linux_dsm_epyc7002/arch/x86/kernel/espfix_64.c
Zhu Guihua 20d5e4a9cd x86/espfix: Init espfix on the boot CPU side
As we alloc pages with GFP_KERNEL in init_espfix_ap() which is
called before we enable local irqs, so the lockdep sub-system
would (correctly) trigger a warning about the potentially
blocking API.

So we allocate them on the boot CPU side when the secondary CPU is
brought up by the boot CPU, and hand them over to the secondary
CPU.

And we use alloc_pages_node() with the secondary CPU's node, to
make sure the espfix stack is NUMA-local to the CPU that is
going to use it.

Signed-off-by: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Cc: <bp@alien8.de>
Cc: <luto@amacapital.net>
Cc: <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/c97add2670e9abebb90095369f0cfc172373ac94.1435824469.git.zhugh.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-07-06 15:00:34 +02:00

210 lines
6.5 KiB
C

/* ----------------------------------------------------------------------- *
*
* Copyright 2014 Intel Corporation; author: H. Peter Anvin
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* ----------------------------------------------------------------------- */
/*
* The IRET instruction, when returning to a 16-bit segment, only
* restores the bottom 16 bits of the user space stack pointer. This
* causes some 16-bit software to break, but it also leaks kernel state
* to user space.
*
* This works around this by creating percpu "ministacks", each of which
* is mapped 2^16 times 64K apart. When we detect that the return SS is
* on the LDT, we copy the IRET frame to the ministack and use the
* relevant alias to return to userspace. The ministacks are mapped
* readonly, so if the IRET fault we promote #GP to #DF which is an IST
* vector and thus has its own stack; we then do the fixup in the #DF
* handler.
*
* This file sets up the ministacks and the related page tables. The
* actual ministack invocation is in entry_64.S.
*/
#include <linux/init.h>
#include <linux/init_task.h>
#include <linux/kernel.h>
#include <linux/percpu.h>
#include <linux/gfp.h>
#include <linux/random.h>
#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/setup.h>
#include <asm/espfix.h>
/*
* Note: we only need 6*8 = 48 bytes for the espfix stack, but round
* it up to a cache line to avoid unnecessary sharing.
*/
#define ESPFIX_STACK_SIZE (8*8UL)
#define ESPFIX_STACKS_PER_PAGE (PAGE_SIZE/ESPFIX_STACK_SIZE)
/* There is address space for how many espfix pages? */
#define ESPFIX_PAGE_SPACE (1UL << (PGDIR_SHIFT-PAGE_SHIFT-16))
#define ESPFIX_MAX_CPUS (ESPFIX_STACKS_PER_PAGE * ESPFIX_PAGE_SPACE)
#if CONFIG_NR_CPUS > ESPFIX_MAX_CPUS
# error "Need more than one PGD for the ESPFIX hack"
#endif
#define PGALLOC_GFP (GFP_KERNEL | __GFP_NOTRACK | __GFP_REPEAT | __GFP_ZERO)
/* This contains the *bottom* address of the espfix stack */
DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_stack);
DEFINE_PER_CPU_READ_MOSTLY(unsigned long, espfix_waddr);
/* Initialization mutex - should this be a spinlock? */
static DEFINE_MUTEX(espfix_init_mutex);
/* Page allocation bitmap - each page serves ESPFIX_STACKS_PER_PAGE CPUs */
#define ESPFIX_MAX_PAGES DIV_ROUND_UP(CONFIG_NR_CPUS, ESPFIX_STACKS_PER_PAGE)
static void *espfix_pages[ESPFIX_MAX_PAGES];
static __page_aligned_bss pud_t espfix_pud_page[PTRS_PER_PUD]
__aligned(PAGE_SIZE);
static unsigned int page_random, slot_random;
/*
* This returns the bottom address of the espfix stack for a specific CPU.
* The math allows for a non-power-of-two ESPFIX_STACK_SIZE, in which case
* we have to account for some amount of padding at the end of each page.
*/
static inline unsigned long espfix_base_addr(unsigned int cpu)
{
unsigned long page, slot;
unsigned long addr;
page = (cpu / ESPFIX_STACKS_PER_PAGE) ^ page_random;
slot = (cpu + slot_random) % ESPFIX_STACKS_PER_PAGE;
addr = (page << PAGE_SHIFT) + (slot * ESPFIX_STACK_SIZE);
addr = (addr & 0xffffUL) | ((addr & ~0xffffUL) << 16);
addr += ESPFIX_BASE_ADDR;
return addr;
}
#define PTE_STRIDE (65536/PAGE_SIZE)
#define ESPFIX_PTE_CLONES (PTRS_PER_PTE/PTE_STRIDE)
#define ESPFIX_PMD_CLONES PTRS_PER_PMD
#define ESPFIX_PUD_CLONES (65536/(ESPFIX_PTE_CLONES*ESPFIX_PMD_CLONES))
#define PGTABLE_PROT ((_KERNPG_TABLE & ~_PAGE_RW) | _PAGE_NX)
static void init_espfix_random(void)
{
unsigned long rand;
/*
* This is run before the entropy pools are initialized,
* but this is hopefully better than nothing.
*/
if (!arch_get_random_long(&rand)) {
/* The constant is an arbitrary large prime */
rdtscll(rand);
rand *= 0xc345c6b72fd16123UL;
}
slot_random = rand % ESPFIX_STACKS_PER_PAGE;
page_random = (rand / ESPFIX_STACKS_PER_PAGE)
& (ESPFIX_PAGE_SPACE - 1);
}
void __init init_espfix_bsp(void)
{
pgd_t *pgd_p;
/* Install the espfix pud into the kernel page directory */
pgd_p = &init_level4_pgt[pgd_index(ESPFIX_BASE_ADDR)];
pgd_populate(&init_mm, pgd_p, (pud_t *)espfix_pud_page);
/* Randomize the locations */
init_espfix_random();
/* The rest is the same as for any other processor */
init_espfix_ap(0);
}
void init_espfix_ap(int cpu)
{
unsigned int page;
unsigned long addr;
pud_t pud, *pud_p;
pmd_t pmd, *pmd_p;
pte_t pte, *pte_p;
int n, node;
void *stack_page;
pteval_t ptemask;
/* We only have to do this once... */
if (likely(per_cpu(espfix_stack, cpu)))
return; /* Already initialized */
addr = espfix_base_addr(cpu);
page = cpu/ESPFIX_STACKS_PER_PAGE;
/* Did another CPU already set this up? */
stack_page = ACCESS_ONCE(espfix_pages[page]);
if (likely(stack_page))
goto done;
mutex_lock(&espfix_init_mutex);
/* Did we race on the lock? */
stack_page = ACCESS_ONCE(espfix_pages[page]);
if (stack_page)
goto unlock_done;
node = cpu_to_node(cpu);
ptemask = __supported_pte_mask;
pud_p = &espfix_pud_page[pud_index(addr)];
pud = *pud_p;
if (!pud_present(pud)) {
struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
pmd_p = (pmd_t *)page_address(page);
pud = __pud(__pa(pmd_p) | (PGTABLE_PROT & ptemask));
paravirt_alloc_pmd(&init_mm, __pa(pmd_p) >> PAGE_SHIFT);
for (n = 0; n < ESPFIX_PUD_CLONES; n++)
set_pud(&pud_p[n], pud);
}
pmd_p = pmd_offset(&pud, addr);
pmd = *pmd_p;
if (!pmd_present(pmd)) {
struct page *page = alloc_pages_node(node, PGALLOC_GFP, 0);
pte_p = (pte_t *)page_address(page);
pmd = __pmd(__pa(pte_p) | (PGTABLE_PROT & ptemask));
paravirt_alloc_pte(&init_mm, __pa(pte_p) >> PAGE_SHIFT);
for (n = 0; n < ESPFIX_PMD_CLONES; n++)
set_pmd(&pmd_p[n], pmd);
}
pte_p = pte_offset_kernel(&pmd, addr);
stack_page = page_address(alloc_pages_node(node, GFP_KERNEL, 0));
pte = __pte(__pa(stack_page) | (__PAGE_KERNEL_RO & ptemask));
for (n = 0; n < ESPFIX_PTE_CLONES; n++)
set_pte(&pte_p[n*PTE_STRIDE], pte);
/* Job is done for this CPU and any CPU which shares this page */
ACCESS_ONCE(espfix_pages[page]) = stack_page;
unlock_done:
mutex_unlock(&espfix_init_mutex);
done:
per_cpu(espfix_stack, cpu) = addr;
per_cpu(espfix_waddr, cpu) = (unsigned long)stack_page
+ (addr & ~PAGE_MASK);
}