mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-16 06:36:46 +07:00
eb65405eb6
-----BEGIN PGP SIGNATURE----- iQEzBAABCAAdFiEEq1nRK9aeMoq1VSgcnJ2qBz9kQNkFAl8qeCkACgkQnJ2qBz9k QNlAGQf/YVruyVLZ7kCv6EMCHauXm3K1lEGpbXsTW04HpStxGx7mtLGN/Au+EYJR VnRkCMt6TSMQGMBkNF83dUCwXHkeL1rd6frJBLVOErkg50nUuD4kjTVw9Lzw9itx CPhKnPPlsRkDkZPxkg3WEdqPgzJREWBZUaB38QUPjYN46q7HfPYDANTh5wI1GiGs 27+PvzlttjhkQpQ14pYU/nu4xf/nmgmmHhgfsJArQP2EzYOrKxsWKhXS5uPdtNlf mXiZMaqW2AlyDGlw3myOEySrrSuaR77M2bzDo7mjqffI9wSVTytKEhtg0i8OMWmv pZ38OQobznnFoqzc1GL70IE0DEU48g== =d81d -----END PGP SIGNATURE----- Merge tag 'fsnotify_for_v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs Pull fsnotify updates from Jan Kara: - fanotify fix for softlockups when there are many queued events - performance improvement to reduce fsnotify overhead when not used - Amir's implementation of fanotify events with names. With these you can now efficiently monitor whole filesystem, eg to mirror changes to another machine. * tag 'fsnotify_for_v5.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs: (37 commits) fanotify: compare fsid when merging name event fsnotify: create method handle_inode_event() in fsnotify_operations fanotify: report parent fid + child fid fanotify: report parent fid + name + child fid fanotify: add support for FAN_REPORT_NAME fanotify: report events with parent dir fid to sb/mount/non-dir marks fanotify: add basic support for FAN_REPORT_DIR_FID fsnotify: remove check that source dentry is positive fsnotify: send event with parent/name info to sb/mount/non-dir marks audit: do not set FS_EVENT_ON_CHILD in audit marks mask inotify: do not set FS_EVENT_ON_CHILD in non-dir mark mask fsnotify: pass dir and inode arguments to fsnotify() fsnotify: create helper fsnotify_inode() fsnotify: send event to parent and child with single callback inotify: report both events on parent and child with single callback dnotify: report both events on parent and child with single callback fanotify: no external fh buffer in fanotify_name_event fanotify: use struct fanotify_info to parcel the variable size buffer fsnotify: add object type "child" to object type iterator fanotify: use FAN_EVENT_ON_CHILD as implicit flag on sb/mount/non-dir marks ...
1090 lines
26 KiB
C
1090 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
#include "audit.h"
|
|
#include <linux/fsnotify_backend.h>
|
|
#include <linux/namei.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/slab.h>
|
|
|
|
struct audit_tree;
|
|
struct audit_chunk;
|
|
|
|
struct audit_tree {
|
|
refcount_t count;
|
|
int goner;
|
|
struct audit_chunk *root;
|
|
struct list_head chunks;
|
|
struct list_head rules;
|
|
struct list_head list;
|
|
struct list_head same_root;
|
|
struct rcu_head head;
|
|
char pathname[];
|
|
};
|
|
|
|
struct audit_chunk {
|
|
struct list_head hash;
|
|
unsigned long key;
|
|
struct fsnotify_mark *mark;
|
|
struct list_head trees; /* with root here */
|
|
int count;
|
|
atomic_long_t refs;
|
|
struct rcu_head head;
|
|
struct node {
|
|
struct list_head list;
|
|
struct audit_tree *owner;
|
|
unsigned index; /* index; upper bit indicates 'will prune' */
|
|
} owners[];
|
|
};
|
|
|
|
struct audit_tree_mark {
|
|
struct fsnotify_mark mark;
|
|
struct audit_chunk *chunk;
|
|
};
|
|
|
|
static LIST_HEAD(tree_list);
|
|
static LIST_HEAD(prune_list);
|
|
static struct task_struct *prune_thread;
|
|
|
|
/*
|
|
* One struct chunk is attached to each inode of interest through
|
|
* audit_tree_mark (fsnotify mark). We replace struct chunk on tagging /
|
|
* untagging, the mark is stable as long as there is chunk attached. The
|
|
* association between mark and chunk is protected by hash_lock and
|
|
* audit_tree_group->mark_mutex. Thus as long as we hold
|
|
* audit_tree_group->mark_mutex and check that the mark is alive by
|
|
* FSNOTIFY_MARK_FLAG_ATTACHED flag check, we are sure the mark points to
|
|
* the current chunk.
|
|
*
|
|
* Rules have pointer to struct audit_tree.
|
|
* Rules have struct list_head rlist forming a list of rules over
|
|
* the same tree.
|
|
* References to struct chunk are collected at audit_inode{,_child}()
|
|
* time and used in AUDIT_TREE rule matching.
|
|
* These references are dropped at the same time we are calling
|
|
* audit_free_names(), etc.
|
|
*
|
|
* Cyclic lists galore:
|
|
* tree.chunks anchors chunk.owners[].list hash_lock
|
|
* tree.rules anchors rule.rlist audit_filter_mutex
|
|
* chunk.trees anchors tree.same_root hash_lock
|
|
* chunk.hash is a hash with middle bits of watch.inode as
|
|
* a hash function. RCU, hash_lock
|
|
*
|
|
* tree is refcounted; one reference for "some rules on rules_list refer to
|
|
* it", one for each chunk with pointer to it.
|
|
*
|
|
* chunk is refcounted by embedded .refs. Mark associated with the chunk holds
|
|
* one chunk reference. This reference is dropped either when a mark is going
|
|
* to be freed (corresponding inode goes away) or when chunk attached to the
|
|
* mark gets replaced. This reference must be dropped using
|
|
* audit_mark_put_chunk() to make sure the reference is dropped only after RCU
|
|
* grace period as it protects RCU readers of the hash table.
|
|
*
|
|
* node.index allows to get from node.list to containing chunk.
|
|
* MSB of that sucker is stolen to mark taggings that we might have to
|
|
* revert - several operations have very unpleasant cleanup logics and
|
|
* that makes a difference. Some.
|
|
*/
|
|
|
|
static struct fsnotify_group *audit_tree_group;
|
|
static struct kmem_cache *audit_tree_mark_cachep __read_mostly;
|
|
|
|
static struct audit_tree *alloc_tree(const char *s)
|
|
{
|
|
struct audit_tree *tree;
|
|
|
|
tree = kmalloc(sizeof(struct audit_tree) + strlen(s) + 1, GFP_KERNEL);
|
|
if (tree) {
|
|
refcount_set(&tree->count, 1);
|
|
tree->goner = 0;
|
|
INIT_LIST_HEAD(&tree->chunks);
|
|
INIT_LIST_HEAD(&tree->rules);
|
|
INIT_LIST_HEAD(&tree->list);
|
|
INIT_LIST_HEAD(&tree->same_root);
|
|
tree->root = NULL;
|
|
strcpy(tree->pathname, s);
|
|
}
|
|
return tree;
|
|
}
|
|
|
|
static inline void get_tree(struct audit_tree *tree)
|
|
{
|
|
refcount_inc(&tree->count);
|
|
}
|
|
|
|
static inline void put_tree(struct audit_tree *tree)
|
|
{
|
|
if (refcount_dec_and_test(&tree->count))
|
|
kfree_rcu(tree, head);
|
|
}
|
|
|
|
/* to avoid bringing the entire thing in audit.h */
|
|
const char *audit_tree_path(struct audit_tree *tree)
|
|
{
|
|
return tree->pathname;
|
|
}
|
|
|
|
static void free_chunk(struct audit_chunk *chunk)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < chunk->count; i++) {
|
|
if (chunk->owners[i].owner)
|
|
put_tree(chunk->owners[i].owner);
|
|
}
|
|
kfree(chunk);
|
|
}
|
|
|
|
void audit_put_chunk(struct audit_chunk *chunk)
|
|
{
|
|
if (atomic_long_dec_and_test(&chunk->refs))
|
|
free_chunk(chunk);
|
|
}
|
|
|
|
static void __put_chunk(struct rcu_head *rcu)
|
|
{
|
|
struct audit_chunk *chunk = container_of(rcu, struct audit_chunk, head);
|
|
audit_put_chunk(chunk);
|
|
}
|
|
|
|
/*
|
|
* Drop reference to the chunk that was held by the mark. This is the reference
|
|
* that gets dropped after we've removed the chunk from the hash table and we
|
|
* use it to make sure chunk cannot be freed before RCU grace period expires.
|
|
*/
|
|
static void audit_mark_put_chunk(struct audit_chunk *chunk)
|
|
{
|
|
call_rcu(&chunk->head, __put_chunk);
|
|
}
|
|
|
|
static inline struct audit_tree_mark *audit_mark(struct fsnotify_mark *mark)
|
|
{
|
|
return container_of(mark, struct audit_tree_mark, mark);
|
|
}
|
|
|
|
static struct audit_chunk *mark_chunk(struct fsnotify_mark *mark)
|
|
{
|
|
return audit_mark(mark)->chunk;
|
|
}
|
|
|
|
static void audit_tree_destroy_watch(struct fsnotify_mark *mark)
|
|
{
|
|
kmem_cache_free(audit_tree_mark_cachep, audit_mark(mark));
|
|
}
|
|
|
|
static struct fsnotify_mark *alloc_mark(void)
|
|
{
|
|
struct audit_tree_mark *amark;
|
|
|
|
amark = kmem_cache_zalloc(audit_tree_mark_cachep, GFP_KERNEL);
|
|
if (!amark)
|
|
return NULL;
|
|
fsnotify_init_mark(&amark->mark, audit_tree_group);
|
|
amark->mark.mask = FS_IN_IGNORED;
|
|
return &amark->mark;
|
|
}
|
|
|
|
static struct audit_chunk *alloc_chunk(int count)
|
|
{
|
|
struct audit_chunk *chunk;
|
|
int i;
|
|
|
|
chunk = kzalloc(struct_size(chunk, owners, count), GFP_KERNEL);
|
|
if (!chunk)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&chunk->hash);
|
|
INIT_LIST_HEAD(&chunk->trees);
|
|
chunk->count = count;
|
|
atomic_long_set(&chunk->refs, 1);
|
|
for (i = 0; i < count; i++) {
|
|
INIT_LIST_HEAD(&chunk->owners[i].list);
|
|
chunk->owners[i].index = i;
|
|
}
|
|
return chunk;
|
|
}
|
|
|
|
enum {HASH_SIZE = 128};
|
|
static struct list_head chunk_hash_heads[HASH_SIZE];
|
|
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(hash_lock);
|
|
|
|
/* Function to return search key in our hash from inode. */
|
|
static unsigned long inode_to_key(const struct inode *inode)
|
|
{
|
|
/* Use address pointed to by connector->obj as the key */
|
|
return (unsigned long)&inode->i_fsnotify_marks;
|
|
}
|
|
|
|
static inline struct list_head *chunk_hash(unsigned long key)
|
|
{
|
|
unsigned long n = key / L1_CACHE_BYTES;
|
|
return chunk_hash_heads + n % HASH_SIZE;
|
|
}
|
|
|
|
/* hash_lock & mark->group->mark_mutex is held by caller */
|
|
static void insert_hash(struct audit_chunk *chunk)
|
|
{
|
|
struct list_head *list;
|
|
|
|
/*
|
|
* Make sure chunk is fully initialized before making it visible in the
|
|
* hash. Pairs with a data dependency barrier in READ_ONCE() in
|
|
* audit_tree_lookup().
|
|
*/
|
|
smp_wmb();
|
|
WARN_ON_ONCE(!chunk->key);
|
|
list = chunk_hash(chunk->key);
|
|
list_add_rcu(&chunk->hash, list);
|
|
}
|
|
|
|
/* called under rcu_read_lock */
|
|
struct audit_chunk *audit_tree_lookup(const struct inode *inode)
|
|
{
|
|
unsigned long key = inode_to_key(inode);
|
|
struct list_head *list = chunk_hash(key);
|
|
struct audit_chunk *p;
|
|
|
|
list_for_each_entry_rcu(p, list, hash) {
|
|
/*
|
|
* We use a data dependency barrier in READ_ONCE() to make sure
|
|
* the chunk we see is fully initialized.
|
|
*/
|
|
if (READ_ONCE(p->key) == key) {
|
|
atomic_long_inc(&p->refs);
|
|
return p;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
bool audit_tree_match(struct audit_chunk *chunk, struct audit_tree *tree)
|
|
{
|
|
int n;
|
|
for (n = 0; n < chunk->count; n++)
|
|
if (chunk->owners[n].owner == tree)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* tagging and untagging inodes with trees */
|
|
|
|
static struct audit_chunk *find_chunk(struct node *p)
|
|
{
|
|
int index = p->index & ~(1U<<31);
|
|
p -= index;
|
|
return container_of(p, struct audit_chunk, owners[0]);
|
|
}
|
|
|
|
static void replace_mark_chunk(struct fsnotify_mark *mark,
|
|
struct audit_chunk *chunk)
|
|
{
|
|
struct audit_chunk *old;
|
|
|
|
assert_spin_locked(&hash_lock);
|
|
old = mark_chunk(mark);
|
|
audit_mark(mark)->chunk = chunk;
|
|
if (chunk)
|
|
chunk->mark = mark;
|
|
if (old)
|
|
old->mark = NULL;
|
|
}
|
|
|
|
static void replace_chunk(struct audit_chunk *new, struct audit_chunk *old)
|
|
{
|
|
struct audit_tree *owner;
|
|
int i, j;
|
|
|
|
new->key = old->key;
|
|
list_splice_init(&old->trees, &new->trees);
|
|
list_for_each_entry(owner, &new->trees, same_root)
|
|
owner->root = new;
|
|
for (i = j = 0; j < old->count; i++, j++) {
|
|
if (!old->owners[j].owner) {
|
|
i--;
|
|
continue;
|
|
}
|
|
owner = old->owners[j].owner;
|
|
new->owners[i].owner = owner;
|
|
new->owners[i].index = old->owners[j].index - j + i;
|
|
if (!owner) /* result of earlier fallback */
|
|
continue;
|
|
get_tree(owner);
|
|
list_replace_init(&old->owners[j].list, &new->owners[i].list);
|
|
}
|
|
replace_mark_chunk(old->mark, new);
|
|
/*
|
|
* Make sure chunk is fully initialized before making it visible in the
|
|
* hash. Pairs with a data dependency barrier in READ_ONCE() in
|
|
* audit_tree_lookup().
|
|
*/
|
|
smp_wmb();
|
|
list_replace_rcu(&old->hash, &new->hash);
|
|
}
|
|
|
|
static void remove_chunk_node(struct audit_chunk *chunk, struct node *p)
|
|
{
|
|
struct audit_tree *owner = p->owner;
|
|
|
|
if (owner->root == chunk) {
|
|
list_del_init(&owner->same_root);
|
|
owner->root = NULL;
|
|
}
|
|
list_del_init(&p->list);
|
|
p->owner = NULL;
|
|
put_tree(owner);
|
|
}
|
|
|
|
static int chunk_count_trees(struct audit_chunk *chunk)
|
|
{
|
|
int i;
|
|
int ret = 0;
|
|
|
|
for (i = 0; i < chunk->count; i++)
|
|
if (chunk->owners[i].owner)
|
|
ret++;
|
|
return ret;
|
|
}
|
|
|
|
static void untag_chunk(struct audit_chunk *chunk, struct fsnotify_mark *mark)
|
|
{
|
|
struct audit_chunk *new;
|
|
int size;
|
|
|
|
mutex_lock(&audit_tree_group->mark_mutex);
|
|
/*
|
|
* mark_mutex stabilizes chunk attached to the mark so we can check
|
|
* whether it didn't change while we've dropped hash_lock.
|
|
*/
|
|
if (!(mark->flags & FSNOTIFY_MARK_FLAG_ATTACHED) ||
|
|
mark_chunk(mark) != chunk)
|
|
goto out_mutex;
|
|
|
|
size = chunk_count_trees(chunk);
|
|
if (!size) {
|
|
spin_lock(&hash_lock);
|
|
list_del_init(&chunk->trees);
|
|
list_del_rcu(&chunk->hash);
|
|
replace_mark_chunk(mark, NULL);
|
|
spin_unlock(&hash_lock);
|
|
fsnotify_detach_mark(mark);
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
audit_mark_put_chunk(chunk);
|
|
fsnotify_free_mark(mark);
|
|
return;
|
|
}
|
|
|
|
new = alloc_chunk(size);
|
|
if (!new)
|
|
goto out_mutex;
|
|
|
|
spin_lock(&hash_lock);
|
|
/*
|
|
* This has to go last when updating chunk as once replace_chunk() is
|
|
* called, new RCU readers can see the new chunk.
|
|
*/
|
|
replace_chunk(new, chunk);
|
|
spin_unlock(&hash_lock);
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
audit_mark_put_chunk(chunk);
|
|
return;
|
|
|
|
out_mutex:
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
}
|
|
|
|
/* Call with group->mark_mutex held, releases it */
|
|
static int create_chunk(struct inode *inode, struct audit_tree *tree)
|
|
{
|
|
struct fsnotify_mark *mark;
|
|
struct audit_chunk *chunk = alloc_chunk(1);
|
|
|
|
if (!chunk) {
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
mark = alloc_mark();
|
|
if (!mark) {
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
kfree(chunk);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (fsnotify_add_inode_mark_locked(mark, inode, 0)) {
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
fsnotify_put_mark(mark);
|
|
kfree(chunk);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
spin_lock(&hash_lock);
|
|
if (tree->goner) {
|
|
spin_unlock(&hash_lock);
|
|
fsnotify_detach_mark(mark);
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
fsnotify_free_mark(mark);
|
|
fsnotify_put_mark(mark);
|
|
kfree(chunk);
|
|
return 0;
|
|
}
|
|
replace_mark_chunk(mark, chunk);
|
|
chunk->owners[0].index = (1U << 31);
|
|
chunk->owners[0].owner = tree;
|
|
get_tree(tree);
|
|
list_add(&chunk->owners[0].list, &tree->chunks);
|
|
if (!tree->root) {
|
|
tree->root = chunk;
|
|
list_add(&tree->same_root, &chunk->trees);
|
|
}
|
|
chunk->key = inode_to_key(inode);
|
|
/*
|
|
* Inserting into the hash table has to go last as once we do that RCU
|
|
* readers can see the chunk.
|
|
*/
|
|
insert_hash(chunk);
|
|
spin_unlock(&hash_lock);
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
/*
|
|
* Drop our initial reference. When mark we point to is getting freed,
|
|
* we get notification through ->freeing_mark callback and cleanup
|
|
* chunk pointing to this mark.
|
|
*/
|
|
fsnotify_put_mark(mark);
|
|
return 0;
|
|
}
|
|
|
|
/* the first tagged inode becomes root of tree */
|
|
static int tag_chunk(struct inode *inode, struct audit_tree *tree)
|
|
{
|
|
struct fsnotify_mark *mark;
|
|
struct audit_chunk *chunk, *old;
|
|
struct node *p;
|
|
int n;
|
|
|
|
mutex_lock(&audit_tree_group->mark_mutex);
|
|
mark = fsnotify_find_mark(&inode->i_fsnotify_marks, audit_tree_group);
|
|
if (!mark)
|
|
return create_chunk(inode, tree);
|
|
|
|
/*
|
|
* Found mark is guaranteed to be attached and mark_mutex protects mark
|
|
* from getting detached and thus it makes sure there is chunk attached
|
|
* to the mark.
|
|
*/
|
|
/* are we already there? */
|
|
spin_lock(&hash_lock);
|
|
old = mark_chunk(mark);
|
|
for (n = 0; n < old->count; n++) {
|
|
if (old->owners[n].owner == tree) {
|
|
spin_unlock(&hash_lock);
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
fsnotify_put_mark(mark);
|
|
return 0;
|
|
}
|
|
}
|
|
spin_unlock(&hash_lock);
|
|
|
|
chunk = alloc_chunk(old->count + 1);
|
|
if (!chunk) {
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
fsnotify_put_mark(mark);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
spin_lock(&hash_lock);
|
|
if (tree->goner) {
|
|
spin_unlock(&hash_lock);
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
fsnotify_put_mark(mark);
|
|
kfree(chunk);
|
|
return 0;
|
|
}
|
|
p = &chunk->owners[chunk->count - 1];
|
|
p->index = (chunk->count - 1) | (1U<<31);
|
|
p->owner = tree;
|
|
get_tree(tree);
|
|
list_add(&p->list, &tree->chunks);
|
|
if (!tree->root) {
|
|
tree->root = chunk;
|
|
list_add(&tree->same_root, &chunk->trees);
|
|
}
|
|
/*
|
|
* This has to go last when updating chunk as once replace_chunk() is
|
|
* called, new RCU readers can see the new chunk.
|
|
*/
|
|
replace_chunk(chunk, old);
|
|
spin_unlock(&hash_lock);
|
|
mutex_unlock(&audit_tree_group->mark_mutex);
|
|
fsnotify_put_mark(mark); /* pair to fsnotify_find_mark */
|
|
audit_mark_put_chunk(old);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void audit_tree_log_remove_rule(struct audit_context *context,
|
|
struct audit_krule *rule)
|
|
{
|
|
struct audit_buffer *ab;
|
|
|
|
if (!audit_enabled)
|
|
return;
|
|
ab = audit_log_start(context, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
|
|
if (unlikely(!ab))
|
|
return;
|
|
audit_log_format(ab, "op=remove_rule dir=");
|
|
audit_log_untrustedstring(ab, rule->tree->pathname);
|
|
audit_log_key(ab, rule->filterkey);
|
|
audit_log_format(ab, " list=%d res=1", rule->listnr);
|
|
audit_log_end(ab);
|
|
}
|
|
|
|
static void kill_rules(struct audit_context *context, struct audit_tree *tree)
|
|
{
|
|
struct audit_krule *rule, *next;
|
|
struct audit_entry *entry;
|
|
|
|
list_for_each_entry_safe(rule, next, &tree->rules, rlist) {
|
|
entry = container_of(rule, struct audit_entry, rule);
|
|
|
|
list_del_init(&rule->rlist);
|
|
if (rule->tree) {
|
|
/* not a half-baked one */
|
|
audit_tree_log_remove_rule(context, rule);
|
|
if (entry->rule.exe)
|
|
audit_remove_mark(entry->rule.exe);
|
|
rule->tree = NULL;
|
|
list_del_rcu(&entry->list);
|
|
list_del(&entry->rule.list);
|
|
call_rcu(&entry->rcu, audit_free_rule_rcu);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Remove tree from chunks. If 'tagged' is set, remove tree only from tagged
|
|
* chunks. The function expects tagged chunks are all at the beginning of the
|
|
* chunks list.
|
|
*/
|
|
static void prune_tree_chunks(struct audit_tree *victim, bool tagged)
|
|
{
|
|
spin_lock(&hash_lock);
|
|
while (!list_empty(&victim->chunks)) {
|
|
struct node *p;
|
|
struct audit_chunk *chunk;
|
|
struct fsnotify_mark *mark;
|
|
|
|
p = list_first_entry(&victim->chunks, struct node, list);
|
|
/* have we run out of marked? */
|
|
if (tagged && !(p->index & (1U<<31)))
|
|
break;
|
|
chunk = find_chunk(p);
|
|
mark = chunk->mark;
|
|
remove_chunk_node(chunk, p);
|
|
/* Racing with audit_tree_freeing_mark()? */
|
|
if (!mark)
|
|
continue;
|
|
fsnotify_get_mark(mark);
|
|
spin_unlock(&hash_lock);
|
|
|
|
untag_chunk(chunk, mark);
|
|
fsnotify_put_mark(mark);
|
|
|
|
spin_lock(&hash_lock);
|
|
}
|
|
spin_unlock(&hash_lock);
|
|
put_tree(victim);
|
|
}
|
|
|
|
/*
|
|
* finish killing struct audit_tree
|
|
*/
|
|
static void prune_one(struct audit_tree *victim)
|
|
{
|
|
prune_tree_chunks(victim, false);
|
|
}
|
|
|
|
/* trim the uncommitted chunks from tree */
|
|
|
|
static void trim_marked(struct audit_tree *tree)
|
|
{
|
|
struct list_head *p, *q;
|
|
spin_lock(&hash_lock);
|
|
if (tree->goner) {
|
|
spin_unlock(&hash_lock);
|
|
return;
|
|
}
|
|
/* reorder */
|
|
for (p = tree->chunks.next; p != &tree->chunks; p = q) {
|
|
struct node *node = list_entry(p, struct node, list);
|
|
q = p->next;
|
|
if (node->index & (1U<<31)) {
|
|
list_del_init(p);
|
|
list_add(p, &tree->chunks);
|
|
}
|
|
}
|
|
spin_unlock(&hash_lock);
|
|
|
|
prune_tree_chunks(tree, true);
|
|
|
|
spin_lock(&hash_lock);
|
|
if (!tree->root && !tree->goner) {
|
|
tree->goner = 1;
|
|
spin_unlock(&hash_lock);
|
|
mutex_lock(&audit_filter_mutex);
|
|
kill_rules(audit_context(), tree);
|
|
list_del_init(&tree->list);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
prune_one(tree);
|
|
} else {
|
|
spin_unlock(&hash_lock);
|
|
}
|
|
}
|
|
|
|
static void audit_schedule_prune(void);
|
|
|
|
/* called with audit_filter_mutex */
|
|
int audit_remove_tree_rule(struct audit_krule *rule)
|
|
{
|
|
struct audit_tree *tree;
|
|
tree = rule->tree;
|
|
if (tree) {
|
|
spin_lock(&hash_lock);
|
|
list_del_init(&rule->rlist);
|
|
if (list_empty(&tree->rules) && !tree->goner) {
|
|
tree->root = NULL;
|
|
list_del_init(&tree->same_root);
|
|
tree->goner = 1;
|
|
list_move(&tree->list, &prune_list);
|
|
rule->tree = NULL;
|
|
spin_unlock(&hash_lock);
|
|
audit_schedule_prune();
|
|
return 1;
|
|
}
|
|
rule->tree = NULL;
|
|
spin_unlock(&hash_lock);
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int compare_root(struct vfsmount *mnt, void *arg)
|
|
{
|
|
return inode_to_key(d_backing_inode(mnt->mnt_root)) ==
|
|
(unsigned long)arg;
|
|
}
|
|
|
|
void audit_trim_trees(void)
|
|
{
|
|
struct list_head cursor;
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
list_add(&cursor, &tree_list);
|
|
while (cursor.next != &tree_list) {
|
|
struct audit_tree *tree;
|
|
struct path path;
|
|
struct vfsmount *root_mnt;
|
|
struct node *node;
|
|
int err;
|
|
|
|
tree = container_of(cursor.next, struct audit_tree, list);
|
|
get_tree(tree);
|
|
list_del(&cursor);
|
|
list_add(&cursor, &tree->list);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
err = kern_path(tree->pathname, 0, &path);
|
|
if (err)
|
|
goto skip_it;
|
|
|
|
root_mnt = collect_mounts(&path);
|
|
path_put(&path);
|
|
if (IS_ERR(root_mnt))
|
|
goto skip_it;
|
|
|
|
spin_lock(&hash_lock);
|
|
list_for_each_entry(node, &tree->chunks, list) {
|
|
struct audit_chunk *chunk = find_chunk(node);
|
|
/* this could be NULL if the watch is dying else where... */
|
|
node->index |= 1U<<31;
|
|
if (iterate_mounts(compare_root,
|
|
(void *)(chunk->key),
|
|
root_mnt))
|
|
node->index &= ~(1U<<31);
|
|
}
|
|
spin_unlock(&hash_lock);
|
|
trim_marked(tree);
|
|
drop_collected_mounts(root_mnt);
|
|
skip_it:
|
|
put_tree(tree);
|
|
mutex_lock(&audit_filter_mutex);
|
|
}
|
|
list_del(&cursor);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
}
|
|
|
|
int audit_make_tree(struct audit_krule *rule, char *pathname, u32 op)
|
|
{
|
|
|
|
if (pathname[0] != '/' ||
|
|
rule->listnr != AUDIT_FILTER_EXIT ||
|
|
op != Audit_equal ||
|
|
rule->inode_f || rule->watch || rule->tree)
|
|
return -EINVAL;
|
|
rule->tree = alloc_tree(pathname);
|
|
if (!rule->tree)
|
|
return -ENOMEM;
|
|
return 0;
|
|
}
|
|
|
|
void audit_put_tree(struct audit_tree *tree)
|
|
{
|
|
put_tree(tree);
|
|
}
|
|
|
|
static int tag_mount(struct vfsmount *mnt, void *arg)
|
|
{
|
|
return tag_chunk(d_backing_inode(mnt->mnt_root), arg);
|
|
}
|
|
|
|
/*
|
|
* That gets run when evict_chunk() ends up needing to kill audit_tree.
|
|
* Runs from a separate thread.
|
|
*/
|
|
static int prune_tree_thread(void *unused)
|
|
{
|
|
for (;;) {
|
|
if (list_empty(&prune_list)) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
}
|
|
|
|
audit_ctl_lock();
|
|
mutex_lock(&audit_filter_mutex);
|
|
|
|
while (!list_empty(&prune_list)) {
|
|
struct audit_tree *victim;
|
|
|
|
victim = list_entry(prune_list.next,
|
|
struct audit_tree, list);
|
|
list_del_init(&victim->list);
|
|
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
prune_one(victim);
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
}
|
|
|
|
mutex_unlock(&audit_filter_mutex);
|
|
audit_ctl_unlock();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int audit_launch_prune(void)
|
|
{
|
|
if (prune_thread)
|
|
return 0;
|
|
prune_thread = kthread_run(prune_tree_thread, NULL,
|
|
"audit_prune_tree");
|
|
if (IS_ERR(prune_thread)) {
|
|
pr_err("cannot start thread audit_prune_tree");
|
|
prune_thread = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* called with audit_filter_mutex */
|
|
int audit_add_tree_rule(struct audit_krule *rule)
|
|
{
|
|
struct audit_tree *seed = rule->tree, *tree;
|
|
struct path path;
|
|
struct vfsmount *mnt;
|
|
int err;
|
|
|
|
rule->tree = NULL;
|
|
list_for_each_entry(tree, &tree_list, list) {
|
|
if (!strcmp(seed->pathname, tree->pathname)) {
|
|
put_tree(seed);
|
|
rule->tree = tree;
|
|
list_add(&rule->rlist, &tree->rules);
|
|
return 0;
|
|
}
|
|
}
|
|
tree = seed;
|
|
list_add(&tree->list, &tree_list);
|
|
list_add(&rule->rlist, &tree->rules);
|
|
/* do not set rule->tree yet */
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
if (unlikely(!prune_thread)) {
|
|
err = audit_launch_prune();
|
|
if (err)
|
|
goto Err;
|
|
}
|
|
|
|
err = kern_path(tree->pathname, 0, &path);
|
|
if (err)
|
|
goto Err;
|
|
mnt = collect_mounts(&path);
|
|
path_put(&path);
|
|
if (IS_ERR(mnt)) {
|
|
err = PTR_ERR(mnt);
|
|
goto Err;
|
|
}
|
|
|
|
get_tree(tree);
|
|
err = iterate_mounts(tag_mount, tree, mnt);
|
|
drop_collected_mounts(mnt);
|
|
|
|
if (!err) {
|
|
struct node *node;
|
|
spin_lock(&hash_lock);
|
|
list_for_each_entry(node, &tree->chunks, list)
|
|
node->index &= ~(1U<<31);
|
|
spin_unlock(&hash_lock);
|
|
} else {
|
|
trim_marked(tree);
|
|
goto Err;
|
|
}
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
if (list_empty(&rule->rlist)) {
|
|
put_tree(tree);
|
|
return -ENOENT;
|
|
}
|
|
rule->tree = tree;
|
|
put_tree(tree);
|
|
|
|
return 0;
|
|
Err:
|
|
mutex_lock(&audit_filter_mutex);
|
|
list_del_init(&tree->list);
|
|
list_del_init(&tree->rules);
|
|
put_tree(tree);
|
|
return err;
|
|
}
|
|
|
|
int audit_tag_tree(char *old, char *new)
|
|
{
|
|
struct list_head cursor, barrier;
|
|
int failed = 0;
|
|
struct path path1, path2;
|
|
struct vfsmount *tagged;
|
|
int err;
|
|
|
|
err = kern_path(new, 0, &path2);
|
|
if (err)
|
|
return err;
|
|
tagged = collect_mounts(&path2);
|
|
path_put(&path2);
|
|
if (IS_ERR(tagged))
|
|
return PTR_ERR(tagged);
|
|
|
|
err = kern_path(old, 0, &path1);
|
|
if (err) {
|
|
drop_collected_mounts(tagged);
|
|
return err;
|
|
}
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
list_add(&barrier, &tree_list);
|
|
list_add(&cursor, &barrier);
|
|
|
|
while (cursor.next != &tree_list) {
|
|
struct audit_tree *tree;
|
|
int good_one = 0;
|
|
|
|
tree = container_of(cursor.next, struct audit_tree, list);
|
|
get_tree(tree);
|
|
list_del(&cursor);
|
|
list_add(&cursor, &tree->list);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
err = kern_path(tree->pathname, 0, &path2);
|
|
if (!err) {
|
|
good_one = path_is_under(&path1, &path2);
|
|
path_put(&path2);
|
|
}
|
|
|
|
if (!good_one) {
|
|
put_tree(tree);
|
|
mutex_lock(&audit_filter_mutex);
|
|
continue;
|
|
}
|
|
|
|
failed = iterate_mounts(tag_mount, tree, tagged);
|
|
if (failed) {
|
|
put_tree(tree);
|
|
mutex_lock(&audit_filter_mutex);
|
|
break;
|
|
}
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
spin_lock(&hash_lock);
|
|
if (!tree->goner) {
|
|
list_del(&tree->list);
|
|
list_add(&tree->list, &tree_list);
|
|
}
|
|
spin_unlock(&hash_lock);
|
|
put_tree(tree);
|
|
}
|
|
|
|
while (barrier.prev != &tree_list) {
|
|
struct audit_tree *tree;
|
|
|
|
tree = container_of(barrier.prev, struct audit_tree, list);
|
|
get_tree(tree);
|
|
list_del(&tree->list);
|
|
list_add(&tree->list, &barrier);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
if (!failed) {
|
|
struct node *node;
|
|
spin_lock(&hash_lock);
|
|
list_for_each_entry(node, &tree->chunks, list)
|
|
node->index &= ~(1U<<31);
|
|
spin_unlock(&hash_lock);
|
|
} else {
|
|
trim_marked(tree);
|
|
}
|
|
|
|
put_tree(tree);
|
|
mutex_lock(&audit_filter_mutex);
|
|
}
|
|
list_del(&barrier);
|
|
list_del(&cursor);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
path_put(&path1);
|
|
drop_collected_mounts(tagged);
|
|
return failed;
|
|
}
|
|
|
|
|
|
static void audit_schedule_prune(void)
|
|
{
|
|
wake_up_process(prune_thread);
|
|
}
|
|
|
|
/*
|
|
* ... and that one is done if evict_chunk() decides to delay until the end
|
|
* of syscall. Runs synchronously.
|
|
*/
|
|
void audit_kill_trees(struct audit_context *context)
|
|
{
|
|
struct list_head *list = &context->killed_trees;
|
|
|
|
audit_ctl_lock();
|
|
mutex_lock(&audit_filter_mutex);
|
|
|
|
while (!list_empty(list)) {
|
|
struct audit_tree *victim;
|
|
|
|
victim = list_entry(list->next, struct audit_tree, list);
|
|
kill_rules(context, victim);
|
|
list_del_init(&victim->list);
|
|
|
|
mutex_unlock(&audit_filter_mutex);
|
|
|
|
prune_one(victim);
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
}
|
|
|
|
mutex_unlock(&audit_filter_mutex);
|
|
audit_ctl_unlock();
|
|
}
|
|
|
|
/*
|
|
* Here comes the stuff asynchronous to auditctl operations
|
|
*/
|
|
|
|
static void evict_chunk(struct audit_chunk *chunk)
|
|
{
|
|
struct audit_tree *owner;
|
|
struct list_head *postponed = audit_killed_trees();
|
|
int need_prune = 0;
|
|
int n;
|
|
|
|
mutex_lock(&audit_filter_mutex);
|
|
spin_lock(&hash_lock);
|
|
while (!list_empty(&chunk->trees)) {
|
|
owner = list_entry(chunk->trees.next,
|
|
struct audit_tree, same_root);
|
|
owner->goner = 1;
|
|
owner->root = NULL;
|
|
list_del_init(&owner->same_root);
|
|
spin_unlock(&hash_lock);
|
|
if (!postponed) {
|
|
kill_rules(audit_context(), owner);
|
|
list_move(&owner->list, &prune_list);
|
|
need_prune = 1;
|
|
} else {
|
|
list_move(&owner->list, postponed);
|
|
}
|
|
spin_lock(&hash_lock);
|
|
}
|
|
list_del_rcu(&chunk->hash);
|
|
for (n = 0; n < chunk->count; n++)
|
|
list_del_init(&chunk->owners[n].list);
|
|
spin_unlock(&hash_lock);
|
|
mutex_unlock(&audit_filter_mutex);
|
|
if (need_prune)
|
|
audit_schedule_prune();
|
|
}
|
|
|
|
static int audit_tree_handle_event(struct fsnotify_mark *mark, u32 mask,
|
|
struct inode *inode, struct inode *dir,
|
|
const struct qstr *file_name)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void audit_tree_freeing_mark(struct fsnotify_mark *mark,
|
|
struct fsnotify_group *group)
|
|
{
|
|
struct audit_chunk *chunk;
|
|
|
|
mutex_lock(&mark->group->mark_mutex);
|
|
spin_lock(&hash_lock);
|
|
chunk = mark_chunk(mark);
|
|
replace_mark_chunk(mark, NULL);
|
|
spin_unlock(&hash_lock);
|
|
mutex_unlock(&mark->group->mark_mutex);
|
|
if (chunk) {
|
|
evict_chunk(chunk);
|
|
audit_mark_put_chunk(chunk);
|
|
}
|
|
|
|
/*
|
|
* We are guaranteed to have at least one reference to the mark from
|
|
* either the inode or the caller of fsnotify_destroy_mark().
|
|
*/
|
|
BUG_ON(refcount_read(&mark->refcnt) < 1);
|
|
}
|
|
|
|
static const struct fsnotify_ops audit_tree_ops = {
|
|
.handle_inode_event = audit_tree_handle_event,
|
|
.freeing_mark = audit_tree_freeing_mark,
|
|
.free_mark = audit_tree_destroy_watch,
|
|
};
|
|
|
|
static int __init audit_tree_init(void)
|
|
{
|
|
int i;
|
|
|
|
audit_tree_mark_cachep = KMEM_CACHE(audit_tree_mark, SLAB_PANIC);
|
|
|
|
audit_tree_group = fsnotify_alloc_group(&audit_tree_ops);
|
|
if (IS_ERR(audit_tree_group))
|
|
audit_panic("cannot initialize fsnotify group for rectree watches");
|
|
|
|
for (i = 0; i < HASH_SIZE; i++)
|
|
INIT_LIST_HEAD(&chunk_hash_heads[i]);
|
|
|
|
return 0;
|
|
}
|
|
__initcall(audit_tree_init);
|