mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 01:24:47 +07:00
85190d15f4
pipe_wait() may be simple, but since it relies on the pipe lock, it means that we have to do the wakeup while holding the lock. That's unfortunate, because the very first thing the waked entity will want to do is to get the pipe lock for itself. So get rid of the pipe_wait() usage by simply releasing the pipe lock, doing the wakeup (if required) and then using wait_event_interruptible() to wait on the right condition instead. wait_event_interruptible() handles races on its own by comparing the wakeup condition before and after adding itself to the wait queue, so you can use an optimistic unlocked condition for it. Cc: David Howells <dhowells@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1320 lines
31 KiB
C
1320 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* linux/fs/pipe.c
|
|
*
|
|
* Copyright (C) 1991, 1992, 1999 Linus Torvalds
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/file.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/module.h>
|
|
#include <linux/init.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/log2.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/pseudo_fs.h>
|
|
#include <linux/magic.h>
|
|
#include <linux/pipe_fs_i.h>
|
|
#include <linux/uio.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/audit.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/fcntl.h>
|
|
#include <linux/memcontrol.h>
|
|
|
|
#include <linux/uaccess.h>
|
|
#include <asm/ioctls.h>
|
|
|
|
#include "internal.h"
|
|
|
|
/*
|
|
* The max size that a non-root user is allowed to grow the pipe. Can
|
|
* be set by root in /proc/sys/fs/pipe-max-size
|
|
*/
|
|
unsigned int pipe_max_size = 1048576;
|
|
|
|
/* Maximum allocatable pages per user. Hard limit is unset by default, soft
|
|
* matches default values.
|
|
*/
|
|
unsigned long pipe_user_pages_hard;
|
|
unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
|
|
|
|
/*
|
|
* We use head and tail indices that aren't masked off, except at the point of
|
|
* dereference, but rather they're allowed to wrap naturally. This means there
|
|
* isn't a dead spot in the buffer, but the ring has to be a power of two and
|
|
* <= 2^31.
|
|
* -- David Howells 2019-09-23.
|
|
*
|
|
* Reads with count = 0 should always return 0.
|
|
* -- Julian Bradfield 1999-06-07.
|
|
*
|
|
* FIFOs and Pipes now generate SIGIO for both readers and writers.
|
|
* -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
|
|
*
|
|
* pipe_read & write cleanup
|
|
* -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
|
|
*/
|
|
|
|
static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
|
|
{
|
|
if (pipe->files)
|
|
mutex_lock_nested(&pipe->mutex, subclass);
|
|
}
|
|
|
|
void pipe_lock(struct pipe_inode_info *pipe)
|
|
{
|
|
/*
|
|
* pipe_lock() nests non-pipe inode locks (for writing to a file)
|
|
*/
|
|
pipe_lock_nested(pipe, I_MUTEX_PARENT);
|
|
}
|
|
EXPORT_SYMBOL(pipe_lock);
|
|
|
|
void pipe_unlock(struct pipe_inode_info *pipe)
|
|
{
|
|
if (pipe->files)
|
|
mutex_unlock(&pipe->mutex);
|
|
}
|
|
EXPORT_SYMBOL(pipe_unlock);
|
|
|
|
static inline void __pipe_lock(struct pipe_inode_info *pipe)
|
|
{
|
|
mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
|
|
}
|
|
|
|
static inline void __pipe_unlock(struct pipe_inode_info *pipe)
|
|
{
|
|
mutex_unlock(&pipe->mutex);
|
|
}
|
|
|
|
void pipe_double_lock(struct pipe_inode_info *pipe1,
|
|
struct pipe_inode_info *pipe2)
|
|
{
|
|
BUG_ON(pipe1 == pipe2);
|
|
|
|
if (pipe1 < pipe2) {
|
|
pipe_lock_nested(pipe1, I_MUTEX_PARENT);
|
|
pipe_lock_nested(pipe2, I_MUTEX_CHILD);
|
|
} else {
|
|
pipe_lock_nested(pipe2, I_MUTEX_PARENT);
|
|
pipe_lock_nested(pipe1, I_MUTEX_CHILD);
|
|
}
|
|
}
|
|
|
|
/* Drop the inode semaphore and wait for a pipe event, atomically */
|
|
void pipe_wait(struct pipe_inode_info *pipe)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
/*
|
|
* Pipes are system-local resources, so sleeping on them
|
|
* is considered a noninteractive wait:
|
|
*/
|
|
prepare_to_wait(&pipe->wait, &wait, TASK_INTERRUPTIBLE);
|
|
pipe_unlock(pipe);
|
|
schedule();
|
|
finish_wait(&pipe->wait, &wait);
|
|
pipe_lock(pipe);
|
|
}
|
|
|
|
static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
struct page *page = buf->page;
|
|
|
|
/*
|
|
* If nobody else uses this page, and we don't already have a
|
|
* temporary page, let's keep track of it as a one-deep
|
|
* allocation cache. (Otherwise just release our reference to it)
|
|
*/
|
|
if (page_count(page) == 1 && !pipe->tmp_page)
|
|
pipe->tmp_page = page;
|
|
else
|
|
put_page(page);
|
|
}
|
|
|
|
static int anon_pipe_buf_steal(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
struct page *page = buf->page;
|
|
|
|
if (page_count(page) == 1) {
|
|
memcg_kmem_uncharge(page, 0);
|
|
__SetPageLocked(page);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* generic_pipe_buf_steal - attempt to take ownership of a &pipe_buffer
|
|
* @pipe: the pipe that the buffer belongs to
|
|
* @buf: the buffer to attempt to steal
|
|
*
|
|
* Description:
|
|
* This function attempts to steal the &struct page attached to
|
|
* @buf. If successful, this function returns 0 and returns with
|
|
* the page locked. The caller may then reuse the page for whatever
|
|
* he wishes; the typical use is insertion into a different file
|
|
* page cache.
|
|
*/
|
|
int generic_pipe_buf_steal(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
struct page *page = buf->page;
|
|
|
|
/*
|
|
* A reference of one is golden, that means that the owner of this
|
|
* page is the only one holding a reference to it. lock the page
|
|
* and return OK.
|
|
*/
|
|
if (page_count(page) == 1) {
|
|
lock_page(page);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
EXPORT_SYMBOL(generic_pipe_buf_steal);
|
|
|
|
/**
|
|
* generic_pipe_buf_get - get a reference to a &struct pipe_buffer
|
|
* @pipe: the pipe that the buffer belongs to
|
|
* @buf: the buffer to get a reference to
|
|
*
|
|
* Description:
|
|
* This function grabs an extra reference to @buf. It's used in
|
|
* in the tee() system call, when we duplicate the buffers in one
|
|
* pipe into another.
|
|
*/
|
|
bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
|
|
{
|
|
return try_get_page(buf->page);
|
|
}
|
|
EXPORT_SYMBOL(generic_pipe_buf_get);
|
|
|
|
/**
|
|
* generic_pipe_buf_confirm - verify contents of the pipe buffer
|
|
* @info: the pipe that the buffer belongs to
|
|
* @buf: the buffer to confirm
|
|
*
|
|
* Description:
|
|
* This function does nothing, because the generic pipe code uses
|
|
* pages that are always good when inserted into the pipe.
|
|
*/
|
|
int generic_pipe_buf_confirm(struct pipe_inode_info *info,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(generic_pipe_buf_confirm);
|
|
|
|
/**
|
|
* generic_pipe_buf_release - put a reference to a &struct pipe_buffer
|
|
* @pipe: the pipe that the buffer belongs to
|
|
* @buf: the buffer to put a reference to
|
|
*
|
|
* Description:
|
|
* This function releases a reference to @buf.
|
|
*/
|
|
void generic_pipe_buf_release(struct pipe_inode_info *pipe,
|
|
struct pipe_buffer *buf)
|
|
{
|
|
put_page(buf->page);
|
|
}
|
|
EXPORT_SYMBOL(generic_pipe_buf_release);
|
|
|
|
/* New data written to a pipe may be appended to a buffer with this type. */
|
|
static const struct pipe_buf_operations anon_pipe_buf_ops = {
|
|
.confirm = generic_pipe_buf_confirm,
|
|
.release = anon_pipe_buf_release,
|
|
.steal = anon_pipe_buf_steal,
|
|
.get = generic_pipe_buf_get,
|
|
};
|
|
|
|
static const struct pipe_buf_operations anon_pipe_buf_nomerge_ops = {
|
|
.confirm = generic_pipe_buf_confirm,
|
|
.release = anon_pipe_buf_release,
|
|
.steal = anon_pipe_buf_steal,
|
|
.get = generic_pipe_buf_get,
|
|
};
|
|
|
|
static const struct pipe_buf_operations packet_pipe_buf_ops = {
|
|
.confirm = generic_pipe_buf_confirm,
|
|
.release = anon_pipe_buf_release,
|
|
.steal = anon_pipe_buf_steal,
|
|
.get = generic_pipe_buf_get,
|
|
};
|
|
|
|
/**
|
|
* pipe_buf_mark_unmergeable - mark a &struct pipe_buffer as unmergeable
|
|
* @buf: the buffer to mark
|
|
*
|
|
* Description:
|
|
* This function ensures that no future writes will be merged into the
|
|
* given &struct pipe_buffer. This is necessary when multiple pipe buffers
|
|
* share the same backing page.
|
|
*/
|
|
void pipe_buf_mark_unmergeable(struct pipe_buffer *buf)
|
|
{
|
|
if (buf->ops == &anon_pipe_buf_ops)
|
|
buf->ops = &anon_pipe_buf_nomerge_ops;
|
|
}
|
|
|
|
static bool pipe_buf_can_merge(struct pipe_buffer *buf)
|
|
{
|
|
return buf->ops == &anon_pipe_buf_ops;
|
|
}
|
|
|
|
/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
|
|
static inline bool pipe_readable(const struct pipe_inode_info *pipe)
|
|
{
|
|
unsigned int head = READ_ONCE(pipe->head);
|
|
unsigned int tail = READ_ONCE(pipe->tail);
|
|
unsigned int writers = READ_ONCE(pipe->writers);
|
|
|
|
return !pipe_empty(head, tail) || !writers;
|
|
}
|
|
|
|
static ssize_t
|
|
pipe_read(struct kiocb *iocb, struct iov_iter *to)
|
|
{
|
|
size_t total_len = iov_iter_count(to);
|
|
struct file *filp = iocb->ki_filp;
|
|
struct pipe_inode_info *pipe = filp->private_data;
|
|
bool was_full;
|
|
ssize_t ret;
|
|
|
|
/* Null read succeeds. */
|
|
if (unlikely(total_len == 0))
|
|
return 0;
|
|
|
|
ret = 0;
|
|
__pipe_lock(pipe);
|
|
|
|
/*
|
|
* We only wake up writers if the pipe was full when we started
|
|
* reading in order to avoid unnecessary wakeups.
|
|
*
|
|
* But when we do wake up writers, we do so using a sync wakeup
|
|
* (WF_SYNC), because we want them to get going and generate more
|
|
* data for us.
|
|
*/
|
|
was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
|
|
for (;;) {
|
|
unsigned int head = pipe->head;
|
|
unsigned int tail = pipe->tail;
|
|
unsigned int mask = pipe->ring_size - 1;
|
|
|
|
if (!pipe_empty(head, tail)) {
|
|
struct pipe_buffer *buf = &pipe->bufs[tail & mask];
|
|
size_t chars = buf->len;
|
|
size_t written;
|
|
int error;
|
|
|
|
if (chars > total_len)
|
|
chars = total_len;
|
|
|
|
error = pipe_buf_confirm(pipe, buf);
|
|
if (error) {
|
|
if (!ret)
|
|
ret = error;
|
|
break;
|
|
}
|
|
|
|
written = copy_page_to_iter(buf->page, buf->offset, chars, to);
|
|
if (unlikely(written < chars)) {
|
|
if (!ret)
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
ret += chars;
|
|
buf->offset += chars;
|
|
buf->len -= chars;
|
|
|
|
/* Was it a packet buffer? Clean up and exit */
|
|
if (buf->flags & PIPE_BUF_FLAG_PACKET) {
|
|
total_len = chars;
|
|
buf->len = 0;
|
|
}
|
|
|
|
if (!buf->len) {
|
|
pipe_buf_release(pipe, buf);
|
|
spin_lock_irq(&pipe->wait.lock);
|
|
tail++;
|
|
pipe->tail = tail;
|
|
spin_unlock_irq(&pipe->wait.lock);
|
|
}
|
|
total_len -= chars;
|
|
if (!total_len)
|
|
break; /* common path: read succeeded */
|
|
if (!pipe_empty(head, tail)) /* More to do? */
|
|
continue;
|
|
}
|
|
|
|
if (!pipe->writers)
|
|
break;
|
|
if (ret)
|
|
break;
|
|
if (filp->f_flags & O_NONBLOCK) {
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
if (signal_pending(current)) {
|
|
if (!ret)
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
__pipe_unlock(pipe);
|
|
if (was_full) {
|
|
wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
|
|
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
|
|
}
|
|
wait_event_interruptible(pipe->wait, pipe_readable(pipe));
|
|
__pipe_lock(pipe);
|
|
was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
|
|
}
|
|
__pipe_unlock(pipe);
|
|
|
|
if (was_full) {
|
|
wake_up_interruptible_sync_poll(&pipe->wait, EPOLLOUT | EPOLLWRNORM);
|
|
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
|
|
}
|
|
if (ret > 0)
|
|
file_accessed(filp);
|
|
return ret;
|
|
}
|
|
|
|
static inline int is_packetized(struct file *file)
|
|
{
|
|
return (file->f_flags & O_DIRECT) != 0;
|
|
}
|
|
|
|
/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
|
|
static inline bool pipe_writable(const struct pipe_inode_info *pipe)
|
|
{
|
|
unsigned int head = READ_ONCE(pipe->head);
|
|
unsigned int tail = READ_ONCE(pipe->tail);
|
|
unsigned int max_usage = READ_ONCE(pipe->max_usage);
|
|
|
|
return !pipe_full(head, tail, max_usage) ||
|
|
!READ_ONCE(pipe->readers);
|
|
}
|
|
|
|
static ssize_t
|
|
pipe_write(struct kiocb *iocb, struct iov_iter *from)
|
|
{
|
|
struct file *filp = iocb->ki_filp;
|
|
struct pipe_inode_info *pipe = filp->private_data;
|
|
unsigned int head;
|
|
ssize_t ret = 0;
|
|
size_t total_len = iov_iter_count(from);
|
|
ssize_t chars;
|
|
bool was_empty = false;
|
|
|
|
/* Null write succeeds. */
|
|
if (unlikely(total_len == 0))
|
|
return 0;
|
|
|
|
__pipe_lock(pipe);
|
|
|
|
if (!pipe->readers) {
|
|
send_sig(SIGPIPE, current, 0);
|
|
ret = -EPIPE;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Only wake up if the pipe started out empty, since
|
|
* otherwise there should be no readers waiting.
|
|
*
|
|
* If it wasn't empty we try to merge new data into
|
|
* the last buffer.
|
|
*
|
|
* That naturally merges small writes, but it also
|
|
* page-aligs the rest of the writes for large writes
|
|
* spanning multiple pages.
|
|
*/
|
|
head = pipe->head;
|
|
was_empty = pipe_empty(head, pipe->tail);
|
|
chars = total_len & (PAGE_SIZE-1);
|
|
if (chars && !was_empty) {
|
|
unsigned int mask = pipe->ring_size - 1;
|
|
struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
|
|
int offset = buf->offset + buf->len;
|
|
|
|
if (pipe_buf_can_merge(buf) && offset + chars <= PAGE_SIZE) {
|
|
ret = pipe_buf_confirm(pipe, buf);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = copy_page_from_iter(buf->page, offset, chars, from);
|
|
if (unlikely(ret < chars)) {
|
|
ret = -EFAULT;
|
|
goto out;
|
|
}
|
|
|
|
buf->len += ret;
|
|
if (!iov_iter_count(from))
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
if (!pipe->readers) {
|
|
send_sig(SIGPIPE, current, 0);
|
|
if (!ret)
|
|
ret = -EPIPE;
|
|
break;
|
|
}
|
|
|
|
head = pipe->head;
|
|
if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
|
|
unsigned int mask = pipe->ring_size - 1;
|
|
struct pipe_buffer *buf = &pipe->bufs[head & mask];
|
|
struct page *page = pipe->tmp_page;
|
|
int copied;
|
|
|
|
if (!page) {
|
|
page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
|
|
if (unlikely(!page)) {
|
|
ret = ret ? : -ENOMEM;
|
|
break;
|
|
}
|
|
pipe->tmp_page = page;
|
|
}
|
|
|
|
/* Allocate a slot in the ring in advance and attach an
|
|
* empty buffer. If we fault or otherwise fail to use
|
|
* it, either the reader will consume it or it'll still
|
|
* be there for the next write.
|
|
*/
|
|
spin_lock_irq(&pipe->wait.lock);
|
|
|
|
head = pipe->head;
|
|
if (pipe_full(head, pipe->tail, pipe->max_usage)) {
|
|
spin_unlock_irq(&pipe->wait.lock);
|
|
continue;
|
|
}
|
|
|
|
pipe->head = head + 1;
|
|
spin_unlock_irq(&pipe->wait.lock);
|
|
|
|
/* Insert it into the buffer array */
|
|
buf = &pipe->bufs[head & mask];
|
|
buf->page = page;
|
|
buf->ops = &anon_pipe_buf_ops;
|
|
buf->offset = 0;
|
|
buf->len = 0;
|
|
buf->flags = 0;
|
|
if (is_packetized(filp)) {
|
|
buf->ops = &packet_pipe_buf_ops;
|
|
buf->flags = PIPE_BUF_FLAG_PACKET;
|
|
}
|
|
pipe->tmp_page = NULL;
|
|
|
|
copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
|
|
if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
|
|
if (!ret)
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
ret += copied;
|
|
buf->offset = 0;
|
|
buf->len = copied;
|
|
|
|
if (!iov_iter_count(from))
|
|
break;
|
|
}
|
|
|
|
if (!pipe_full(head, pipe->tail, pipe->max_usage))
|
|
continue;
|
|
|
|
/* Wait for buffer space to become available. */
|
|
if (filp->f_flags & O_NONBLOCK) {
|
|
if (!ret)
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
if (signal_pending(current)) {
|
|
if (!ret)
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* We're going to release the pipe lock and wait for more
|
|
* space. We wake up any readers if necessary, and then
|
|
* after waiting we need to re-check whether the pipe
|
|
* become empty while we dropped the lock.
|
|
*/
|
|
__pipe_unlock(pipe);
|
|
if (was_empty) {
|
|
wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
|
|
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
|
|
}
|
|
wait_event_interruptible(pipe->wait, pipe_writable(pipe));
|
|
__pipe_lock(pipe);
|
|
was_empty = pipe_empty(head, pipe->tail);
|
|
}
|
|
out:
|
|
__pipe_unlock(pipe);
|
|
|
|
/*
|
|
* If we do do a wakeup event, we do a 'sync' wakeup, because we
|
|
* want the reader to start processing things asap, rather than
|
|
* leave the data pending.
|
|
*
|
|
* This is particularly important for small writes, because of
|
|
* how (for example) the GNU make jobserver uses small writes to
|
|
* wake up pending jobs
|
|
*/
|
|
if (was_empty) {
|
|
wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLRDNORM);
|
|
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
|
|
}
|
|
if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
|
|
int err = file_update_time(filp);
|
|
if (err)
|
|
ret = err;
|
|
sb_end_write(file_inode(filp)->i_sb);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct pipe_inode_info *pipe = filp->private_data;
|
|
int count, head, tail, mask;
|
|
|
|
switch (cmd) {
|
|
case FIONREAD:
|
|
__pipe_lock(pipe);
|
|
count = 0;
|
|
head = pipe->head;
|
|
tail = pipe->tail;
|
|
mask = pipe->ring_size - 1;
|
|
|
|
while (tail != head) {
|
|
count += pipe->bufs[tail & mask].len;
|
|
tail++;
|
|
}
|
|
__pipe_unlock(pipe);
|
|
|
|
return put_user(count, (int __user *)arg);
|
|
default:
|
|
return -ENOIOCTLCMD;
|
|
}
|
|
}
|
|
|
|
/* No kernel lock held - fine */
|
|
static __poll_t
|
|
pipe_poll(struct file *filp, poll_table *wait)
|
|
{
|
|
__poll_t mask;
|
|
struct pipe_inode_info *pipe = filp->private_data;
|
|
unsigned int head, tail;
|
|
|
|
/*
|
|
* Reading only -- no need for acquiring the semaphore.
|
|
*
|
|
* But because this is racy, the code has to add the
|
|
* entry to the poll table _first_ ..
|
|
*/
|
|
poll_wait(filp, &pipe->wait, wait);
|
|
|
|
/*
|
|
* .. and only then can you do the racy tests. That way,
|
|
* if something changes and you got it wrong, the poll
|
|
* table entry will wake you up and fix it.
|
|
*/
|
|
head = READ_ONCE(pipe->head);
|
|
tail = READ_ONCE(pipe->tail);
|
|
|
|
mask = 0;
|
|
if (filp->f_mode & FMODE_READ) {
|
|
if (!pipe_empty(head, tail))
|
|
mask |= EPOLLIN | EPOLLRDNORM;
|
|
if (!pipe->writers && filp->f_version != pipe->w_counter)
|
|
mask |= EPOLLHUP;
|
|
}
|
|
|
|
if (filp->f_mode & FMODE_WRITE) {
|
|
if (!pipe_full(head, tail, pipe->max_usage))
|
|
mask |= EPOLLOUT | EPOLLWRNORM;
|
|
/*
|
|
* Most Unices do not set EPOLLERR for FIFOs but on Linux they
|
|
* behave exactly like pipes for poll().
|
|
*/
|
|
if (!pipe->readers)
|
|
mask |= EPOLLERR;
|
|
}
|
|
|
|
return mask;
|
|
}
|
|
|
|
static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
|
|
{
|
|
int kill = 0;
|
|
|
|
spin_lock(&inode->i_lock);
|
|
if (!--pipe->files) {
|
|
inode->i_pipe = NULL;
|
|
kill = 1;
|
|
}
|
|
spin_unlock(&inode->i_lock);
|
|
|
|
if (kill)
|
|
free_pipe_info(pipe);
|
|
}
|
|
|
|
static int
|
|
pipe_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct pipe_inode_info *pipe = file->private_data;
|
|
|
|
__pipe_lock(pipe);
|
|
if (file->f_mode & FMODE_READ)
|
|
pipe->readers--;
|
|
if (file->f_mode & FMODE_WRITE)
|
|
pipe->writers--;
|
|
|
|
if (pipe->readers || pipe->writers) {
|
|
wake_up_interruptible_sync_poll(&pipe->wait, EPOLLIN | EPOLLOUT | EPOLLRDNORM | EPOLLWRNORM | EPOLLERR | EPOLLHUP);
|
|
kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
|
|
kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
|
|
}
|
|
__pipe_unlock(pipe);
|
|
|
|
put_pipe_info(inode, pipe);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
pipe_fasync(int fd, struct file *filp, int on)
|
|
{
|
|
struct pipe_inode_info *pipe = filp->private_data;
|
|
int retval = 0;
|
|
|
|
__pipe_lock(pipe);
|
|
if (filp->f_mode & FMODE_READ)
|
|
retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
|
|
if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
|
|
retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
|
|
if (retval < 0 && (filp->f_mode & FMODE_READ))
|
|
/* this can happen only if on == T */
|
|
fasync_helper(-1, filp, 0, &pipe->fasync_readers);
|
|
}
|
|
__pipe_unlock(pipe);
|
|
return retval;
|
|
}
|
|
|
|
static unsigned long account_pipe_buffers(struct user_struct *user,
|
|
unsigned long old, unsigned long new)
|
|
{
|
|
return atomic_long_add_return(new - old, &user->pipe_bufs);
|
|
}
|
|
|
|
static bool too_many_pipe_buffers_soft(unsigned long user_bufs)
|
|
{
|
|
unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
|
|
|
|
return soft_limit && user_bufs > soft_limit;
|
|
}
|
|
|
|
static bool too_many_pipe_buffers_hard(unsigned long user_bufs)
|
|
{
|
|
unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
|
|
|
|
return hard_limit && user_bufs > hard_limit;
|
|
}
|
|
|
|
static bool is_unprivileged_user(void)
|
|
{
|
|
return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
|
|
}
|
|
|
|
struct pipe_inode_info *alloc_pipe_info(void)
|
|
{
|
|
struct pipe_inode_info *pipe;
|
|
unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
|
|
struct user_struct *user = get_current_user();
|
|
unsigned long user_bufs;
|
|
unsigned int max_size = READ_ONCE(pipe_max_size);
|
|
|
|
pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
|
|
if (pipe == NULL)
|
|
goto out_free_uid;
|
|
|
|
if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
|
|
pipe_bufs = max_size >> PAGE_SHIFT;
|
|
|
|
user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
|
|
|
|
if (too_many_pipe_buffers_soft(user_bufs) && is_unprivileged_user()) {
|
|
user_bufs = account_pipe_buffers(user, pipe_bufs, 1);
|
|
pipe_bufs = 1;
|
|
}
|
|
|
|
if (too_many_pipe_buffers_hard(user_bufs) && is_unprivileged_user())
|
|
goto out_revert_acct;
|
|
|
|
pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
|
|
GFP_KERNEL_ACCOUNT);
|
|
|
|
if (pipe->bufs) {
|
|
init_waitqueue_head(&pipe->wait);
|
|
pipe->r_counter = pipe->w_counter = 1;
|
|
pipe->max_usage = pipe_bufs;
|
|
pipe->ring_size = pipe_bufs;
|
|
pipe->user = user;
|
|
mutex_init(&pipe->mutex);
|
|
return pipe;
|
|
}
|
|
|
|
out_revert_acct:
|
|
(void) account_pipe_buffers(user, pipe_bufs, 0);
|
|
kfree(pipe);
|
|
out_free_uid:
|
|
free_uid(user);
|
|
return NULL;
|
|
}
|
|
|
|
void free_pipe_info(struct pipe_inode_info *pipe)
|
|
{
|
|
int i;
|
|
|
|
(void) account_pipe_buffers(pipe->user, pipe->ring_size, 0);
|
|
free_uid(pipe->user);
|
|
for (i = 0; i < pipe->ring_size; i++) {
|
|
struct pipe_buffer *buf = pipe->bufs + i;
|
|
if (buf->ops)
|
|
pipe_buf_release(pipe, buf);
|
|
}
|
|
if (pipe->tmp_page)
|
|
__free_page(pipe->tmp_page);
|
|
kfree(pipe->bufs);
|
|
kfree(pipe);
|
|
}
|
|
|
|
static struct vfsmount *pipe_mnt __read_mostly;
|
|
|
|
/*
|
|
* pipefs_dname() is called from d_path().
|
|
*/
|
|
static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
|
|
{
|
|
return dynamic_dname(dentry, buffer, buflen, "pipe:[%lu]",
|
|
d_inode(dentry)->i_ino);
|
|
}
|
|
|
|
static const struct dentry_operations pipefs_dentry_operations = {
|
|
.d_dname = pipefs_dname,
|
|
};
|
|
|
|
static struct inode * get_pipe_inode(void)
|
|
{
|
|
struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
|
|
struct pipe_inode_info *pipe;
|
|
|
|
if (!inode)
|
|
goto fail_inode;
|
|
|
|
inode->i_ino = get_next_ino();
|
|
|
|
pipe = alloc_pipe_info();
|
|
if (!pipe)
|
|
goto fail_iput;
|
|
|
|
inode->i_pipe = pipe;
|
|
pipe->files = 2;
|
|
pipe->readers = pipe->writers = 1;
|
|
inode->i_fop = &pipefifo_fops;
|
|
|
|
/*
|
|
* Mark the inode dirty from the very beginning,
|
|
* that way it will never be moved to the dirty
|
|
* list because "mark_inode_dirty()" will think
|
|
* that it already _is_ on the dirty list.
|
|
*/
|
|
inode->i_state = I_DIRTY;
|
|
inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
|
|
inode->i_uid = current_fsuid();
|
|
inode->i_gid = current_fsgid();
|
|
inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
|
|
|
|
return inode;
|
|
|
|
fail_iput:
|
|
iput(inode);
|
|
|
|
fail_inode:
|
|
return NULL;
|
|
}
|
|
|
|
int create_pipe_files(struct file **res, int flags)
|
|
{
|
|
struct inode *inode = get_pipe_inode();
|
|
struct file *f;
|
|
|
|
if (!inode)
|
|
return -ENFILE;
|
|
|
|
f = alloc_file_pseudo(inode, pipe_mnt, "",
|
|
O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
|
|
&pipefifo_fops);
|
|
if (IS_ERR(f)) {
|
|
free_pipe_info(inode->i_pipe);
|
|
iput(inode);
|
|
return PTR_ERR(f);
|
|
}
|
|
|
|
f->private_data = inode->i_pipe;
|
|
|
|
res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
|
|
&pipefifo_fops);
|
|
if (IS_ERR(res[0])) {
|
|
put_pipe_info(inode, inode->i_pipe);
|
|
fput(f);
|
|
return PTR_ERR(res[0]);
|
|
}
|
|
res[0]->private_data = inode->i_pipe;
|
|
res[1] = f;
|
|
stream_open(inode, res[0]);
|
|
stream_open(inode, res[1]);
|
|
return 0;
|
|
}
|
|
|
|
static int __do_pipe_flags(int *fd, struct file **files, int flags)
|
|
{
|
|
int error;
|
|
int fdw, fdr;
|
|
|
|
if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT))
|
|
return -EINVAL;
|
|
|
|
error = create_pipe_files(files, flags);
|
|
if (error)
|
|
return error;
|
|
|
|
error = get_unused_fd_flags(flags);
|
|
if (error < 0)
|
|
goto err_read_pipe;
|
|
fdr = error;
|
|
|
|
error = get_unused_fd_flags(flags);
|
|
if (error < 0)
|
|
goto err_fdr;
|
|
fdw = error;
|
|
|
|
audit_fd_pair(fdr, fdw);
|
|
fd[0] = fdr;
|
|
fd[1] = fdw;
|
|
return 0;
|
|
|
|
err_fdr:
|
|
put_unused_fd(fdr);
|
|
err_read_pipe:
|
|
fput(files[0]);
|
|
fput(files[1]);
|
|
return error;
|
|
}
|
|
|
|
int do_pipe_flags(int *fd, int flags)
|
|
{
|
|
struct file *files[2];
|
|
int error = __do_pipe_flags(fd, files, flags);
|
|
if (!error) {
|
|
fd_install(fd[0], files[0]);
|
|
fd_install(fd[1], files[1]);
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* sys_pipe() is the normal C calling standard for creating
|
|
* a pipe. It's not the way Unix traditionally does this, though.
|
|
*/
|
|
static int do_pipe2(int __user *fildes, int flags)
|
|
{
|
|
struct file *files[2];
|
|
int fd[2];
|
|
int error;
|
|
|
|
error = __do_pipe_flags(fd, files, flags);
|
|
if (!error) {
|
|
if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
|
|
fput(files[0]);
|
|
fput(files[1]);
|
|
put_unused_fd(fd[0]);
|
|
put_unused_fd(fd[1]);
|
|
error = -EFAULT;
|
|
} else {
|
|
fd_install(fd[0], files[0]);
|
|
fd_install(fd[1], files[1]);
|
|
}
|
|
}
|
|
return error;
|
|
}
|
|
|
|
SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
|
|
{
|
|
return do_pipe2(fildes, flags);
|
|
}
|
|
|
|
SYSCALL_DEFINE1(pipe, int __user *, fildes)
|
|
{
|
|
return do_pipe2(fildes, 0);
|
|
}
|
|
|
|
static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
|
|
{
|
|
int cur = *cnt;
|
|
|
|
while (cur == *cnt) {
|
|
pipe_wait(pipe);
|
|
if (signal_pending(current))
|
|
break;
|
|
}
|
|
return cur == *cnt ? -ERESTARTSYS : 0;
|
|
}
|
|
|
|
static void wake_up_partner(struct pipe_inode_info *pipe)
|
|
{
|
|
wake_up_interruptible(&pipe->wait);
|
|
}
|
|
|
|
static int fifo_open(struct inode *inode, struct file *filp)
|
|
{
|
|
struct pipe_inode_info *pipe;
|
|
bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
|
|
int ret;
|
|
|
|
filp->f_version = 0;
|
|
|
|
spin_lock(&inode->i_lock);
|
|
if (inode->i_pipe) {
|
|
pipe = inode->i_pipe;
|
|
pipe->files++;
|
|
spin_unlock(&inode->i_lock);
|
|
} else {
|
|
spin_unlock(&inode->i_lock);
|
|
pipe = alloc_pipe_info();
|
|
if (!pipe)
|
|
return -ENOMEM;
|
|
pipe->files = 1;
|
|
spin_lock(&inode->i_lock);
|
|
if (unlikely(inode->i_pipe)) {
|
|
inode->i_pipe->files++;
|
|
spin_unlock(&inode->i_lock);
|
|
free_pipe_info(pipe);
|
|
pipe = inode->i_pipe;
|
|
} else {
|
|
inode->i_pipe = pipe;
|
|
spin_unlock(&inode->i_lock);
|
|
}
|
|
}
|
|
filp->private_data = pipe;
|
|
/* OK, we have a pipe and it's pinned down */
|
|
|
|
__pipe_lock(pipe);
|
|
|
|
/* We can only do regular read/write on fifos */
|
|
stream_open(inode, filp);
|
|
|
|
switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
|
|
case FMODE_READ:
|
|
/*
|
|
* O_RDONLY
|
|
* POSIX.1 says that O_NONBLOCK means return with the FIFO
|
|
* opened, even when there is no process writing the FIFO.
|
|
*/
|
|
pipe->r_counter++;
|
|
if (pipe->readers++ == 0)
|
|
wake_up_partner(pipe);
|
|
|
|
if (!is_pipe && !pipe->writers) {
|
|
if ((filp->f_flags & O_NONBLOCK)) {
|
|
/* suppress EPOLLHUP until we have
|
|
* seen a writer */
|
|
filp->f_version = pipe->w_counter;
|
|
} else {
|
|
if (wait_for_partner(pipe, &pipe->w_counter))
|
|
goto err_rd;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case FMODE_WRITE:
|
|
/*
|
|
* O_WRONLY
|
|
* POSIX.1 says that O_NONBLOCK means return -1 with
|
|
* errno=ENXIO when there is no process reading the FIFO.
|
|
*/
|
|
ret = -ENXIO;
|
|
if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
|
|
goto err;
|
|
|
|
pipe->w_counter++;
|
|
if (!pipe->writers++)
|
|
wake_up_partner(pipe);
|
|
|
|
if (!is_pipe && !pipe->readers) {
|
|
if (wait_for_partner(pipe, &pipe->r_counter))
|
|
goto err_wr;
|
|
}
|
|
break;
|
|
|
|
case FMODE_READ | FMODE_WRITE:
|
|
/*
|
|
* O_RDWR
|
|
* POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
|
|
* This implementation will NEVER block on a O_RDWR open, since
|
|
* the process can at least talk to itself.
|
|
*/
|
|
|
|
pipe->readers++;
|
|
pipe->writers++;
|
|
pipe->r_counter++;
|
|
pipe->w_counter++;
|
|
if (pipe->readers == 1 || pipe->writers == 1)
|
|
wake_up_partner(pipe);
|
|
break;
|
|
|
|
default:
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/* Ok! */
|
|
__pipe_unlock(pipe);
|
|
return 0;
|
|
|
|
err_rd:
|
|
if (!--pipe->readers)
|
|
wake_up_interruptible(&pipe->wait);
|
|
ret = -ERESTARTSYS;
|
|
goto err;
|
|
|
|
err_wr:
|
|
if (!--pipe->writers)
|
|
wake_up_interruptible(&pipe->wait);
|
|
ret = -ERESTARTSYS;
|
|
goto err;
|
|
|
|
err:
|
|
__pipe_unlock(pipe);
|
|
|
|
put_pipe_info(inode, pipe);
|
|
return ret;
|
|
}
|
|
|
|
const struct file_operations pipefifo_fops = {
|
|
.open = fifo_open,
|
|
.llseek = no_llseek,
|
|
.read_iter = pipe_read,
|
|
.write_iter = pipe_write,
|
|
.poll = pipe_poll,
|
|
.unlocked_ioctl = pipe_ioctl,
|
|
.release = pipe_release,
|
|
.fasync = pipe_fasync,
|
|
};
|
|
|
|
/*
|
|
* Currently we rely on the pipe array holding a power-of-2 number
|
|
* of pages. Returns 0 on error.
|
|
*/
|
|
unsigned int round_pipe_size(unsigned long size)
|
|
{
|
|
if (size > (1U << 31))
|
|
return 0;
|
|
|
|
/* Minimum pipe size, as required by POSIX */
|
|
if (size < PAGE_SIZE)
|
|
return PAGE_SIZE;
|
|
|
|
return roundup_pow_of_two(size);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new array of pipe buffers and copy the info over. Returns the
|
|
* pipe size if successful, or return -ERROR on error.
|
|
*/
|
|
static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
|
|
{
|
|
struct pipe_buffer *bufs;
|
|
unsigned int size, nr_slots, head, tail, mask, n;
|
|
unsigned long user_bufs;
|
|
long ret = 0;
|
|
|
|
size = round_pipe_size(arg);
|
|
nr_slots = size >> PAGE_SHIFT;
|
|
|
|
if (!nr_slots)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* If trying to increase the pipe capacity, check that an
|
|
* unprivileged user is not trying to exceed various limits
|
|
* (soft limit check here, hard limit check just below).
|
|
* Decreasing the pipe capacity is always permitted, even
|
|
* if the user is currently over a limit.
|
|
*/
|
|
if (nr_slots > pipe->ring_size &&
|
|
size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
|
|
return -EPERM;
|
|
|
|
user_bufs = account_pipe_buffers(pipe->user, pipe->ring_size, nr_slots);
|
|
|
|
if (nr_slots > pipe->ring_size &&
|
|
(too_many_pipe_buffers_hard(user_bufs) ||
|
|
too_many_pipe_buffers_soft(user_bufs)) &&
|
|
is_unprivileged_user()) {
|
|
ret = -EPERM;
|
|
goto out_revert_acct;
|
|
}
|
|
|
|
/*
|
|
* We can shrink the pipe, if arg is greater than the ring occupancy.
|
|
* Since we don't expect a lot of shrink+grow operations, just free and
|
|
* allocate again like we would do for growing. If the pipe currently
|
|
* contains more buffers than arg, then return busy.
|
|
*/
|
|
mask = pipe->ring_size - 1;
|
|
head = pipe->head;
|
|
tail = pipe->tail;
|
|
n = pipe_occupancy(pipe->head, pipe->tail);
|
|
if (nr_slots < n) {
|
|
ret = -EBUSY;
|
|
goto out_revert_acct;
|
|
}
|
|
|
|
bufs = kcalloc(nr_slots, sizeof(*bufs),
|
|
GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
|
|
if (unlikely(!bufs)) {
|
|
ret = -ENOMEM;
|
|
goto out_revert_acct;
|
|
}
|
|
|
|
/*
|
|
* The pipe array wraps around, so just start the new one at zero
|
|
* and adjust the indices.
|
|
*/
|
|
if (n > 0) {
|
|
unsigned int h = head & mask;
|
|
unsigned int t = tail & mask;
|
|
if (h > t) {
|
|
memcpy(bufs, pipe->bufs + t,
|
|
n * sizeof(struct pipe_buffer));
|
|
} else {
|
|
unsigned int tsize = pipe->ring_size - t;
|
|
if (h > 0)
|
|
memcpy(bufs + tsize, pipe->bufs,
|
|
h * sizeof(struct pipe_buffer));
|
|
memcpy(bufs, pipe->bufs + t,
|
|
tsize * sizeof(struct pipe_buffer));
|
|
}
|
|
}
|
|
|
|
head = n;
|
|
tail = 0;
|
|
|
|
kfree(pipe->bufs);
|
|
pipe->bufs = bufs;
|
|
pipe->ring_size = nr_slots;
|
|
pipe->max_usage = nr_slots;
|
|
pipe->tail = tail;
|
|
pipe->head = head;
|
|
wake_up_interruptible_all(&pipe->wait);
|
|
return pipe->max_usage * PAGE_SIZE;
|
|
|
|
out_revert_acct:
|
|
(void) account_pipe_buffers(pipe->user, nr_slots, pipe->ring_size);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* After the inode slimming patch, i_pipe/i_bdev/i_cdev share the same
|
|
* location, so checking ->i_pipe is not enough to verify that this is a
|
|
* pipe.
|
|
*/
|
|
struct pipe_inode_info *get_pipe_info(struct file *file)
|
|
{
|
|
return file->f_op == &pipefifo_fops ? file->private_data : NULL;
|
|
}
|
|
|
|
long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct pipe_inode_info *pipe;
|
|
long ret;
|
|
|
|
pipe = get_pipe_info(file);
|
|
if (!pipe)
|
|
return -EBADF;
|
|
|
|
__pipe_lock(pipe);
|
|
|
|
switch (cmd) {
|
|
case F_SETPIPE_SZ:
|
|
ret = pipe_set_size(pipe, arg);
|
|
break;
|
|
case F_GETPIPE_SZ:
|
|
ret = pipe->max_usage * PAGE_SIZE;
|
|
break;
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
__pipe_unlock(pipe);
|
|
return ret;
|
|
}
|
|
|
|
static const struct super_operations pipefs_ops = {
|
|
.destroy_inode = free_inode_nonrcu,
|
|
.statfs = simple_statfs,
|
|
};
|
|
|
|
/*
|
|
* pipefs should _never_ be mounted by userland - too much of security hassle,
|
|
* no real gain from having the whole whorehouse mounted. So we don't need
|
|
* any operations on the root directory. However, we need a non-trivial
|
|
* d_name - pipe: will go nicely and kill the special-casing in procfs.
|
|
*/
|
|
|
|
static int pipefs_init_fs_context(struct fs_context *fc)
|
|
{
|
|
struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
|
|
if (!ctx)
|
|
return -ENOMEM;
|
|
ctx->ops = &pipefs_ops;
|
|
ctx->dops = &pipefs_dentry_operations;
|
|
return 0;
|
|
}
|
|
|
|
static struct file_system_type pipe_fs_type = {
|
|
.name = "pipefs",
|
|
.init_fs_context = pipefs_init_fs_context,
|
|
.kill_sb = kill_anon_super,
|
|
};
|
|
|
|
static int __init init_pipe_fs(void)
|
|
{
|
|
int err = register_filesystem(&pipe_fs_type);
|
|
|
|
if (!err) {
|
|
pipe_mnt = kern_mount(&pipe_fs_type);
|
|
if (IS_ERR(pipe_mnt)) {
|
|
err = PTR_ERR(pipe_mnt);
|
|
unregister_filesystem(&pipe_fs_type);
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
fs_initcall(init_pipe_fs);
|