linux_dsm_epyc7002/drivers/thermal/qcom/qcom-spmi-temp-alarm.c
Veera Vegivada 0ffdab6f2d thermal: qcom-spmi-temp-alarm: Don't suppress negative temp
Currently driver is suppressing the negative temperature
readings from the vadc. Consumers of the thermal zones need
to read the negative temperature too. Don't suppress the
readings.

Fixes: c610afaa21 ("thermal: Add QPNP PMIC temperature alarm driver")
Signed-off-by: Veera Vegivada <vvegivad@codeaurora.org>
Signed-off-by: Guru Das Srinagesh <gurus@codeaurora.org>
Reviewed-by: Stephen Boyd <sboyd@kernel.org>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Link: https://lore.kernel.org/r/944856eb819081268fab783236a916257de120e4.1596040416.git.gurus@codeaurora.org
2020-09-04 11:52:54 +02:00

458 lines
10 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2011-2015, 2017, 2020, The Linux Foundation. All rights reserved.
*/
#include <linux/bitops.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/iio/consumer.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/thermal.h>
#include "../thermal_core.h"
#define QPNP_TM_REG_TYPE 0x04
#define QPNP_TM_REG_SUBTYPE 0x05
#define QPNP_TM_REG_STATUS 0x08
#define QPNP_TM_REG_SHUTDOWN_CTRL1 0x40
#define QPNP_TM_REG_ALARM_CTRL 0x46
#define QPNP_TM_TYPE 0x09
#define QPNP_TM_SUBTYPE_GEN1 0x08
#define QPNP_TM_SUBTYPE_GEN2 0x09
#define STATUS_GEN1_STAGE_MASK GENMASK(1, 0)
#define STATUS_GEN2_STATE_MASK GENMASK(6, 4)
#define STATUS_GEN2_STATE_SHIFT 4
#define SHUTDOWN_CTRL1_OVERRIDE_S2 BIT(6)
#define SHUTDOWN_CTRL1_THRESHOLD_MASK GENMASK(1, 0)
#define SHUTDOWN_CTRL1_RATE_25HZ BIT(3)
#define ALARM_CTRL_FORCE_ENABLE BIT(7)
/*
* Trip point values based on threshold control
* 0 = {105 C, 125 C, 145 C}
* 1 = {110 C, 130 C, 150 C}
* 2 = {115 C, 135 C, 155 C}
* 3 = {120 C, 140 C, 160 C}
*/
#define TEMP_STAGE_STEP 20000 /* Stage step: 20.000 C */
#define TEMP_STAGE_HYSTERESIS 2000
#define TEMP_THRESH_MIN 105000 /* Threshold Min: 105 C */
#define TEMP_THRESH_STEP 5000 /* Threshold step: 5 C */
#define THRESH_MIN 0
#define THRESH_MAX 3
/* Stage 2 Threshold Min: 125 C */
#define STAGE2_THRESHOLD_MIN 125000
/* Stage 2 Threshold Max: 140 C */
#define STAGE2_THRESHOLD_MAX 140000
/* Temperature in Milli Celsius reported during stage 0 if no ADC is present */
#define DEFAULT_TEMP 37000
struct qpnp_tm_chip {
struct regmap *map;
struct device *dev;
struct thermal_zone_device *tz_dev;
unsigned int subtype;
long temp;
unsigned int thresh;
unsigned int stage;
unsigned int prev_stage;
unsigned int base;
/* protects .thresh, .stage and chip registers */
struct mutex lock;
bool initialized;
struct iio_channel *adc;
};
/* This array maps from GEN2 alarm state to GEN1 alarm stage */
static const unsigned int alarm_state_map[8] = {0, 1, 1, 2, 2, 3, 3, 3};
static int qpnp_tm_read(struct qpnp_tm_chip *chip, u16 addr, u8 *data)
{
unsigned int val;
int ret;
ret = regmap_read(chip->map, chip->base + addr, &val);
if (ret < 0)
return ret;
*data = val;
return 0;
}
static int qpnp_tm_write(struct qpnp_tm_chip *chip, u16 addr, u8 data)
{
return regmap_write(chip->map, chip->base + addr, data);
}
/**
* qpnp_tm_get_temp_stage() - return over-temperature stage
* @chip: Pointer to the qpnp_tm chip
*
* Return: stage (GEN1) or state (GEN2) on success, or errno on failure.
*/
static int qpnp_tm_get_temp_stage(struct qpnp_tm_chip *chip)
{
int ret;
u8 reg = 0;
ret = qpnp_tm_read(chip, QPNP_TM_REG_STATUS, &reg);
if (ret < 0)
return ret;
if (chip->subtype == QPNP_TM_SUBTYPE_GEN1)
ret = reg & STATUS_GEN1_STAGE_MASK;
else
ret = (reg & STATUS_GEN2_STATE_MASK) >> STATUS_GEN2_STATE_SHIFT;
return ret;
}
/*
* This function updates the internal temp value based on the
* current thermal stage and threshold as well as the previous stage
*/
static int qpnp_tm_update_temp_no_adc(struct qpnp_tm_chip *chip)
{
unsigned int stage, stage_new, stage_old;
int ret;
WARN_ON(!mutex_is_locked(&chip->lock));
ret = qpnp_tm_get_temp_stage(chip);
if (ret < 0)
return ret;
stage = ret;
if (chip->subtype == QPNP_TM_SUBTYPE_GEN1) {
stage_new = stage;
stage_old = chip->stage;
} else {
stage_new = alarm_state_map[stage];
stage_old = alarm_state_map[chip->stage];
}
if (stage_new > stage_old) {
/* increasing stage, use lower bound */
chip->temp = (stage_new - 1) * TEMP_STAGE_STEP +
chip->thresh * TEMP_THRESH_STEP +
TEMP_STAGE_HYSTERESIS + TEMP_THRESH_MIN;
} else if (stage_new < stage_old) {
/* decreasing stage, use upper bound */
chip->temp = stage_new * TEMP_STAGE_STEP +
chip->thresh * TEMP_THRESH_STEP -
TEMP_STAGE_HYSTERESIS + TEMP_THRESH_MIN;
}
chip->stage = stage;
return 0;
}
static int qpnp_tm_get_temp(void *data, int *temp)
{
struct qpnp_tm_chip *chip = data;
int ret, mili_celsius;
if (!temp)
return -EINVAL;
if (!chip->initialized) {
*temp = DEFAULT_TEMP;
return 0;
}
if (!chip->adc) {
mutex_lock(&chip->lock);
ret = qpnp_tm_update_temp_no_adc(chip);
mutex_unlock(&chip->lock);
if (ret < 0)
return ret;
} else {
ret = iio_read_channel_processed(chip->adc, &mili_celsius);
if (ret < 0)
return ret;
chip->temp = mili_celsius;
}
*temp = chip->temp;
return 0;
}
static int qpnp_tm_update_critical_trip_temp(struct qpnp_tm_chip *chip,
int temp)
{
u8 reg;
bool disable_s2_shutdown = false;
WARN_ON(!mutex_is_locked(&chip->lock));
/*
* Default: S2 and S3 shutdown enabled, thresholds at
* 105C/125C/145C, monitoring at 25Hz
*/
reg = SHUTDOWN_CTRL1_RATE_25HZ;
if (temp == THERMAL_TEMP_INVALID ||
temp < STAGE2_THRESHOLD_MIN) {
chip->thresh = THRESH_MIN;
goto skip;
}
if (temp <= STAGE2_THRESHOLD_MAX) {
chip->thresh = THRESH_MAX -
((STAGE2_THRESHOLD_MAX - temp) /
TEMP_THRESH_STEP);
disable_s2_shutdown = true;
} else {
chip->thresh = THRESH_MAX;
if (chip->adc)
disable_s2_shutdown = true;
else
dev_warn(chip->dev,
"No ADC is configured and critical temperature is above the maximum stage 2 threshold of 140 C! Configuring stage 2 shutdown at 140 C.\n");
}
skip:
reg |= chip->thresh;
if (disable_s2_shutdown)
reg |= SHUTDOWN_CTRL1_OVERRIDE_S2;
return qpnp_tm_write(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, reg);
}
static int qpnp_tm_set_trip_temp(void *data, int trip, int temp)
{
struct qpnp_tm_chip *chip = data;
const struct thermal_trip *trip_points;
int ret;
trip_points = of_thermal_get_trip_points(chip->tz_dev);
if (!trip_points)
return -EINVAL;
if (trip_points[trip].type != THERMAL_TRIP_CRITICAL)
return 0;
mutex_lock(&chip->lock);
ret = qpnp_tm_update_critical_trip_temp(chip, temp);
mutex_unlock(&chip->lock);
return ret;
}
static const struct thermal_zone_of_device_ops qpnp_tm_sensor_ops = {
.get_temp = qpnp_tm_get_temp,
.set_trip_temp = qpnp_tm_set_trip_temp,
};
static irqreturn_t qpnp_tm_isr(int irq, void *data)
{
struct qpnp_tm_chip *chip = data;
thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED);
return IRQ_HANDLED;
}
static int qpnp_tm_get_critical_trip_temp(struct qpnp_tm_chip *chip)
{
int ntrips;
const struct thermal_trip *trips;
int i;
ntrips = of_thermal_get_ntrips(chip->tz_dev);
if (ntrips <= 0)
return THERMAL_TEMP_INVALID;
trips = of_thermal_get_trip_points(chip->tz_dev);
if (!trips)
return THERMAL_TEMP_INVALID;
for (i = 0; i < ntrips; i++) {
if (of_thermal_is_trip_valid(chip->tz_dev, i) &&
trips[i].type == THERMAL_TRIP_CRITICAL)
return trips[i].temperature;
}
return THERMAL_TEMP_INVALID;
}
/*
* This function initializes the internal temp value based on only the
* current thermal stage and threshold. Setup threshold control and
* disable shutdown override.
*/
static int qpnp_tm_init(struct qpnp_tm_chip *chip)
{
unsigned int stage;
int ret;
u8 reg = 0;
int crit_temp;
mutex_lock(&chip->lock);
ret = qpnp_tm_read(chip, QPNP_TM_REG_SHUTDOWN_CTRL1, &reg);
if (ret < 0)
goto out;
chip->thresh = reg & SHUTDOWN_CTRL1_THRESHOLD_MASK;
chip->temp = DEFAULT_TEMP;
ret = qpnp_tm_get_temp_stage(chip);
if (ret < 0)
goto out;
chip->stage = ret;
stage = chip->subtype == QPNP_TM_SUBTYPE_GEN1
? chip->stage : alarm_state_map[chip->stage];
if (stage)
chip->temp = chip->thresh * TEMP_THRESH_STEP +
(stage - 1) * TEMP_STAGE_STEP +
TEMP_THRESH_MIN;
crit_temp = qpnp_tm_get_critical_trip_temp(chip);
ret = qpnp_tm_update_critical_trip_temp(chip, crit_temp);
if (ret < 0)
goto out;
/* Enable the thermal alarm PMIC module in always-on mode. */
reg = ALARM_CTRL_FORCE_ENABLE;
ret = qpnp_tm_write(chip, QPNP_TM_REG_ALARM_CTRL, reg);
chip->initialized = true;
out:
mutex_unlock(&chip->lock);
return ret;
}
static int qpnp_tm_probe(struct platform_device *pdev)
{
struct qpnp_tm_chip *chip;
struct device_node *node;
u8 type, subtype;
u32 res;
int ret, irq;
node = pdev->dev.of_node;
chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
dev_set_drvdata(&pdev->dev, chip);
chip->dev = &pdev->dev;
mutex_init(&chip->lock);
chip->map = dev_get_regmap(pdev->dev.parent, NULL);
if (!chip->map)
return -ENXIO;
ret = of_property_read_u32(node, "reg", &res);
if (ret < 0)
return ret;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
/* ADC based measurements are optional */
chip->adc = devm_iio_channel_get(&pdev->dev, "thermal");
if (IS_ERR(chip->adc)) {
ret = PTR_ERR(chip->adc);
chip->adc = NULL;
if (ret == -EPROBE_DEFER)
return ret;
}
chip->base = res;
ret = qpnp_tm_read(chip, QPNP_TM_REG_TYPE, &type);
if (ret < 0) {
dev_err(&pdev->dev, "could not read type\n");
return ret;
}
ret = qpnp_tm_read(chip, QPNP_TM_REG_SUBTYPE, &subtype);
if (ret < 0) {
dev_err(&pdev->dev, "could not read subtype\n");
return ret;
}
if (type != QPNP_TM_TYPE || (subtype != QPNP_TM_SUBTYPE_GEN1
&& subtype != QPNP_TM_SUBTYPE_GEN2)) {
dev_err(&pdev->dev, "invalid type 0x%02x or subtype 0x%02x\n",
type, subtype);
return -ENODEV;
}
chip->subtype = subtype;
/*
* Register the sensor before initializing the hardware to be able to
* read the trip points. get_temp() returns the default temperature
* before the hardware initialization is completed.
*/
chip->tz_dev = devm_thermal_zone_of_sensor_register(
&pdev->dev, 0, chip, &qpnp_tm_sensor_ops);
if (IS_ERR(chip->tz_dev)) {
dev_err(&pdev->dev, "failed to register sensor\n");
return PTR_ERR(chip->tz_dev);
}
ret = qpnp_tm_init(chip);
if (ret < 0) {
dev_err(&pdev->dev, "init failed\n");
return ret;
}
ret = devm_request_threaded_irq(&pdev->dev, irq, NULL, qpnp_tm_isr,
IRQF_ONESHOT, node->name, chip);
if (ret < 0)
return ret;
thermal_zone_device_update(chip->tz_dev, THERMAL_EVENT_UNSPECIFIED);
return 0;
}
static const struct of_device_id qpnp_tm_match_table[] = {
{ .compatible = "qcom,spmi-temp-alarm" },
{ }
};
MODULE_DEVICE_TABLE(of, qpnp_tm_match_table);
static struct platform_driver qpnp_tm_driver = {
.driver = {
.name = "spmi-temp-alarm",
.of_match_table = qpnp_tm_match_table,
},
.probe = qpnp_tm_probe,
};
module_platform_driver(qpnp_tm_driver);
MODULE_ALIAS("platform:spmi-temp-alarm");
MODULE_DESCRIPTION("QPNP PMIC Temperature Alarm driver");
MODULE_LICENSE("GPL v2");