mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 10:26:19 +07:00
d858d5695f
The functions where internally already only using the structure, so we need to just flip the interface. v2: rebase Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Cc: Imre Deak <imre.deak@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Acked-by: Imre Deak <imre.deak@intel.com> Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Link: https://patchwork.freedesktop.org/patch/msgid/20190613232156.34940-7-daniele.ceraolospurio@intel.com
480 lines
13 KiB
C
480 lines
13 KiB
C
/*
|
|
* Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Anhua Xu
|
|
* Kevin Tian <kevin.tian@intel.com>
|
|
*
|
|
* Contributors:
|
|
* Min He <min.he@intel.com>
|
|
* Bing Niu <bing.niu@intel.com>
|
|
* Zhi Wang <zhi.a.wang@intel.com>
|
|
*
|
|
*/
|
|
|
|
#include "i915_drv.h"
|
|
#include "gvt.h"
|
|
|
|
static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu)
|
|
{
|
|
enum intel_engine_id i;
|
|
struct intel_engine_cs *engine;
|
|
|
|
for_each_engine(engine, vgpu->gvt->dev_priv, i) {
|
|
if (!list_empty(workload_q_head(vgpu, i)))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* We give 2 seconds higher prio for vGPU during start */
|
|
#define GVT_SCHED_VGPU_PRI_TIME 2
|
|
|
|
struct vgpu_sched_data {
|
|
struct list_head lru_list;
|
|
struct intel_vgpu *vgpu;
|
|
bool active;
|
|
bool pri_sched;
|
|
ktime_t pri_time;
|
|
ktime_t sched_in_time;
|
|
ktime_t sched_time;
|
|
ktime_t left_ts;
|
|
ktime_t allocated_ts;
|
|
|
|
struct vgpu_sched_ctl sched_ctl;
|
|
};
|
|
|
|
struct gvt_sched_data {
|
|
struct intel_gvt *gvt;
|
|
struct hrtimer timer;
|
|
unsigned long period;
|
|
struct list_head lru_runq_head;
|
|
ktime_t expire_time;
|
|
};
|
|
|
|
static void vgpu_update_timeslice(struct intel_vgpu *vgpu, ktime_t cur_time)
|
|
{
|
|
ktime_t delta_ts;
|
|
struct vgpu_sched_data *vgpu_data;
|
|
|
|
if (!vgpu || vgpu == vgpu->gvt->idle_vgpu)
|
|
return;
|
|
|
|
vgpu_data = vgpu->sched_data;
|
|
delta_ts = ktime_sub(cur_time, vgpu_data->sched_in_time);
|
|
vgpu_data->sched_time = ktime_add(vgpu_data->sched_time, delta_ts);
|
|
vgpu_data->left_ts = ktime_sub(vgpu_data->left_ts, delta_ts);
|
|
vgpu_data->sched_in_time = cur_time;
|
|
}
|
|
|
|
#define GVT_TS_BALANCE_PERIOD_MS 100
|
|
#define GVT_TS_BALANCE_STAGE_NUM 10
|
|
|
|
static void gvt_balance_timeslice(struct gvt_sched_data *sched_data)
|
|
{
|
|
struct vgpu_sched_data *vgpu_data;
|
|
struct list_head *pos;
|
|
static u64 stage_check;
|
|
int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM;
|
|
|
|
/* The timeslice accumulation reset at stage 0, which is
|
|
* allocated again without adding previous debt.
|
|
*/
|
|
if (stage == 0) {
|
|
int total_weight = 0;
|
|
ktime_t fair_timeslice;
|
|
|
|
list_for_each(pos, &sched_data->lru_runq_head) {
|
|
vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
|
|
total_weight += vgpu_data->sched_ctl.weight;
|
|
}
|
|
|
|
list_for_each(pos, &sched_data->lru_runq_head) {
|
|
vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
|
|
fair_timeslice = ktime_divns(ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS),
|
|
total_weight) * vgpu_data->sched_ctl.weight;
|
|
|
|
vgpu_data->allocated_ts = fair_timeslice;
|
|
vgpu_data->left_ts = vgpu_data->allocated_ts;
|
|
}
|
|
} else {
|
|
list_for_each(pos, &sched_data->lru_runq_head) {
|
|
vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
|
|
|
|
/* timeslice for next 100ms should add the left/debt
|
|
* slice of previous stages.
|
|
*/
|
|
vgpu_data->left_ts += vgpu_data->allocated_ts;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void try_to_schedule_next_vgpu(struct intel_gvt *gvt)
|
|
{
|
|
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
|
|
enum intel_engine_id i;
|
|
struct intel_engine_cs *engine;
|
|
struct vgpu_sched_data *vgpu_data;
|
|
ktime_t cur_time;
|
|
|
|
/* no need to schedule if next_vgpu is the same with current_vgpu,
|
|
* let scheduler chose next_vgpu again by setting it to NULL.
|
|
*/
|
|
if (scheduler->next_vgpu == scheduler->current_vgpu) {
|
|
scheduler->next_vgpu = NULL;
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* after the flag is set, workload dispatch thread will
|
|
* stop dispatching workload for current vgpu
|
|
*/
|
|
scheduler->need_reschedule = true;
|
|
|
|
/* still have uncompleted workload? */
|
|
for_each_engine(engine, gvt->dev_priv, i) {
|
|
if (scheduler->current_workload[i])
|
|
return;
|
|
}
|
|
|
|
cur_time = ktime_get();
|
|
vgpu_update_timeslice(scheduler->current_vgpu, cur_time);
|
|
vgpu_data = scheduler->next_vgpu->sched_data;
|
|
vgpu_data->sched_in_time = cur_time;
|
|
|
|
/* switch current vgpu */
|
|
scheduler->current_vgpu = scheduler->next_vgpu;
|
|
scheduler->next_vgpu = NULL;
|
|
|
|
scheduler->need_reschedule = false;
|
|
|
|
/* wake up workload dispatch thread */
|
|
for_each_engine(engine, gvt->dev_priv, i)
|
|
wake_up(&scheduler->waitq[i]);
|
|
}
|
|
|
|
static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data)
|
|
{
|
|
struct vgpu_sched_data *vgpu_data;
|
|
struct intel_vgpu *vgpu = NULL;
|
|
struct list_head *head = &sched_data->lru_runq_head;
|
|
struct list_head *pos;
|
|
|
|
/* search a vgpu with pending workload */
|
|
list_for_each(pos, head) {
|
|
|
|
vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
|
|
if (!vgpu_has_pending_workload(vgpu_data->vgpu))
|
|
continue;
|
|
|
|
if (vgpu_data->pri_sched) {
|
|
if (ktime_before(ktime_get(), vgpu_data->pri_time)) {
|
|
vgpu = vgpu_data->vgpu;
|
|
break;
|
|
} else
|
|
vgpu_data->pri_sched = false;
|
|
}
|
|
|
|
/* Return the vGPU only if it has time slice left */
|
|
if (vgpu_data->left_ts > 0) {
|
|
vgpu = vgpu_data->vgpu;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return vgpu;
|
|
}
|
|
|
|
/* in nanosecond */
|
|
#define GVT_DEFAULT_TIME_SLICE 1000000
|
|
|
|
static void tbs_sched_func(struct gvt_sched_data *sched_data)
|
|
{
|
|
struct intel_gvt *gvt = sched_data->gvt;
|
|
struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
|
|
struct vgpu_sched_data *vgpu_data;
|
|
struct intel_vgpu *vgpu = NULL;
|
|
|
|
/* no active vgpu or has already had a target */
|
|
if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu)
|
|
goto out;
|
|
|
|
vgpu = find_busy_vgpu(sched_data);
|
|
if (vgpu) {
|
|
scheduler->next_vgpu = vgpu;
|
|
vgpu_data = vgpu->sched_data;
|
|
if (!vgpu_data->pri_sched) {
|
|
/* Move the last used vGPU to the tail of lru_list */
|
|
list_del_init(&vgpu_data->lru_list);
|
|
list_add_tail(&vgpu_data->lru_list,
|
|
&sched_data->lru_runq_head);
|
|
}
|
|
} else {
|
|
scheduler->next_vgpu = gvt->idle_vgpu;
|
|
}
|
|
out:
|
|
if (scheduler->next_vgpu)
|
|
try_to_schedule_next_vgpu(gvt);
|
|
}
|
|
|
|
void intel_gvt_schedule(struct intel_gvt *gvt)
|
|
{
|
|
struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
|
|
ktime_t cur_time;
|
|
|
|
mutex_lock(&gvt->sched_lock);
|
|
cur_time = ktime_get();
|
|
|
|
if (test_and_clear_bit(INTEL_GVT_REQUEST_SCHED,
|
|
(void *)&gvt->service_request)) {
|
|
if (cur_time >= sched_data->expire_time) {
|
|
gvt_balance_timeslice(sched_data);
|
|
sched_data->expire_time = ktime_add_ms(
|
|
cur_time, GVT_TS_BALANCE_PERIOD_MS);
|
|
}
|
|
}
|
|
clear_bit(INTEL_GVT_REQUEST_EVENT_SCHED, (void *)&gvt->service_request);
|
|
|
|
vgpu_update_timeslice(gvt->scheduler.current_vgpu, cur_time);
|
|
tbs_sched_func(sched_data);
|
|
|
|
mutex_unlock(&gvt->sched_lock);
|
|
}
|
|
|
|
static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data)
|
|
{
|
|
struct gvt_sched_data *data;
|
|
|
|
data = container_of(timer_data, struct gvt_sched_data, timer);
|
|
|
|
intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED);
|
|
|
|
hrtimer_add_expires_ns(&data->timer, data->period);
|
|
|
|
return HRTIMER_RESTART;
|
|
}
|
|
|
|
static int tbs_sched_init(struct intel_gvt *gvt)
|
|
{
|
|
struct intel_gvt_workload_scheduler *scheduler =
|
|
&gvt->scheduler;
|
|
|
|
struct gvt_sched_data *data;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&data->lru_runq_head);
|
|
hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
|
|
data->timer.function = tbs_timer_fn;
|
|
data->period = GVT_DEFAULT_TIME_SLICE;
|
|
data->gvt = gvt;
|
|
|
|
scheduler->sched_data = data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tbs_sched_clean(struct intel_gvt *gvt)
|
|
{
|
|
struct intel_gvt_workload_scheduler *scheduler =
|
|
&gvt->scheduler;
|
|
struct gvt_sched_data *data = scheduler->sched_data;
|
|
|
|
hrtimer_cancel(&data->timer);
|
|
|
|
kfree(data);
|
|
scheduler->sched_data = NULL;
|
|
}
|
|
|
|
static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu)
|
|
{
|
|
struct vgpu_sched_data *data;
|
|
|
|
data = kzalloc(sizeof(*data), GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->sched_ctl.weight = vgpu->sched_ctl.weight;
|
|
data->vgpu = vgpu;
|
|
INIT_LIST_HEAD(&data->lru_list);
|
|
|
|
vgpu->sched_data = data;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu)
|
|
{
|
|
struct intel_gvt *gvt = vgpu->gvt;
|
|
struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
|
|
|
|
kfree(vgpu->sched_data);
|
|
vgpu->sched_data = NULL;
|
|
|
|
/* this vgpu id has been removed */
|
|
if (idr_is_empty(&gvt->vgpu_idr))
|
|
hrtimer_cancel(&sched_data->timer);
|
|
}
|
|
|
|
static void tbs_sched_start_schedule(struct intel_vgpu *vgpu)
|
|
{
|
|
struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data;
|
|
struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
|
|
ktime_t now;
|
|
|
|
if (!list_empty(&vgpu_data->lru_list))
|
|
return;
|
|
|
|
now = ktime_get();
|
|
vgpu_data->pri_time = ktime_add(now,
|
|
ktime_set(GVT_SCHED_VGPU_PRI_TIME, 0));
|
|
vgpu_data->pri_sched = true;
|
|
|
|
list_add(&vgpu_data->lru_list, &sched_data->lru_runq_head);
|
|
|
|
if (!hrtimer_active(&sched_data->timer))
|
|
hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(),
|
|
sched_data->period), HRTIMER_MODE_ABS);
|
|
vgpu_data->active = true;
|
|
}
|
|
|
|
static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu)
|
|
{
|
|
struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
|
|
|
|
list_del_init(&vgpu_data->lru_list);
|
|
vgpu_data->active = false;
|
|
}
|
|
|
|
static struct intel_gvt_sched_policy_ops tbs_schedule_ops = {
|
|
.init = tbs_sched_init,
|
|
.clean = tbs_sched_clean,
|
|
.init_vgpu = tbs_sched_init_vgpu,
|
|
.clean_vgpu = tbs_sched_clean_vgpu,
|
|
.start_schedule = tbs_sched_start_schedule,
|
|
.stop_schedule = tbs_sched_stop_schedule,
|
|
};
|
|
|
|
int intel_gvt_init_sched_policy(struct intel_gvt *gvt)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&gvt->sched_lock);
|
|
gvt->scheduler.sched_ops = &tbs_schedule_ops;
|
|
ret = gvt->scheduler.sched_ops->init(gvt);
|
|
mutex_unlock(&gvt->sched_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void intel_gvt_clean_sched_policy(struct intel_gvt *gvt)
|
|
{
|
|
mutex_lock(&gvt->sched_lock);
|
|
gvt->scheduler.sched_ops->clean(gvt);
|
|
mutex_unlock(&gvt->sched_lock);
|
|
}
|
|
|
|
/* for per-vgpu scheduler policy, there are 2 per-vgpu data:
|
|
* sched_data, and sched_ctl. We see these 2 data as part of
|
|
* the global scheduler which are proteced by gvt->sched_lock.
|
|
* Caller should make their decision if the vgpu_lock should
|
|
* be hold outside.
|
|
*/
|
|
|
|
int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&vgpu->gvt->sched_lock);
|
|
ret = vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu);
|
|
mutex_unlock(&vgpu->gvt->sched_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu)
|
|
{
|
|
mutex_lock(&vgpu->gvt->sched_lock);
|
|
vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu);
|
|
mutex_unlock(&vgpu->gvt->sched_lock);
|
|
}
|
|
|
|
void intel_vgpu_start_schedule(struct intel_vgpu *vgpu)
|
|
{
|
|
struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
|
|
|
|
mutex_lock(&vgpu->gvt->sched_lock);
|
|
if (!vgpu_data->active) {
|
|
gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id);
|
|
vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu);
|
|
}
|
|
mutex_unlock(&vgpu->gvt->sched_lock);
|
|
}
|
|
|
|
void intel_gvt_kick_schedule(struct intel_gvt *gvt)
|
|
{
|
|
mutex_lock(&gvt->sched_lock);
|
|
intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
|
|
mutex_unlock(&gvt->sched_lock);
|
|
}
|
|
|
|
void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu)
|
|
{
|
|
struct intel_gvt_workload_scheduler *scheduler =
|
|
&vgpu->gvt->scheduler;
|
|
int ring_id;
|
|
struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
|
|
struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
|
|
|
|
if (!vgpu_data->active)
|
|
return;
|
|
|
|
gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id);
|
|
|
|
mutex_lock(&vgpu->gvt->sched_lock);
|
|
scheduler->sched_ops->stop_schedule(vgpu);
|
|
|
|
if (scheduler->next_vgpu == vgpu)
|
|
scheduler->next_vgpu = NULL;
|
|
|
|
if (scheduler->current_vgpu == vgpu) {
|
|
/* stop workload dispatching */
|
|
scheduler->need_reschedule = true;
|
|
scheduler->current_vgpu = NULL;
|
|
}
|
|
|
|
intel_runtime_pm_get(&dev_priv->runtime_pm);
|
|
spin_lock_bh(&scheduler->mmio_context_lock);
|
|
for (ring_id = 0; ring_id < I915_NUM_ENGINES; ring_id++) {
|
|
if (scheduler->engine_owner[ring_id] == vgpu) {
|
|
intel_gvt_switch_mmio(vgpu, NULL, ring_id);
|
|
scheduler->engine_owner[ring_id] = NULL;
|
|
}
|
|
}
|
|
spin_unlock_bh(&scheduler->mmio_context_lock);
|
|
intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
|
|
mutex_unlock(&vgpu->gvt->sched_lock);
|
|
}
|