw_queue *q = &hdev->kernel_queues[hw_queue_id];
|
|
|
|
q->ci = hl_queue_inc_ptr(q->ci);
|
|
}
|
|
|
|
static int ext_and_cpu_hw_queue_init(struct hl_device *hdev,
|
|
struct hl_hw_queue *q, bool is_cpu_queue)
|
|
{
|
|
void *p;
|
|
int rc;
|
|
|
|
if (is_cpu_queue)
|
|
p = hdev->asic_funcs->cpu_accessible_dma_pool_alloc(hdev,
|
|
HL_QUEUE_SIZE_IN_BYTES,
|
|
&q->bus_address);
|
|
else
|
|
p = hdev->asic_funcs->asic_dma_alloc_coherent(hdev,
|
|
HL_QUEUE_SIZE_IN_BYTES,
|
|
&q->bus_address,
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (!p)
|
|
return -ENOMEM;
|
|
|
|
q->kernel_address = (u64) (uintptr_t) p;
|
|
|
|
q->shadow_queue = kmalloc_array(HL_QUEUE_LENGTH,
|
|
sizeof(*q->shadow_queue),
|
|
GFP_KERNEL);
|
|
if (!q->shadow_queue) {
|
|
dev_err(hdev->dev,
|
|
"Failed to allocate shadow queue for H/W queue %d\n",
|
|
q->hw_queue_id);
|
|
rc = -ENOMEM;
|
|
goto free_queue;
|
|
}
|
|
|
|
/* Make sure read/write pointers are initialized to start of queue */
|
|
q->ci = 0;
|
|
q->pi = 0;
|
|
|
|
return 0;
|
|
|
|
free_queue:
|
|
if (is_cpu_queue)
|
|
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
|
|
HL_QUEUE_SIZE_IN_BYTES,
|
|
(void *) (uintptr_t) q->kernel_address);
|
|
else
|
|
hdev->asic_funcs->asic_dma_free_coherent(hdev,
|
|
HL_QUEUE_SIZE_IN_BYTES,
|
|
(void *) (uintptr_t) q->kernel_address,
|
|
q->bus_address);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static int int_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
|
|
{
|
|
void *p;
|
|
|
|
p = hdev->asic_funcs->get_int_queue_base(hdev, q->hw_queue_id,
|
|
&q->bus_address, &q->int_queue_len);
|
|
if (!p) {
|
|
dev_err(hdev->dev,
|
|
"Failed to get base address for internal queue %d\n",
|
|
q->hw_queue_id);
|
|
return -EFAULT;
|
|
}
|
|
|
|
q->kernel_address = (u64) (uintptr_t) p;
|
|
q->pi = 0;
|
|
q->ci = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cpu_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
|
|
{
|
|
return ext_and_cpu_hw_queue_init(hdev, q, true);
|
|
}
|
|
|
|
static int ext_hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q)
|
|
{
|
|
return ext_and_cpu_hw_queue_init(hdev, q, false);
|
|
}
|
|
|
|
/*
|
|
* hw_queue_init - main initialization function for H/W queue object
|
|
*
|
|
* @hdev: pointer to hl_device device structure
|
|
* @q: pointer to hl_hw_queue queue structure
|
|
* @hw_queue_id: The id of the H/W queue
|
|
*
|
|
* Allocate dma-able memory for the queue and initialize fields
|
|
* Returns 0 on success
|
|
*/
|
|
static int hw_queue_init(struct hl_device *hdev, struct hl_hw_queue *q,
|
|
u32 hw_queue_id)
|
|
{
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(HL_QUEUE_SIZE_IN_BYTES > HL_PAGE_SIZE);
|
|
|
|
q->hw_queue_id = hw_queue_id;
|
|
|
|
switch (q->queue_type) {
|
|
case QUEUE_TYPE_EXT:
|
|
rc = ext_hw_queue_init(hdev, q);
|
|
break;
|
|
|
|
case QUEUE_TYPE_INT:
|
|
rc = int_hw_queue_init(hdev, q);
|
|
break;
|
|
|
|
case QUEUE_TYPE_CPU:
|
|
rc = cpu_hw_queue_init(hdev, q);
|
|
break;
|
|
|
|
case QUEUE_TYPE_NA:
|
|
q->valid = 0;
|
|
return 0;
|
|
|
|
default:
|
|
dev_crit(hdev->dev, "wrong queue type %d during init\n",
|
|
q->queue_type);
|
|
rc = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if (rc)
|
|
return rc;
|
|
|
|
q->valid = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* hw_queue_fini - destroy queue
|
|
*
|
|
* @hdev: pointer to hl_device device structure
|
|
* @q: pointer to hl_hw_queue queue structure
|
|
*
|
|
* Free the queue memory
|
|
*/
|
|
static void hw_queue_fini(struct hl_device *hdev, struct hl_hw_queue *q)
|
|
{
|
|
if (!q->valid)
|
|
return;
|
|
|
|
/*
|
|
* If we arrived here, there are no jobs waiting on this queue
|
|
* so we can safely remove it.
|
|
* This is because this function can only called when:
|
|
* 1. Either a context is deleted, which only can occur if all its
|
|
* jobs were finished
|
|
* 2. A context wasn't able to be created due to failure or timeout,
|
|
* which means there are no jobs on the queue yet
|
|
*
|
|
* The only exception are the queues of the kernel context, but
|
|
* if they are being destroyed, it means that the entire module is
|
|
* being removed. If the module is removed, it means there is no open
|
|
* user context. It also means that if a job was submitted by
|
|
* the kernel driver (e.g. context creation), the job itself was
|
|
* released by the kernel driver when a timeout occurred on its
|
|
* Completion. Thus, we don't need to release it again.
|
|
*/
|
|
|
|
if (q->queue_type == QUEUE_TYPE_INT)
|
|
return;
|
|
|
|
kfree(q->shadow_queue);
|
|
|
|
if (q->queue_type == QUEUE_TYPE_CPU)
|
|
hdev->asic_funcs->cpu_accessible_dma_pool_free(hdev,
|
|
HL_QUEUE_SIZE_IN_BYTES,
|
|
(void *) (uintptr_t) q->kernel_address);
|
|
else
|
|
hdev->asic_funcs->asic_dma_free_coherent(hdev,
|
|
HL_QUEUE_SIZE_IN_BYTES,
|
|
(void *) (uintptr_t) q->kernel_address,
|
|
q->bus_address);
|
|
}
|
|
|
|
int hl_hw_queues_create(struct hl_device *hdev)
|
|
{
|
|
struct asic_fixed_properties *asic = &hdev->asic_prop;
|
|
struct hl_hw_queue *q;
|
|
int i, rc, q_ready_cnt;
|
|
|
|
hdev->kernel_queues = kcalloc(HL_MAX_QUEUES,
|
|
sizeof(*hdev->kernel_queues), GFP_KERNEL);
|
|
|
|
if (!hdev->kernel_queues) {
|
|
dev_err(hdev->dev, "Not enough memory for H/W queues\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Initialize the H/W queues */
|
|
for (i = 0, q_ready_cnt = 0, q = hdev->kernel_queues;
|
|
i < HL_MAX_QUEUES ; i++, q_ready_cnt++, q++) {
|
|
|
|
q->queue_type = asic->hw_queues_props[i].type;
|
|
rc = hw_queue_init(hdev, q, i);
|
|
if (rc) {
|
|
dev_err(hdev->dev,
|
|
"failed to initialize queue %d\n", i);
|
|
goto release_queues;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
release_queues:
|
|
for (i = 0, q = hdev->kernel_queues ; i < q_ready_cnt ; i++, q++)
|
|
hw_queue_fini(hdev, q);
|
|
|
|
kfree(hdev->kernel_queues);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void hl_hw_queues_destroy(struct hl_device *hdev)
|
|
{
|
|
struct hl_hw_queue *q;
|
|
int i;
|
|
|
|
for (i = 0, q = hdev->kernel_queues ; i < HL_MAX_QUEUES ; i++, q++)
|
|
hw_queue_fini(hdev, q);
|
|
|
|
kfree(hdev->kernel_queues);
|
|
}
|
|
|
|
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset)
|
|
{
|
|
struct hl_hw_queue *q;
|
|
int i;
|
|
|
|
for (i = 0, q = hdev->kernel_queues ; i < HL_MAX_QUEUES ; i++, q++) {
|
|
if ((!q->valid) ||
|
|
((!hard_reset) && (q->queue_type == QUEUE_TYPE_CPU)))
|
|
continue;
|
|
q->pi = q->ci = 0;
|
|
}
|
|
}
|