linux_dsm_epyc7002/kernel/kexec_file.c
Xunlei Pang 9b492cf580 kexec: introduce a protection mechanism for the crashkernel reserved memory
For the cases that some kernel (module) path stamps the crash reserved
memory(already mapped by the kernel) where has been loaded the second
kernel data, the kdump kernel will probably fail to boot when panic
happens (or even not happens) leaving the culprit at large, this is
unacceptable.

The patch introduces a mechanism for detecting such cases:

1) After each crash kexec loading, it simply marks the reserved memory
   regions readonly since we no longer access it after that.  When someone
   stamps the region, the first kernel will panic and trigger the kdump.
   The weak arch_kexec_protect_crashkres() is introduced to do the actual
   protection.

2) To allow multiple loading, once 1) was done we also need to remark
   the reserved memory to readwrite each time a system call related to
   kdump is made.  The weak arch_kexec_unprotect_crashkres() is introduced
   to do the actual protection.

The architecture can make its specific implementation by overriding
arch_kexec_protect_crashkres() and arch_kexec_unprotect_crashkres().

Signed-off-by: Xunlei Pang <xlpang@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Minfei Huang <mhuang@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Baoquan He <bhe@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-23 17:04:14 -07:00

1001 lines
24 KiB
C

/*
* kexec: kexec_file_load system call
*
* Copyright (C) 2014 Red Hat Inc.
* Authors:
* Vivek Goyal <vgoyal@redhat.com>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/capability.h>
#include <linux/mm.h>
#include <linux/file.h>
#include <linux/slab.h>
#include <linux/kexec.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/fs.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <linux/syscalls.h>
#include <linux/vmalloc.h>
#include "kexec_internal.h"
/*
* Declare these symbols weak so that if architecture provides a purgatory,
* these will be overridden.
*/
char __weak kexec_purgatory[0];
size_t __weak kexec_purgatory_size = 0;
static int kexec_calculate_store_digests(struct kimage *image);
/* Architectures can provide this probe function */
int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
unsigned long buf_len)
{
return -ENOEXEC;
}
void * __weak arch_kexec_kernel_image_load(struct kimage *image)
{
return ERR_PTR(-ENOEXEC);
}
int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
{
return -EINVAL;
}
#ifdef CONFIG_KEXEC_VERIFY_SIG
int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
unsigned long buf_len)
{
return -EKEYREJECTED;
}
#endif
/* Apply relocations of type RELA */
int __weak
arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
unsigned int relsec)
{
pr_err("RELA relocation unsupported.\n");
return -ENOEXEC;
}
/* Apply relocations of type REL */
int __weak
arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
unsigned int relsec)
{
pr_err("REL relocation unsupported.\n");
return -ENOEXEC;
}
/*
* Free up memory used by kernel, initrd, and command line. This is temporary
* memory allocation which is not needed any more after these buffers have
* been loaded into separate segments and have been copied elsewhere.
*/
void kimage_file_post_load_cleanup(struct kimage *image)
{
struct purgatory_info *pi = &image->purgatory_info;
vfree(image->kernel_buf);
image->kernel_buf = NULL;
vfree(image->initrd_buf);
image->initrd_buf = NULL;
kfree(image->cmdline_buf);
image->cmdline_buf = NULL;
vfree(pi->purgatory_buf);
pi->purgatory_buf = NULL;
vfree(pi->sechdrs);
pi->sechdrs = NULL;
/* See if architecture has anything to cleanup post load */
arch_kimage_file_post_load_cleanup(image);
/*
* Above call should have called into bootloader to free up
* any data stored in kimage->image_loader_data. It should
* be ok now to free it up.
*/
kfree(image->image_loader_data);
image->image_loader_data = NULL;
}
/*
* In file mode list of segments is prepared by kernel. Copy relevant
* data from user space, do error checking, prepare segment list
*/
static int
kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
const char __user *cmdline_ptr,
unsigned long cmdline_len, unsigned flags)
{
int ret = 0;
void *ldata;
loff_t size;
ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
&size, INT_MAX, READING_KEXEC_IMAGE);
if (ret)
return ret;
image->kernel_buf_len = size;
/* Call arch image probe handlers */
ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
image->kernel_buf_len);
if (ret)
goto out;
#ifdef CONFIG_KEXEC_VERIFY_SIG
ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
image->kernel_buf_len);
if (ret) {
pr_debug("kernel signature verification failed.\n");
goto out;
}
pr_debug("kernel signature verification successful.\n");
#endif
/* It is possible that there no initramfs is being loaded */
if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
&size, INT_MAX,
READING_KEXEC_INITRAMFS);
if (ret)
goto out;
image->initrd_buf_len = size;
}
if (cmdline_len) {
image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
if (!image->cmdline_buf) {
ret = -ENOMEM;
goto out;
}
ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
cmdline_len);
if (ret) {
ret = -EFAULT;
goto out;
}
image->cmdline_buf_len = cmdline_len;
/* command line should be a string with last byte null */
if (image->cmdline_buf[cmdline_len - 1] != '\0') {
ret = -EINVAL;
goto out;
}
}
/* Call arch image load handlers */
ldata = arch_kexec_kernel_image_load(image);
if (IS_ERR(ldata)) {
ret = PTR_ERR(ldata);
goto out;
}
image->image_loader_data = ldata;
out:
/* In case of error, free up all allocated memory in this function */
if (ret)
kimage_file_post_load_cleanup(image);
return ret;
}
static int
kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
int initrd_fd, const char __user *cmdline_ptr,
unsigned long cmdline_len, unsigned long flags)
{
int ret;
struct kimage *image;
bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
image = do_kimage_alloc_init();
if (!image)
return -ENOMEM;
image->file_mode = 1;
if (kexec_on_panic) {
/* Enable special crash kernel control page alloc policy. */
image->control_page = crashk_res.start;
image->type = KEXEC_TYPE_CRASH;
}
ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
cmdline_ptr, cmdline_len, flags);
if (ret)
goto out_free_image;
ret = sanity_check_segment_list(image);
if (ret)
goto out_free_post_load_bufs;
ret = -ENOMEM;
image->control_code_page = kimage_alloc_control_pages(image,
get_order(KEXEC_CONTROL_PAGE_SIZE));
if (!image->control_code_page) {
pr_err("Could not allocate control_code_buffer\n");
goto out_free_post_load_bufs;
}
if (!kexec_on_panic) {
image->swap_page = kimage_alloc_control_pages(image, 0);
if (!image->swap_page) {
pr_err("Could not allocate swap buffer\n");
goto out_free_control_pages;
}
}
*rimage = image;
return 0;
out_free_control_pages:
kimage_free_page_list(&image->control_pages);
out_free_post_load_bufs:
kimage_file_post_load_cleanup(image);
out_free_image:
kfree(image);
return ret;
}
SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
unsigned long, cmdline_len, const char __user *, cmdline_ptr,
unsigned long, flags)
{
int ret = 0, i;
struct kimage **dest_image, *image;
/* We only trust the superuser with rebooting the system. */
if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
return -EPERM;
/* Make sure we have a legal set of flags */
if (flags != (flags & KEXEC_FILE_FLAGS))
return -EINVAL;
image = NULL;
if (!mutex_trylock(&kexec_mutex))
return -EBUSY;
dest_image = &kexec_image;
if (flags & KEXEC_FILE_ON_CRASH) {
dest_image = &kexec_crash_image;
if (kexec_crash_image)
arch_kexec_unprotect_crashkres();
}
if (flags & KEXEC_FILE_UNLOAD)
goto exchange;
/*
* In case of crash, new kernel gets loaded in reserved region. It is
* same memory where old crash kernel might be loaded. Free any
* current crash dump kernel before we corrupt it.
*/
if (flags & KEXEC_FILE_ON_CRASH)
kimage_free(xchg(&kexec_crash_image, NULL));
ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
cmdline_len, flags);
if (ret)
goto out;
ret = machine_kexec_prepare(image);
if (ret)
goto out;
ret = kexec_calculate_store_digests(image);
if (ret)
goto out;
for (i = 0; i < image->nr_segments; i++) {
struct kexec_segment *ksegment;
ksegment = &image->segment[i];
pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
i, ksegment->buf, ksegment->bufsz, ksegment->mem,
ksegment->memsz);
ret = kimage_load_segment(image, &image->segment[i]);
if (ret)
goto out;
}
kimage_terminate(image);
/*
* Free up any temporary buffers allocated which are not needed
* after image has been loaded
*/
kimage_file_post_load_cleanup(image);
exchange:
image = xchg(dest_image, image);
out:
if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
arch_kexec_protect_crashkres();
mutex_unlock(&kexec_mutex);
kimage_free(image);
return ret;
}
static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
struct kexec_buf *kbuf)
{
struct kimage *image = kbuf->image;
unsigned long temp_start, temp_end;
temp_end = min(end, kbuf->buf_max);
temp_start = temp_end - kbuf->memsz;
do {
/* align down start */
temp_start = temp_start & (~(kbuf->buf_align - 1));
if (temp_start < start || temp_start < kbuf->buf_min)
return 0;
temp_end = temp_start + kbuf->memsz - 1;
/*
* Make sure this does not conflict with any of existing
* segments
*/
if (kimage_is_destination_range(image, temp_start, temp_end)) {
temp_start = temp_start - PAGE_SIZE;
continue;
}
/* We found a suitable memory range */
break;
} while (1);
/* If we are here, we found a suitable memory range */
kbuf->mem = temp_start;
/* Success, stop navigating through remaining System RAM ranges */
return 1;
}
static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
struct kexec_buf *kbuf)
{
struct kimage *image = kbuf->image;
unsigned long temp_start, temp_end;
temp_start = max(start, kbuf->buf_min);
do {
temp_start = ALIGN(temp_start, kbuf->buf_align);
temp_end = temp_start + kbuf->memsz - 1;
if (temp_end > end || temp_end > kbuf->buf_max)
return 0;
/*
* Make sure this does not conflict with any of existing
* segments
*/
if (kimage_is_destination_range(image, temp_start, temp_end)) {
temp_start = temp_start + PAGE_SIZE;
continue;
}
/* We found a suitable memory range */
break;
} while (1);
/* If we are here, we found a suitable memory range */
kbuf->mem = temp_start;
/* Success, stop navigating through remaining System RAM ranges */
return 1;
}
static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
{
struct kexec_buf *kbuf = (struct kexec_buf *)arg;
unsigned long sz = end - start + 1;
/* Returning 0 will take to next memory range */
if (sz < kbuf->memsz)
return 0;
if (end < kbuf->buf_min || start > kbuf->buf_max)
return 0;
/*
* Allocate memory top down with-in ram range. Otherwise bottom up
* allocation.
*/
if (kbuf->top_down)
return locate_mem_hole_top_down(start, end, kbuf);
return locate_mem_hole_bottom_up(start, end, kbuf);
}
/*
* Helper function for placing a buffer in a kexec segment. This assumes
* that kexec_mutex is held.
*/
int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
unsigned long memsz, unsigned long buf_align,
unsigned long buf_min, unsigned long buf_max,
bool top_down, unsigned long *load_addr)
{
struct kexec_segment *ksegment;
struct kexec_buf buf, *kbuf;
int ret;
/* Currently adding segment this way is allowed only in file mode */
if (!image->file_mode)
return -EINVAL;
if (image->nr_segments >= KEXEC_SEGMENT_MAX)
return -EINVAL;
/*
* Make sure we are not trying to add buffer after allocating
* control pages. All segments need to be placed first before
* any control pages are allocated. As control page allocation
* logic goes through list of segments to make sure there are
* no destination overlaps.
*/
if (!list_empty(&image->control_pages)) {
WARN_ON(1);
return -EINVAL;
}
memset(&buf, 0, sizeof(struct kexec_buf));
kbuf = &buf;
kbuf->image = image;
kbuf->buffer = buffer;
kbuf->bufsz = bufsz;
kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
kbuf->buf_align = max(buf_align, PAGE_SIZE);
kbuf->buf_min = buf_min;
kbuf->buf_max = buf_max;
kbuf->top_down = top_down;
/* Walk the RAM ranges and allocate a suitable range for the buffer */
if (image->type == KEXEC_TYPE_CRASH)
ret = walk_iomem_res_desc(crashk_res.desc,
IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
crashk_res.start, crashk_res.end, kbuf,
locate_mem_hole_callback);
else
ret = walk_system_ram_res(0, -1, kbuf,
locate_mem_hole_callback);
if (ret != 1) {
/* A suitable memory range could not be found for buffer */
return -EADDRNOTAVAIL;
}
/* Found a suitable memory range */
ksegment = &image->segment[image->nr_segments];
ksegment->kbuf = kbuf->buffer;
ksegment->bufsz = kbuf->bufsz;
ksegment->mem = kbuf->mem;
ksegment->memsz = kbuf->memsz;
image->nr_segments++;
*load_addr = ksegment->mem;
return 0;
}
/* Calculate and store the digest of segments */
static int kexec_calculate_store_digests(struct kimage *image)
{
struct crypto_shash *tfm;
struct shash_desc *desc;
int ret = 0, i, j, zero_buf_sz, sha_region_sz;
size_t desc_size, nullsz;
char *digest;
void *zero_buf;
struct kexec_sha_region *sha_regions;
struct purgatory_info *pi = &image->purgatory_info;
zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
zero_buf_sz = PAGE_SIZE;
tfm = crypto_alloc_shash("sha256", 0, 0);
if (IS_ERR(tfm)) {
ret = PTR_ERR(tfm);
goto out;
}
desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
desc = kzalloc(desc_size, GFP_KERNEL);
if (!desc) {
ret = -ENOMEM;
goto out_free_tfm;
}
sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
sha_regions = vzalloc(sha_region_sz);
if (!sha_regions)
goto out_free_desc;
desc->tfm = tfm;
desc->flags = 0;
ret = crypto_shash_init(desc);
if (ret < 0)
goto out_free_sha_regions;
digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
if (!digest) {
ret = -ENOMEM;
goto out_free_sha_regions;
}
for (j = i = 0; i < image->nr_segments; i++) {
struct kexec_segment *ksegment;
ksegment = &image->segment[i];
/*
* Skip purgatory as it will be modified once we put digest
* info in purgatory.
*/
if (ksegment->kbuf == pi->purgatory_buf)
continue;
ret = crypto_shash_update(desc, ksegment->kbuf,
ksegment->bufsz);
if (ret)
break;
/*
* Assume rest of the buffer is filled with zero and
* update digest accordingly.
*/
nullsz = ksegment->memsz - ksegment->bufsz;
while (nullsz) {
unsigned long bytes = nullsz;
if (bytes > zero_buf_sz)
bytes = zero_buf_sz;
ret = crypto_shash_update(desc, zero_buf, bytes);
if (ret)
break;
nullsz -= bytes;
}
if (ret)
break;
sha_regions[j].start = ksegment->mem;
sha_regions[j].len = ksegment->memsz;
j++;
}
if (!ret) {
ret = crypto_shash_final(desc, digest);
if (ret)
goto out_free_digest;
ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
sha_regions, sha_region_sz, 0);
if (ret)
goto out_free_digest;
ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
digest, SHA256_DIGEST_SIZE, 0);
if (ret)
goto out_free_digest;
}
out_free_digest:
kfree(digest);
out_free_sha_regions:
vfree(sha_regions);
out_free_desc:
kfree(desc);
out_free_tfm:
kfree(tfm);
out:
return ret;
}
/* Actually load purgatory. Lot of code taken from kexec-tools */
static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
unsigned long max, int top_down)
{
struct purgatory_info *pi = &image->purgatory_info;
unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
unsigned char *buf_addr, *src;
int i, ret = 0, entry_sidx = -1;
const Elf_Shdr *sechdrs_c;
Elf_Shdr *sechdrs = NULL;
void *purgatory_buf = NULL;
/*
* sechdrs_c points to section headers in purgatory and are read
* only. No modifications allowed.
*/
sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
/*
* We can not modify sechdrs_c[] and its fields. It is read only.
* Copy it over to a local copy where one can store some temporary
* data and free it at the end. We need to modify ->sh_addr and
* ->sh_offset fields to keep track of permanent and temporary
* locations of sections.
*/
sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
if (!sechdrs)
return -ENOMEM;
memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
/*
* We seem to have multiple copies of sections. First copy is which
* is embedded in kernel in read only section. Some of these sections
* will be copied to a temporary buffer and relocated. And these
* sections will finally be copied to their final destination at
* segment load time.
*
* Use ->sh_offset to reflect section address in memory. It will
* point to original read only copy if section is not allocatable.
* Otherwise it will point to temporary copy which will be relocated.
*
* Use ->sh_addr to contain final address of the section where it
* will go during execution time.
*/
for (i = 0; i < pi->ehdr->e_shnum; i++) {
if (sechdrs[i].sh_type == SHT_NOBITS)
continue;
sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
sechdrs[i].sh_offset;
}
/*
* Identify entry point section and make entry relative to section
* start.
*/
entry = pi->ehdr->e_entry;
for (i = 0; i < pi->ehdr->e_shnum; i++) {
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
continue;
if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
continue;
/* Make entry section relative */
if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
pi->ehdr->e_entry)) {
entry_sidx = i;
entry -= sechdrs[i].sh_addr;
break;
}
}
/* Determine how much memory is needed to load relocatable object. */
buf_align = 1;
bss_align = 1;
buf_sz = 0;
bss_sz = 0;
for (i = 0; i < pi->ehdr->e_shnum; i++) {
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
continue;
align = sechdrs[i].sh_addralign;
if (sechdrs[i].sh_type != SHT_NOBITS) {
if (buf_align < align)
buf_align = align;
buf_sz = ALIGN(buf_sz, align);
buf_sz += sechdrs[i].sh_size;
} else {
/* bss section */
if (bss_align < align)
bss_align = align;
bss_sz = ALIGN(bss_sz, align);
bss_sz += sechdrs[i].sh_size;
}
}
/* Determine the bss padding required to align bss properly */
bss_pad = 0;
if (buf_sz & (bss_align - 1))
bss_pad = bss_align - (buf_sz & (bss_align - 1));
memsz = buf_sz + bss_pad + bss_sz;
/* Allocate buffer for purgatory */
purgatory_buf = vzalloc(buf_sz);
if (!purgatory_buf) {
ret = -ENOMEM;
goto out;
}
if (buf_align < bss_align)
buf_align = bss_align;
/* Add buffer to segment list */
ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
buf_align, min, max, top_down,
&pi->purgatory_load_addr);
if (ret)
goto out;
/* Load SHF_ALLOC sections */
buf_addr = purgatory_buf;
load_addr = curr_load_addr = pi->purgatory_load_addr;
bss_addr = load_addr + buf_sz + bss_pad;
for (i = 0; i < pi->ehdr->e_shnum; i++) {
if (!(sechdrs[i].sh_flags & SHF_ALLOC))
continue;
align = sechdrs[i].sh_addralign;
if (sechdrs[i].sh_type != SHT_NOBITS) {
curr_load_addr = ALIGN(curr_load_addr, align);
offset = curr_load_addr - load_addr;
/* We already modifed ->sh_offset to keep src addr */
src = (char *) sechdrs[i].sh_offset;
memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
/* Store load address and source address of section */
sechdrs[i].sh_addr = curr_load_addr;
/*
* This section got copied to temporary buffer. Update
* ->sh_offset accordingly.
*/
sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
/* Advance to the next address */
curr_load_addr += sechdrs[i].sh_size;
} else {
bss_addr = ALIGN(bss_addr, align);
sechdrs[i].sh_addr = bss_addr;
bss_addr += sechdrs[i].sh_size;
}
}
/* Update entry point based on load address of text section */
if (entry_sidx >= 0)
entry += sechdrs[entry_sidx].sh_addr;
/* Make kernel jump to purgatory after shutdown */
image->start = entry;
/* Used later to get/set symbol values */
pi->sechdrs = sechdrs;
/*
* Used later to identify which section is purgatory and skip it
* from checksumming.
*/
pi->purgatory_buf = purgatory_buf;
return ret;
out:
vfree(sechdrs);
vfree(purgatory_buf);
return ret;
}
static int kexec_apply_relocations(struct kimage *image)
{
int i, ret;
struct purgatory_info *pi = &image->purgatory_info;
Elf_Shdr *sechdrs = pi->sechdrs;
/* Apply relocations */
for (i = 0; i < pi->ehdr->e_shnum; i++) {
Elf_Shdr *section, *symtab;
if (sechdrs[i].sh_type != SHT_RELA &&
sechdrs[i].sh_type != SHT_REL)
continue;
/*
* For section of type SHT_RELA/SHT_REL,
* ->sh_link contains section header index of associated
* symbol table. And ->sh_info contains section header
* index of section to which relocations apply.
*/
if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
sechdrs[i].sh_link >= pi->ehdr->e_shnum)
return -ENOEXEC;
section = &sechdrs[sechdrs[i].sh_info];
symtab = &sechdrs[sechdrs[i].sh_link];
if (!(section->sh_flags & SHF_ALLOC))
continue;
/*
* symtab->sh_link contain section header index of associated
* string table.
*/
if (symtab->sh_link >= pi->ehdr->e_shnum)
/* Invalid section number? */
continue;
/*
* Respective architecture needs to provide support for applying
* relocations of type SHT_RELA/SHT_REL.
*/
if (sechdrs[i].sh_type == SHT_RELA)
ret = arch_kexec_apply_relocations_add(pi->ehdr,
sechdrs, i);
else if (sechdrs[i].sh_type == SHT_REL)
ret = arch_kexec_apply_relocations(pi->ehdr,
sechdrs, i);
if (ret)
return ret;
}
return 0;
}
/* Load relocatable purgatory object and relocate it appropriately */
int kexec_load_purgatory(struct kimage *image, unsigned long min,
unsigned long max, int top_down,
unsigned long *load_addr)
{
struct purgatory_info *pi = &image->purgatory_info;
int ret;
if (kexec_purgatory_size <= 0)
return -EINVAL;
if (kexec_purgatory_size < sizeof(Elf_Ehdr))
return -ENOEXEC;
pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
|| pi->ehdr->e_type != ET_REL
|| !elf_check_arch(pi->ehdr)
|| pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
return -ENOEXEC;
if (pi->ehdr->e_shoff >= kexec_purgatory_size
|| (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
kexec_purgatory_size - pi->ehdr->e_shoff))
return -ENOEXEC;
ret = __kexec_load_purgatory(image, min, max, top_down);
if (ret)
return ret;
ret = kexec_apply_relocations(image);
if (ret)
goto out;
*load_addr = pi->purgatory_load_addr;
return 0;
out:
vfree(pi->sechdrs);
vfree(pi->purgatory_buf);
return ret;
}
static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
const char *name)
{
Elf_Sym *syms;
Elf_Shdr *sechdrs;
Elf_Ehdr *ehdr;
int i, k;
const char *strtab;
if (!pi->sechdrs || !pi->ehdr)
return NULL;
sechdrs = pi->sechdrs;
ehdr = pi->ehdr;
for (i = 0; i < ehdr->e_shnum; i++) {
if (sechdrs[i].sh_type != SHT_SYMTAB)
continue;
if (sechdrs[i].sh_link >= ehdr->e_shnum)
/* Invalid strtab section number */
continue;
strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
syms = (Elf_Sym *)sechdrs[i].sh_offset;
/* Go through symbols for a match */
for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
continue;
if (strcmp(strtab + syms[k].st_name, name) != 0)
continue;
if (syms[k].st_shndx == SHN_UNDEF ||
syms[k].st_shndx >= ehdr->e_shnum) {
pr_debug("Symbol: %s has bad section index %d.\n",
name, syms[k].st_shndx);
return NULL;
}
/* Found the symbol we are looking for */
return &syms[k];
}
}
return NULL;
}
void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
{
struct purgatory_info *pi = &image->purgatory_info;
Elf_Sym *sym;
Elf_Shdr *sechdr;
sym = kexec_purgatory_find_symbol(pi, name);
if (!sym)
return ERR_PTR(-EINVAL);
sechdr = &pi->sechdrs[sym->st_shndx];
/*
* Returns the address where symbol will finally be loaded after
* kexec_load_segment()
*/
return (void *)(sechdr->sh_addr + sym->st_value);
}
/*
* Get or set value of a symbol. If "get_value" is true, symbol value is
* returned in buf otherwise symbol value is set based on value in buf.
*/
int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
void *buf, unsigned int size, bool get_value)
{
Elf_Sym *sym;
Elf_Shdr *sechdrs;
struct purgatory_info *pi = &image->purgatory_info;
char *sym_buf;
sym = kexec_purgatory_find_symbol(pi, name);
if (!sym)
return -EINVAL;
if (sym->st_size != size) {
pr_err("symbol %s size mismatch: expected %lu actual %u\n",
name, (unsigned long)sym->st_size, size);
return -EINVAL;
}
sechdrs = pi->sechdrs;
if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
pr_err("symbol %s is in a bss section. Cannot %s\n", name,
get_value ? "get" : "set");
return -EINVAL;
}
sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
sym->st_value;
if (get_value)
memcpy((void *)buf, sym_buf, size);
else
memcpy((void *)sym_buf, buf, size);
return 0;
}