linux_dsm_epyc7002/drivers/net/ethernet/hisilicon/hns3/hns3_enet.c
Huazhong Tan 862d969a3a net: hns3: do VF's pci re-initialization while PF doing FLR
While doing PF FLR, VF's PCIe configuration space will be cleared, so
the pci and vector of VF should be re-initialized in the VF's reset
process while PF doing FLR.

Also, this patch fixes some memory not freed problem when pci
re-initialization is done during reset process.

Signed-off-by: Huazhong Tan <tanhuazhong@huawei.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-11-09 16:47:35 -08:00

4101 lines
101 KiB
C

// SPDX-License-Identifier: GPL-2.0+
// Copyright (c) 2016-2017 Hisilicon Limited.
#include <linux/dma-mapping.h>
#include <linux/etherdevice.h>
#include <linux/interrupt.h>
#include <linux/if_vlan.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/aer.h>
#include <linux/skbuff.h>
#include <linux/sctp.h>
#include <linux/vermagic.h>
#include <net/gre.h>
#include <net/pkt_cls.h>
#include <net/vxlan.h>
#include "hnae3.h"
#include "hns3_enet.h"
static void hns3_clear_all_ring(struct hnae3_handle *h);
static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h);
static void hns3_remove_hw_addr(struct net_device *netdev);
static const char hns3_driver_name[] = "hns3";
const char hns3_driver_version[] = VERMAGIC_STRING;
static const char hns3_driver_string[] =
"Hisilicon Ethernet Network Driver for Hip08 Family";
static const char hns3_copyright[] = "Copyright (c) 2017 Huawei Corporation.";
static struct hnae3_client client;
/* hns3_pci_tbl - PCI Device ID Table
*
* Last entry must be all 0s
*
* { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
* Class, Class Mask, private data (not used) }
*/
static const struct pci_device_id hns3_pci_tbl[] = {
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_GE), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_25GE_RDMA_MACSEC),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_50GE_RDMA_MACSEC),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_MACSEC),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_VF), 0},
{PCI_VDEVICE(HUAWEI, HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF),
HNAE3_DEV_SUPPORT_ROCE_DCB_BITS},
/* required last entry */
{0, }
};
MODULE_DEVICE_TABLE(pci, hns3_pci_tbl);
static irqreturn_t hns3_irq_handle(int irq, void *vector)
{
struct hns3_enet_tqp_vector *tqp_vector = vector;
napi_schedule(&tqp_vector->napi);
return IRQ_HANDLED;
}
/* This callback function is used to set affinity changes to the irq affinity
* masks when the irq_set_affinity_notifier function is used.
*/
static void hns3_nic_irq_affinity_notify(struct irq_affinity_notify *notify,
const cpumask_t *mask)
{
struct hns3_enet_tqp_vector *tqp_vectors =
container_of(notify, struct hns3_enet_tqp_vector,
affinity_notify);
tqp_vectors->affinity_mask = *mask;
}
static void hns3_nic_irq_affinity_release(struct kref *ref)
{
}
static void hns3_nic_uninit_irq(struct hns3_nic_priv *priv)
{
struct hns3_enet_tqp_vector *tqp_vectors;
unsigned int i;
for (i = 0; i < priv->vector_num; i++) {
tqp_vectors = &priv->tqp_vector[i];
if (tqp_vectors->irq_init_flag != HNS3_VECTOR_INITED)
continue;
/* clear the affinity notifier and affinity mask */
irq_set_affinity_notifier(tqp_vectors->vector_irq, NULL);
irq_set_affinity_hint(tqp_vectors->vector_irq, NULL);
/* release the irq resource */
free_irq(tqp_vectors->vector_irq, tqp_vectors);
tqp_vectors->irq_init_flag = HNS3_VECTOR_NOT_INITED;
}
}
static int hns3_nic_init_irq(struct hns3_nic_priv *priv)
{
struct hns3_enet_tqp_vector *tqp_vectors;
int txrx_int_idx = 0;
int rx_int_idx = 0;
int tx_int_idx = 0;
unsigned int i;
int ret;
for (i = 0; i < priv->vector_num; i++) {
tqp_vectors = &priv->tqp_vector[i];
if (tqp_vectors->irq_init_flag == HNS3_VECTOR_INITED)
continue;
if (tqp_vectors->tx_group.ring && tqp_vectors->rx_group.ring) {
snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
"%s-%s-%d", priv->netdev->name, "TxRx",
txrx_int_idx++);
txrx_int_idx++;
} else if (tqp_vectors->rx_group.ring) {
snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
"%s-%s-%d", priv->netdev->name, "Rx",
rx_int_idx++);
} else if (tqp_vectors->tx_group.ring) {
snprintf(tqp_vectors->name, HNAE3_INT_NAME_LEN - 1,
"%s-%s-%d", priv->netdev->name, "Tx",
tx_int_idx++);
} else {
/* Skip this unused q_vector */
continue;
}
tqp_vectors->name[HNAE3_INT_NAME_LEN - 1] = '\0';
ret = request_irq(tqp_vectors->vector_irq, hns3_irq_handle, 0,
tqp_vectors->name,
tqp_vectors);
if (ret) {
netdev_err(priv->netdev, "request irq(%d) fail\n",
tqp_vectors->vector_irq);
return ret;
}
tqp_vectors->affinity_notify.notify =
hns3_nic_irq_affinity_notify;
tqp_vectors->affinity_notify.release =
hns3_nic_irq_affinity_release;
irq_set_affinity_notifier(tqp_vectors->vector_irq,
&tqp_vectors->affinity_notify);
irq_set_affinity_hint(tqp_vectors->vector_irq,
&tqp_vectors->affinity_mask);
tqp_vectors->irq_init_flag = HNS3_VECTOR_INITED;
}
return 0;
}
static void hns3_mask_vector_irq(struct hns3_enet_tqp_vector *tqp_vector,
u32 mask_en)
{
writel(mask_en, tqp_vector->mask_addr);
}
static void hns3_vector_enable(struct hns3_enet_tqp_vector *tqp_vector)
{
napi_enable(&tqp_vector->napi);
/* enable vector */
hns3_mask_vector_irq(tqp_vector, 1);
}
static void hns3_vector_disable(struct hns3_enet_tqp_vector *tqp_vector)
{
/* disable vector */
hns3_mask_vector_irq(tqp_vector, 0);
disable_irq(tqp_vector->vector_irq);
napi_disable(&tqp_vector->napi);
}
void hns3_set_vector_coalesce_rl(struct hns3_enet_tqp_vector *tqp_vector,
u32 rl_value)
{
u32 rl_reg = hns3_rl_usec_to_reg(rl_value);
/* this defines the configuration for RL (Interrupt Rate Limiter).
* Rl defines rate of interrupts i.e. number of interrupts-per-second
* GL and RL(Rate Limiter) are 2 ways to acheive interrupt coalescing
*/
if (rl_reg > 0 && !tqp_vector->tx_group.coal.gl_adapt_enable &&
!tqp_vector->rx_group.coal.gl_adapt_enable)
/* According to the hardware, the range of rl_reg is
* 0-59 and the unit is 4.
*/
rl_reg |= HNS3_INT_RL_ENABLE_MASK;
writel(rl_reg, tqp_vector->mask_addr + HNS3_VECTOR_RL_OFFSET);
}
void hns3_set_vector_coalesce_rx_gl(struct hns3_enet_tqp_vector *tqp_vector,
u32 gl_value)
{
u32 rx_gl_reg = hns3_gl_usec_to_reg(gl_value);
writel(rx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL0_OFFSET);
}
void hns3_set_vector_coalesce_tx_gl(struct hns3_enet_tqp_vector *tqp_vector,
u32 gl_value)
{
u32 tx_gl_reg = hns3_gl_usec_to_reg(gl_value);
writel(tx_gl_reg, tqp_vector->mask_addr + HNS3_VECTOR_GL1_OFFSET);
}
static void hns3_vector_gl_rl_init(struct hns3_enet_tqp_vector *tqp_vector,
struct hns3_nic_priv *priv)
{
/* initialize the configuration for interrupt coalescing.
* 1. GL (Interrupt Gap Limiter)
* 2. RL (Interrupt Rate Limiter)
*/
/* Default: enable interrupt coalescing self-adaptive and GL */
tqp_vector->tx_group.coal.gl_adapt_enable = 1;
tqp_vector->rx_group.coal.gl_adapt_enable = 1;
tqp_vector->tx_group.coal.int_gl = HNS3_INT_GL_50K;
tqp_vector->rx_group.coal.int_gl = HNS3_INT_GL_50K;
tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
tqp_vector->rx_group.coal.flow_level = HNS3_FLOW_LOW;
tqp_vector->tx_group.coal.flow_level = HNS3_FLOW_LOW;
}
static void hns3_vector_gl_rl_init_hw(struct hns3_enet_tqp_vector *tqp_vector,
struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
hns3_set_vector_coalesce_tx_gl(tqp_vector,
tqp_vector->tx_group.coal.int_gl);
hns3_set_vector_coalesce_rx_gl(tqp_vector,
tqp_vector->rx_group.coal.int_gl);
hns3_set_vector_coalesce_rl(tqp_vector, h->kinfo.int_rl_setting);
}
static int hns3_nic_set_real_num_queue(struct net_device *netdev)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
struct hnae3_knic_private_info *kinfo = &h->kinfo;
unsigned int queue_size = kinfo->rss_size * kinfo->num_tc;
int i, ret;
if (kinfo->num_tc <= 1) {
netdev_reset_tc(netdev);
} else {
ret = netdev_set_num_tc(netdev, kinfo->num_tc);
if (ret) {
netdev_err(netdev,
"netdev_set_num_tc fail, ret=%d!\n", ret);
return ret;
}
for (i = 0; i < HNAE3_MAX_TC; i++) {
if (!kinfo->tc_info[i].enable)
continue;
netdev_set_tc_queue(netdev,
kinfo->tc_info[i].tc,
kinfo->tc_info[i].tqp_count,
kinfo->tc_info[i].tqp_offset);
}
}
ret = netif_set_real_num_tx_queues(netdev, queue_size);
if (ret) {
netdev_err(netdev,
"netif_set_real_num_tx_queues fail, ret=%d!\n",
ret);
return ret;
}
ret = netif_set_real_num_rx_queues(netdev, queue_size);
if (ret) {
netdev_err(netdev,
"netif_set_real_num_rx_queues fail, ret=%d!\n", ret);
return ret;
}
return 0;
}
static u16 hns3_get_max_available_channels(struct hnae3_handle *h)
{
u16 alloc_tqps, max_rss_size, rss_size;
h->ae_algo->ops->get_tqps_and_rss_info(h, &alloc_tqps, &max_rss_size);
rss_size = alloc_tqps / h->kinfo.num_tc;
return min_t(u16, rss_size, max_rss_size);
}
static void hns3_tqp_enable(struct hnae3_queue *tqp)
{
u32 rcb_reg;
rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
rcb_reg |= BIT(HNS3_RING_EN_B);
hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}
static void hns3_tqp_disable(struct hnae3_queue *tqp)
{
u32 rcb_reg;
rcb_reg = hns3_read_dev(tqp, HNS3_RING_EN_REG);
rcb_reg &= ~BIT(HNS3_RING_EN_B);
hns3_write_dev(tqp, HNS3_RING_EN_REG, rcb_reg);
}
static int hns3_nic_net_up(struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = priv->ae_handle;
int i, j;
int ret;
ret = hns3_nic_reset_all_ring(h);
if (ret)
return ret;
/* get irq resource for all vectors */
ret = hns3_nic_init_irq(priv);
if (ret) {
netdev_err(netdev, "hns init irq failed! ret=%d\n", ret);
return ret;
}
/* enable the vectors */
for (i = 0; i < priv->vector_num; i++)
hns3_vector_enable(&priv->tqp_vector[i]);
/* enable rcb */
for (j = 0; j < h->kinfo.num_tqps; j++)
hns3_tqp_enable(h->kinfo.tqp[j]);
/* start the ae_dev */
ret = h->ae_algo->ops->start ? h->ae_algo->ops->start(h) : 0;
if (ret)
goto out_start_err;
clear_bit(HNS3_NIC_STATE_DOWN, &priv->state);
return 0;
out_start_err:
while (j--)
hns3_tqp_disable(h->kinfo.tqp[j]);
for (j = i - 1; j >= 0; j--)
hns3_vector_disable(&priv->tqp_vector[j]);
hns3_nic_uninit_irq(priv);
return ret;
}
static int hns3_nic_net_open(struct net_device *netdev)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
struct hnae3_knic_private_info *kinfo;
int i, ret;
if (hns3_nic_resetting(netdev))
return -EBUSY;
netif_carrier_off(netdev);
ret = hns3_nic_set_real_num_queue(netdev);
if (ret)
return ret;
ret = hns3_nic_net_up(netdev);
if (ret) {
netdev_err(netdev,
"hns net up fail, ret=%d!\n", ret);
return ret;
}
kinfo = &h->kinfo;
for (i = 0; i < HNAE3_MAX_USER_PRIO; i++) {
netdev_set_prio_tc_map(netdev, i,
kinfo->prio_tc[i]);
}
return 0;
}
static void hns3_nic_net_down(struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = hns3_get_handle(netdev);
const struct hnae3_ae_ops *ops;
int i;
/* disable vectors */
for (i = 0; i < priv->vector_num; i++)
hns3_vector_disable(&priv->tqp_vector[i]);
/* disable rcb */
for (i = 0; i < h->kinfo.num_tqps; i++)
hns3_tqp_disable(h->kinfo.tqp[i]);
/* stop ae_dev */
ops = priv->ae_handle->ae_algo->ops;
if (ops->stop)
ops->stop(priv->ae_handle);
/* free irq resources */
hns3_nic_uninit_irq(priv);
hns3_clear_all_ring(priv->ae_handle);
}
static int hns3_nic_net_stop(struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
if (test_and_set_bit(HNS3_NIC_STATE_DOWN, &priv->state))
return 0;
netif_tx_stop_all_queues(netdev);
netif_carrier_off(netdev);
hns3_nic_net_down(netdev);
return 0;
}
static int hns3_nic_uc_sync(struct net_device *netdev,
const unsigned char *addr)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (h->ae_algo->ops->add_uc_addr)
return h->ae_algo->ops->add_uc_addr(h, addr);
return 0;
}
static int hns3_nic_uc_unsync(struct net_device *netdev,
const unsigned char *addr)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (h->ae_algo->ops->rm_uc_addr)
return h->ae_algo->ops->rm_uc_addr(h, addr);
return 0;
}
static int hns3_nic_mc_sync(struct net_device *netdev,
const unsigned char *addr)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (h->ae_algo->ops->add_mc_addr)
return h->ae_algo->ops->add_mc_addr(h, addr);
return 0;
}
static int hns3_nic_mc_unsync(struct net_device *netdev,
const unsigned char *addr)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (h->ae_algo->ops->rm_mc_addr)
return h->ae_algo->ops->rm_mc_addr(h, addr);
return 0;
}
static u8 hns3_get_netdev_flags(struct net_device *netdev)
{
u8 flags = 0;
if (netdev->flags & IFF_PROMISC) {
flags = HNAE3_USER_UPE | HNAE3_USER_MPE;
} else {
flags |= HNAE3_VLAN_FLTR;
if (netdev->flags & IFF_ALLMULTI)
flags |= HNAE3_USER_MPE;
}
return flags;
}
static void hns3_nic_set_rx_mode(struct net_device *netdev)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
u8 new_flags;
int ret;
new_flags = hns3_get_netdev_flags(netdev);
ret = __dev_uc_sync(netdev, hns3_nic_uc_sync, hns3_nic_uc_unsync);
if (ret) {
netdev_err(netdev, "sync uc address fail\n");
if (ret == -ENOSPC)
new_flags |= HNAE3_OVERFLOW_UPE;
}
if (netdev->flags & IFF_MULTICAST) {
ret = __dev_mc_sync(netdev, hns3_nic_mc_sync,
hns3_nic_mc_unsync);
if (ret) {
netdev_err(netdev, "sync mc address fail\n");
if (ret == -ENOSPC)
new_flags |= HNAE3_OVERFLOW_MPE;
}
}
hns3_update_promisc_mode(netdev, new_flags);
/* User mode Promisc mode enable and vlan filtering is disabled to
* let all packets in. MAC-VLAN Table overflow Promisc enabled and
* vlan fitering is enabled
*/
hns3_enable_vlan_filter(netdev, new_flags & HNAE3_VLAN_FLTR);
h->netdev_flags = new_flags;
}
int hns3_update_promisc_mode(struct net_device *netdev, u8 promisc_flags)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = priv->ae_handle;
if (h->ae_algo->ops->set_promisc_mode) {
return h->ae_algo->ops->set_promisc_mode(h,
promisc_flags & HNAE3_UPE,
promisc_flags & HNAE3_MPE);
}
return 0;
}
void hns3_enable_vlan_filter(struct net_device *netdev, bool enable)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = priv->ae_handle;
bool last_state;
if (h->pdev->revision >= 0x21 && h->ae_algo->ops->enable_vlan_filter) {
last_state = h->netdev_flags & HNAE3_VLAN_FLTR ? true : false;
if (enable != last_state) {
netdev_info(netdev,
"%s vlan filter\n",
enable ? "enable" : "disable");
h->ae_algo->ops->enable_vlan_filter(h, enable);
}
}
}
static int hns3_set_tso(struct sk_buff *skb, u32 *paylen,
u16 *mss, u32 *type_cs_vlan_tso)
{
u32 l4_offset, hdr_len;
union l3_hdr_info l3;
union l4_hdr_info l4;
u32 l4_paylen;
int ret;
if (!skb_is_gso(skb))
return 0;
ret = skb_cow_head(skb, 0);
if (ret)
return ret;
l3.hdr = skb_network_header(skb);
l4.hdr = skb_transport_header(skb);
/* Software should clear the IPv4's checksum field when tso is
* needed.
*/
if (l3.v4->version == 4)
l3.v4->check = 0;
/* tunnel packet.*/
if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
SKB_GSO_GRE_CSUM |
SKB_GSO_UDP_TUNNEL |
SKB_GSO_UDP_TUNNEL_CSUM)) {
if ((!(skb_shinfo(skb)->gso_type &
SKB_GSO_PARTIAL)) &&
(skb_shinfo(skb)->gso_type &
SKB_GSO_UDP_TUNNEL_CSUM)) {
/* Software should clear the udp's checksum
* field when tso is needed.
*/
l4.udp->check = 0;
}
/* reset l3&l4 pointers from outer to inner headers */
l3.hdr = skb_inner_network_header(skb);
l4.hdr = skb_inner_transport_header(skb);
/* Software should clear the IPv4's checksum field when
* tso is needed.
*/
if (l3.v4->version == 4)
l3.v4->check = 0;
}
/* normal or tunnel packet*/
l4_offset = l4.hdr - skb->data;
hdr_len = (l4.tcp->doff * 4) + l4_offset;
/* remove payload length from inner pseudo checksum when tso*/
l4_paylen = skb->len - l4_offset;
csum_replace_by_diff(&l4.tcp->check,
(__force __wsum)htonl(l4_paylen));
/* find the txbd field values */
*paylen = skb->len - hdr_len;
hnae3_set_bit(*type_cs_vlan_tso,
HNS3_TXD_TSO_B, 1);
/* get MSS for TSO */
*mss = skb_shinfo(skb)->gso_size;
return 0;
}
static int hns3_get_l4_protocol(struct sk_buff *skb, u8 *ol4_proto,
u8 *il4_proto)
{
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} l3;
unsigned char *l4_hdr;
unsigned char *exthdr;
u8 l4_proto_tmp;
__be16 frag_off;
/* find outer header point */
l3.hdr = skb_network_header(skb);
l4_hdr = skb_transport_header(skb);
if (skb->protocol == htons(ETH_P_IPV6)) {
exthdr = l3.hdr + sizeof(*l3.v6);
l4_proto_tmp = l3.v6->nexthdr;
if (l4_hdr != exthdr)
ipv6_skip_exthdr(skb, exthdr - skb->data,
&l4_proto_tmp, &frag_off);
} else if (skb->protocol == htons(ETH_P_IP)) {
l4_proto_tmp = l3.v4->protocol;
} else {
return -EINVAL;
}
*ol4_proto = l4_proto_tmp;
/* tunnel packet */
if (!skb->encapsulation) {
*il4_proto = 0;
return 0;
}
/* find inner header point */
l3.hdr = skb_inner_network_header(skb);
l4_hdr = skb_inner_transport_header(skb);
if (l3.v6->version == 6) {
exthdr = l3.hdr + sizeof(*l3.v6);
l4_proto_tmp = l3.v6->nexthdr;
if (l4_hdr != exthdr)
ipv6_skip_exthdr(skb, exthdr - skb->data,
&l4_proto_tmp, &frag_off);
} else if (l3.v4->version == 4) {
l4_proto_tmp = l3.v4->protocol;
}
*il4_proto = l4_proto_tmp;
return 0;
}
static void hns3_set_l2l3l4_len(struct sk_buff *skb, u8 ol4_proto,
u8 il4_proto, u32 *type_cs_vlan_tso,
u32 *ol_type_vlan_len_msec)
{
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} l3;
union {
struct tcphdr *tcp;
struct udphdr *udp;
struct gre_base_hdr *gre;
unsigned char *hdr;
} l4;
unsigned char *l2_hdr;
u8 l4_proto = ol4_proto;
u32 ol2_len;
u32 ol3_len;
u32 ol4_len;
u32 l2_len;
u32 l3_len;
l3.hdr = skb_network_header(skb);
l4.hdr = skb_transport_header(skb);
/* compute L2 header size for normal packet, defined in 2 Bytes */
l2_len = l3.hdr - skb->data;
hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
HNS3_TXD_L2LEN_S, l2_len >> 1);
/* tunnel packet*/
if (skb->encapsulation) {
/* compute OL2 header size, defined in 2 Bytes */
ol2_len = l2_len;
hnae3_set_field(*ol_type_vlan_len_msec,
HNS3_TXD_L2LEN_M,
HNS3_TXD_L2LEN_S, ol2_len >> 1);
/* compute OL3 header size, defined in 4 Bytes */
ol3_len = l4.hdr - l3.hdr;
hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_L3LEN_M,
HNS3_TXD_L3LEN_S, ol3_len >> 2);
/* MAC in UDP, MAC in GRE (0x6558)*/
if ((ol4_proto == IPPROTO_UDP) || (ol4_proto == IPPROTO_GRE)) {
/* switch MAC header ptr from outer to inner header.*/
l2_hdr = skb_inner_mac_header(skb);
/* compute OL4 header size, defined in 4 Bytes. */
ol4_len = l2_hdr - l4.hdr;
hnae3_set_field(*ol_type_vlan_len_msec,
HNS3_TXD_L4LEN_M, HNS3_TXD_L4LEN_S,
ol4_len >> 2);
/* switch IP header ptr from outer to inner header */
l3.hdr = skb_inner_network_header(skb);
/* compute inner l2 header size, defined in 2 Bytes. */
l2_len = l3.hdr - l2_hdr;
hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L2LEN_M,
HNS3_TXD_L2LEN_S, l2_len >> 1);
} else {
/* skb packet types not supported by hardware,
* txbd len fild doesn't be filled.
*/
return;
}
/* switch L4 header pointer from outer to inner */
l4.hdr = skb_inner_transport_header(skb);
l4_proto = il4_proto;
}
/* compute inner(/normal) L3 header size, defined in 4 Bytes */
l3_len = l4.hdr - l3.hdr;
hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3LEN_M,
HNS3_TXD_L3LEN_S, l3_len >> 2);
/* compute inner(/normal) L4 header size, defined in 4 Bytes */
switch (l4_proto) {
case IPPROTO_TCP:
hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
HNS3_TXD_L4LEN_S, l4.tcp->doff);
break;
case IPPROTO_SCTP:
hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
HNS3_TXD_L4LEN_S,
(sizeof(struct sctphdr) >> 2));
break;
case IPPROTO_UDP:
hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L4LEN_M,
HNS3_TXD_L4LEN_S,
(sizeof(struct udphdr) >> 2));
break;
default:
/* skb packet types not supported by hardware,
* txbd len fild doesn't be filled.
*/
return;
}
}
/* when skb->encapsulation is 0, skb->ip_summed is CHECKSUM_PARTIAL
* and it is udp packet, which has a dest port as the IANA assigned.
* the hardware is expected to do the checksum offload, but the
* hardware will not do the checksum offload when udp dest port is
* 4789.
*/
static bool hns3_tunnel_csum_bug(struct sk_buff *skb)
{
#define IANA_VXLAN_PORT 4789
union {
struct tcphdr *tcp;
struct udphdr *udp;
struct gre_base_hdr *gre;
unsigned char *hdr;
} l4;
l4.hdr = skb_transport_header(skb);
if (!(!skb->encapsulation && l4.udp->dest == htons(IANA_VXLAN_PORT)))
return false;
skb_checksum_help(skb);
return true;
}
static int hns3_set_l3l4_type_csum(struct sk_buff *skb, u8 ol4_proto,
u8 il4_proto, u32 *type_cs_vlan_tso,
u32 *ol_type_vlan_len_msec)
{
union {
struct iphdr *v4;
struct ipv6hdr *v6;
unsigned char *hdr;
} l3;
u32 l4_proto = ol4_proto;
l3.hdr = skb_network_header(skb);
/* define OL3 type and tunnel type(OL4).*/
if (skb->encapsulation) {
/* define outer network header type.*/
if (skb->protocol == htons(ETH_P_IP)) {
if (skb_is_gso(skb))
hnae3_set_field(*ol_type_vlan_len_msec,
HNS3_TXD_OL3T_M,
HNS3_TXD_OL3T_S,
HNS3_OL3T_IPV4_CSUM);
else
hnae3_set_field(*ol_type_vlan_len_msec,
HNS3_TXD_OL3T_M,
HNS3_TXD_OL3T_S,
HNS3_OL3T_IPV4_NO_CSUM);
} else if (skb->protocol == htons(ETH_P_IPV6)) {
hnae3_set_field(*ol_type_vlan_len_msec, HNS3_TXD_OL3T_M,
HNS3_TXD_OL3T_S, HNS3_OL3T_IPV6);
}
/* define tunnel type(OL4).*/
switch (l4_proto) {
case IPPROTO_UDP:
hnae3_set_field(*ol_type_vlan_len_msec,
HNS3_TXD_TUNTYPE_M,
HNS3_TXD_TUNTYPE_S,
HNS3_TUN_MAC_IN_UDP);
break;
case IPPROTO_GRE:
hnae3_set_field(*ol_type_vlan_len_msec,
HNS3_TXD_TUNTYPE_M,
HNS3_TXD_TUNTYPE_S,
HNS3_TUN_NVGRE);
break;
default:
/* drop the skb tunnel packet if hardware don't support,
* because hardware can't calculate csum when TSO.
*/
if (skb_is_gso(skb))
return -EDOM;
/* the stack computes the IP header already,
* driver calculate l4 checksum when not TSO.
*/
skb_checksum_help(skb);
return 0;
}
l3.hdr = skb_inner_network_header(skb);
l4_proto = il4_proto;
}
if (l3.v4->version == 4) {
hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
HNS3_TXD_L3T_S, HNS3_L3T_IPV4);
/* the stack computes the IP header already, the only time we
* need the hardware to recompute it is in the case of TSO.
*/
if (skb_is_gso(skb))
hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L3CS_B, 1);
} else if (l3.v6->version == 6) {
hnae3_set_field(*type_cs_vlan_tso, HNS3_TXD_L3T_M,
HNS3_TXD_L3T_S, HNS3_L3T_IPV6);
}
switch (l4_proto) {
case IPPROTO_TCP:
hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
hnae3_set_field(*type_cs_vlan_tso,
HNS3_TXD_L4T_M,
HNS3_TXD_L4T_S,
HNS3_L4T_TCP);
break;
case IPPROTO_UDP:
if (hns3_tunnel_csum_bug(skb))
break;
hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
hnae3_set_field(*type_cs_vlan_tso,
HNS3_TXD_L4T_M,
HNS3_TXD_L4T_S,
HNS3_L4T_UDP);
break;
case IPPROTO_SCTP:
hnae3_set_bit(*type_cs_vlan_tso, HNS3_TXD_L4CS_B, 1);
hnae3_set_field(*type_cs_vlan_tso,
HNS3_TXD_L4T_M,
HNS3_TXD_L4T_S,
HNS3_L4T_SCTP);
break;
default:
/* drop the skb tunnel packet if hardware don't support,
* because hardware can't calculate csum when TSO.
*/
if (skb_is_gso(skb))
return -EDOM;
/* the stack computes the IP header already,
* driver calculate l4 checksum when not TSO.
*/
skb_checksum_help(skb);
return 0;
}
return 0;
}
static void hns3_set_txbd_baseinfo(u16 *bdtp_fe_sc_vld_ra_ri, int frag_end)
{
/* Config bd buffer end */
hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_BDTYPE_M,
HNS3_TXD_BDTYPE_S, 0);
hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_FE_B, !!frag_end);
hnae3_set_bit(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_VLD_B, 1);
hnae3_set_field(*bdtp_fe_sc_vld_ra_ri, HNS3_TXD_SC_M, HNS3_TXD_SC_S, 0);
}
static int hns3_fill_desc_vtags(struct sk_buff *skb,
struct hns3_enet_ring *tx_ring,
u32 *inner_vlan_flag,
u32 *out_vlan_flag,
u16 *inner_vtag,
u16 *out_vtag)
{
#define HNS3_TX_VLAN_PRIO_SHIFT 13
if (skb->protocol == htons(ETH_P_8021Q) &&
!(tx_ring->tqp->handle->kinfo.netdev->features &
NETIF_F_HW_VLAN_CTAG_TX)) {
/* When HW VLAN acceleration is turned off, and the stack
* sets the protocol to 802.1q, the driver just need to
* set the protocol to the encapsulated ethertype.
*/
skb->protocol = vlan_get_protocol(skb);
return 0;
}
if (skb_vlan_tag_present(skb)) {
u16 vlan_tag;
vlan_tag = skb_vlan_tag_get(skb);
vlan_tag |= (skb->priority & 0x7) << HNS3_TX_VLAN_PRIO_SHIFT;
/* Based on hw strategy, use out_vtag in two layer tag case,
* and use inner_vtag in one tag case.
*/
if (skb->protocol == htons(ETH_P_8021Q)) {
hnae3_set_bit(*out_vlan_flag, HNS3_TXD_OVLAN_B, 1);
*out_vtag = vlan_tag;
} else {
hnae3_set_bit(*inner_vlan_flag, HNS3_TXD_VLAN_B, 1);
*inner_vtag = vlan_tag;
}
} else if (skb->protocol == htons(ETH_P_8021Q)) {
struct vlan_ethhdr *vhdr;
int rc;
rc = skb_cow_head(skb, 0);
if (rc < 0)
return rc;
vhdr = (struct vlan_ethhdr *)skb->data;
vhdr->h_vlan_TCI |= cpu_to_be16((skb->priority & 0x7)
<< HNS3_TX_VLAN_PRIO_SHIFT);
}
skb->protocol = vlan_get_protocol(skb);
return 0;
}
static int hns3_fill_desc(struct hns3_enet_ring *ring, void *priv,
int size, int frag_end, enum hns_desc_type type)
{
struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_use];
struct hns3_desc *desc = &ring->desc[ring->next_to_use];
struct device *dev = ring_to_dev(ring);
u32 ol_type_vlan_len_msec = 0;
u16 bdtp_fe_sc_vld_ra_ri = 0;
struct skb_frag_struct *frag;
unsigned int frag_buf_num;
u32 type_cs_vlan_tso = 0;
struct sk_buff *skb;
u16 inner_vtag = 0;
u16 out_vtag = 0;
unsigned int k;
int sizeoflast;
u32 paylen = 0;
dma_addr_t dma;
u16 mss = 0;
u8 ol4_proto;
u8 il4_proto;
int ret;
if (type == DESC_TYPE_SKB) {
skb = (struct sk_buff *)priv;
paylen = skb->len;
ret = hns3_fill_desc_vtags(skb, ring, &type_cs_vlan_tso,
&ol_type_vlan_len_msec,
&inner_vtag, &out_vtag);
if (unlikely(ret))
return ret;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
skb_reset_mac_len(skb);
ret = hns3_get_l4_protocol(skb, &ol4_proto, &il4_proto);
if (ret)
return ret;
hns3_set_l2l3l4_len(skb, ol4_proto, il4_proto,
&type_cs_vlan_tso,
&ol_type_vlan_len_msec);
ret = hns3_set_l3l4_type_csum(skb, ol4_proto, il4_proto,
&type_cs_vlan_tso,
&ol_type_vlan_len_msec);
if (ret)
return ret;
ret = hns3_set_tso(skb, &paylen, &mss,
&type_cs_vlan_tso);
if (ret)
return ret;
}
/* Set txbd */
desc->tx.ol_type_vlan_len_msec =
cpu_to_le32(ol_type_vlan_len_msec);
desc->tx.type_cs_vlan_tso_len =
cpu_to_le32(type_cs_vlan_tso);
desc->tx.paylen = cpu_to_le32(paylen);
desc->tx.mss = cpu_to_le16(mss);
desc->tx.vlan_tag = cpu_to_le16(inner_vtag);
desc->tx.outer_vlan_tag = cpu_to_le16(out_vtag);
dma = dma_map_single(dev, skb->data, size, DMA_TO_DEVICE);
} else {
frag = (struct skb_frag_struct *)priv;
dma = skb_frag_dma_map(dev, frag, 0, size, DMA_TO_DEVICE);
}
if (dma_mapping_error(ring->dev, dma)) {
ring->stats.sw_err_cnt++;
return -ENOMEM;
}
desc_cb->length = size;
frag_buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
sizeoflast = size % HNS3_MAX_BD_SIZE;
sizeoflast = sizeoflast ? sizeoflast : HNS3_MAX_BD_SIZE;
/* When frag size is bigger than hardware limit, split this frag */
for (k = 0; k < frag_buf_num; k++) {
/* The txbd's baseinfo of DESC_TYPE_PAGE & DESC_TYPE_SKB */
desc_cb->priv = priv;
desc_cb->dma = dma + HNS3_MAX_BD_SIZE * k;
desc_cb->type = (type == DESC_TYPE_SKB && !k) ?
DESC_TYPE_SKB : DESC_TYPE_PAGE;
/* now, fill the descriptor */
desc->addr = cpu_to_le64(dma + HNS3_MAX_BD_SIZE * k);
desc->tx.send_size = cpu_to_le16((k == frag_buf_num - 1) ?
(u16)sizeoflast : (u16)HNS3_MAX_BD_SIZE);
hns3_set_txbd_baseinfo(&bdtp_fe_sc_vld_ra_ri,
frag_end && (k == frag_buf_num - 1) ?
1 : 0);
desc->tx.bdtp_fe_sc_vld_ra_ri =
cpu_to_le16(bdtp_fe_sc_vld_ra_ri);
/* move ring pointer to next.*/
ring_ptr_move_fw(ring, next_to_use);
desc_cb = &ring->desc_cb[ring->next_to_use];
desc = &ring->desc[ring->next_to_use];
}
return 0;
}
static int hns3_nic_maybe_stop_tso(struct sk_buff **out_skb, int *bnum,
struct hns3_enet_ring *ring)
{
struct sk_buff *skb = *out_skb;
struct skb_frag_struct *frag;
int bdnum_for_frag;
int frag_num;
int buf_num;
int size;
int i;
size = skb_headlen(skb);
buf_num = (size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
frag_num = skb_shinfo(skb)->nr_frags;
for (i = 0; i < frag_num; i++) {
frag = &skb_shinfo(skb)->frags[i];
size = skb_frag_size(frag);
bdnum_for_frag =
(size + HNS3_MAX_BD_SIZE - 1) / HNS3_MAX_BD_SIZE;
if (bdnum_for_frag > HNS3_MAX_BD_PER_FRAG)
return -ENOMEM;
buf_num += bdnum_for_frag;
}
if (buf_num > ring_space(ring))
return -EBUSY;
*bnum = buf_num;
return 0;
}
static int hns3_nic_maybe_stop_tx(struct sk_buff **out_skb, int *bnum,
struct hns3_enet_ring *ring)
{
struct sk_buff *skb = *out_skb;
int buf_num;
/* No. of segments (plus a header) */
buf_num = skb_shinfo(skb)->nr_frags + 1;
if (unlikely(ring_space(ring) < buf_num))
return -EBUSY;
*bnum = buf_num;
return 0;
}
static void hns3_clear_desc(struct hns3_enet_ring *ring, int next_to_use_orig)
{
struct device *dev = ring_to_dev(ring);
unsigned int i;
for (i = 0; i < ring->desc_num; i++) {
/* check if this is where we started */
if (ring->next_to_use == next_to_use_orig)
break;
/* unmap the descriptor dma address */
if (ring->desc_cb[ring->next_to_use].type == DESC_TYPE_SKB)
dma_unmap_single(dev,
ring->desc_cb[ring->next_to_use].dma,
ring->desc_cb[ring->next_to_use].length,
DMA_TO_DEVICE);
else if (ring->desc_cb[ring->next_to_use].length)
dma_unmap_page(dev,
ring->desc_cb[ring->next_to_use].dma,
ring->desc_cb[ring->next_to_use].length,
DMA_TO_DEVICE);
ring->desc_cb[ring->next_to_use].length = 0;
/* rollback one */
ring_ptr_move_bw(ring, next_to_use);
}
}
netdev_tx_t hns3_nic_net_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hns3_nic_ring_data *ring_data =
&tx_ring_data(priv, skb->queue_mapping);
struct hns3_enet_ring *ring = ring_data->ring;
struct netdev_queue *dev_queue;
struct skb_frag_struct *frag;
int next_to_use_head;
int next_to_use_frag;
int buf_num;
int seg_num;
int size;
int ret;
int i;
/* Prefetch the data used later */
prefetch(skb->data);
switch (priv->ops.maybe_stop_tx(&skb, &buf_num, ring)) {
case -EBUSY:
u64_stats_update_begin(&ring->syncp);
ring->stats.tx_busy++;
u64_stats_update_end(&ring->syncp);
goto out_net_tx_busy;
case -ENOMEM:
u64_stats_update_begin(&ring->syncp);
ring->stats.sw_err_cnt++;
u64_stats_update_end(&ring->syncp);
netdev_err(netdev, "no memory to xmit!\n");
goto out_err_tx_ok;
default:
break;
}
/* No. of segments (plus a header) */
seg_num = skb_shinfo(skb)->nr_frags + 1;
/* Fill the first part */
size = skb_headlen(skb);
next_to_use_head = ring->next_to_use;
ret = priv->ops.fill_desc(ring, skb, size, seg_num == 1 ? 1 : 0,
DESC_TYPE_SKB);
if (ret)
goto head_fill_err;
next_to_use_frag = ring->next_to_use;
/* Fill the fragments */
for (i = 1; i < seg_num; i++) {
frag = &skb_shinfo(skb)->frags[i - 1];
size = skb_frag_size(frag);
ret = priv->ops.fill_desc(ring, frag, size,
seg_num - 1 == i ? 1 : 0,
DESC_TYPE_PAGE);
if (ret)
goto frag_fill_err;
}
/* Complete translate all packets */
dev_queue = netdev_get_tx_queue(netdev, ring_data->queue_index);
netdev_tx_sent_queue(dev_queue, skb->len);
wmb(); /* Commit all data before submit */
hnae3_queue_xmit(ring->tqp, buf_num);
return NETDEV_TX_OK;
frag_fill_err:
hns3_clear_desc(ring, next_to_use_frag);
head_fill_err:
hns3_clear_desc(ring, next_to_use_head);
out_err_tx_ok:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
out_net_tx_busy:
netif_stop_subqueue(netdev, ring_data->queue_index);
smp_mb(); /* Commit all data before submit */
return NETDEV_TX_BUSY;
}
static int hns3_nic_net_set_mac_address(struct net_device *netdev, void *p)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
struct sockaddr *mac_addr = p;
int ret;
if (!mac_addr || !is_valid_ether_addr((const u8 *)mac_addr->sa_data))
return -EADDRNOTAVAIL;
if (ether_addr_equal(netdev->dev_addr, mac_addr->sa_data)) {
netdev_info(netdev, "already using mac address %pM\n",
mac_addr->sa_data);
return 0;
}
ret = h->ae_algo->ops->set_mac_addr(h, mac_addr->sa_data, false);
if (ret) {
netdev_err(netdev, "set_mac_address fail, ret=%d!\n", ret);
return ret;
}
ether_addr_copy(netdev->dev_addr, mac_addr->sa_data);
return 0;
}
static int hns3_nic_do_ioctl(struct net_device *netdev,
struct ifreq *ifr, int cmd)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (!netif_running(netdev))
return -EINVAL;
if (!h->ae_algo->ops->do_ioctl)
return -EOPNOTSUPP;
return h->ae_algo->ops->do_ioctl(h, ifr, cmd);
}
static int hns3_nic_set_features(struct net_device *netdev,
netdev_features_t features)
{
netdev_features_t changed = netdev->features ^ features;
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = priv->ae_handle;
int ret;
if (changed & (NETIF_F_TSO | NETIF_F_TSO6)) {
if (features & (NETIF_F_TSO | NETIF_F_TSO6))
priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
else
priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
}
if ((changed & NETIF_F_HW_VLAN_CTAG_FILTER) &&
h->ae_algo->ops->enable_vlan_filter) {
if (features & NETIF_F_HW_VLAN_CTAG_FILTER)
h->ae_algo->ops->enable_vlan_filter(h, true);
else
h->ae_algo->ops->enable_vlan_filter(h, false);
}
if ((changed & NETIF_F_HW_VLAN_CTAG_RX) &&
h->ae_algo->ops->enable_hw_strip_rxvtag) {
if (features & NETIF_F_HW_VLAN_CTAG_RX)
ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, true);
else
ret = h->ae_algo->ops->enable_hw_strip_rxvtag(h, false);
if (ret)
return ret;
}
if ((changed & NETIF_F_NTUPLE) && h->ae_algo->ops->enable_fd) {
if (features & NETIF_F_NTUPLE)
h->ae_algo->ops->enable_fd(h, true);
else
h->ae_algo->ops->enable_fd(h, false);
}
netdev->features = features;
return 0;
}
static void hns3_nic_get_stats64(struct net_device *netdev,
struct rtnl_link_stats64 *stats)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
int queue_num = priv->ae_handle->kinfo.num_tqps;
struct hnae3_handle *handle = priv->ae_handle;
struct hns3_enet_ring *ring;
unsigned int start;
unsigned int idx;
u64 tx_bytes = 0;
u64 rx_bytes = 0;
u64 tx_pkts = 0;
u64 rx_pkts = 0;
u64 tx_drop = 0;
u64 rx_drop = 0;
if (test_bit(HNS3_NIC_STATE_DOWN, &priv->state))
return;
handle->ae_algo->ops->update_stats(handle, &netdev->stats);
for (idx = 0; idx < queue_num; idx++) {
/* fetch the tx stats */
ring = priv->ring_data[idx].ring;
do {
start = u64_stats_fetch_begin_irq(&ring->syncp);
tx_bytes += ring->stats.tx_bytes;
tx_pkts += ring->stats.tx_pkts;
tx_drop += ring->stats.tx_busy;
tx_drop += ring->stats.sw_err_cnt;
} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
/* fetch the rx stats */
ring = priv->ring_data[idx + queue_num].ring;
do {
start = u64_stats_fetch_begin_irq(&ring->syncp);
rx_bytes += ring->stats.rx_bytes;
rx_pkts += ring->stats.rx_pkts;
rx_drop += ring->stats.non_vld_descs;
rx_drop += ring->stats.err_pkt_len;
rx_drop += ring->stats.l2_err;
} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
}
stats->tx_bytes = tx_bytes;
stats->tx_packets = tx_pkts;
stats->rx_bytes = rx_bytes;
stats->rx_packets = rx_pkts;
stats->rx_errors = netdev->stats.rx_errors;
stats->multicast = netdev->stats.multicast;
stats->rx_length_errors = netdev->stats.rx_length_errors;
stats->rx_crc_errors = netdev->stats.rx_crc_errors;
stats->rx_missed_errors = netdev->stats.rx_missed_errors;
stats->tx_errors = netdev->stats.tx_errors;
stats->rx_dropped = rx_drop + netdev->stats.rx_dropped;
stats->tx_dropped = tx_drop + netdev->stats.tx_dropped;
stats->collisions = netdev->stats.collisions;
stats->rx_over_errors = netdev->stats.rx_over_errors;
stats->rx_frame_errors = netdev->stats.rx_frame_errors;
stats->rx_fifo_errors = netdev->stats.rx_fifo_errors;
stats->tx_aborted_errors = netdev->stats.tx_aborted_errors;
stats->tx_carrier_errors = netdev->stats.tx_carrier_errors;
stats->tx_fifo_errors = netdev->stats.tx_fifo_errors;
stats->tx_heartbeat_errors = netdev->stats.tx_heartbeat_errors;
stats->tx_window_errors = netdev->stats.tx_window_errors;
stats->rx_compressed = netdev->stats.rx_compressed;
stats->tx_compressed = netdev->stats.tx_compressed;
}
static int hns3_setup_tc(struct net_device *netdev, void *type_data)
{
struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
struct hnae3_handle *h = hns3_get_handle(netdev);
struct hnae3_knic_private_info *kinfo = &h->kinfo;
u8 *prio_tc = mqprio_qopt->qopt.prio_tc_map;
u8 tc = mqprio_qopt->qopt.num_tc;
u16 mode = mqprio_qopt->mode;
u8 hw = mqprio_qopt->qopt.hw;
bool if_running;
int ret;
if (!((hw == TC_MQPRIO_HW_OFFLOAD_TCS &&
mode == TC_MQPRIO_MODE_CHANNEL) || (!hw && tc == 0)))
return -EOPNOTSUPP;
if (tc > HNAE3_MAX_TC)
return -EINVAL;
if (!netdev)
return -EINVAL;
if_running = netif_running(netdev);
if (if_running) {
hns3_nic_net_stop(netdev);
msleep(100);
}
ret = (kinfo->dcb_ops && kinfo->dcb_ops->setup_tc) ?
kinfo->dcb_ops->setup_tc(h, tc, prio_tc) : -EOPNOTSUPP;
if (ret)
goto out;
ret = hns3_nic_set_real_num_queue(netdev);
out:
if (if_running)
hns3_nic_net_open(netdev);
return ret;
}
static int hns3_nic_setup_tc(struct net_device *dev, enum tc_setup_type type,
void *type_data)
{
if (type != TC_SETUP_QDISC_MQPRIO)
return -EOPNOTSUPP;
return hns3_setup_tc(dev, type_data);
}
static int hns3_vlan_rx_add_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
struct hns3_nic_priv *priv = netdev_priv(netdev);
int ret = -EIO;
if (h->ae_algo->ops->set_vlan_filter)
ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, false);
if (!ret)
set_bit(vid, priv->active_vlans);
return ret;
}
static int hns3_vlan_rx_kill_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
struct hns3_nic_priv *priv = netdev_priv(netdev);
int ret = -EIO;
if (h->ae_algo->ops->set_vlan_filter)
ret = h->ae_algo->ops->set_vlan_filter(h, proto, vid, true);
if (!ret)
clear_bit(vid, priv->active_vlans);
return ret;
}
static int hns3_restore_vlan(struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
int ret = 0;
u16 vid;
for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
ret = hns3_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
if (ret) {
netdev_err(netdev, "Restore vlan: %d filter, ret:%d\n",
vid, ret);
return ret;
}
}
return ret;
}
static int hns3_ndo_set_vf_vlan(struct net_device *netdev, int vf, u16 vlan,
u8 qos, __be16 vlan_proto)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
int ret = -EIO;
if (h->ae_algo->ops->set_vf_vlan_filter)
ret = h->ae_algo->ops->set_vf_vlan_filter(h, vf, vlan,
qos, vlan_proto);
return ret;
}
static int hns3_nic_change_mtu(struct net_device *netdev, int new_mtu)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
bool if_running = netif_running(netdev);
int ret;
if (!h->ae_algo->ops->set_mtu)
return -EOPNOTSUPP;
/* if this was called with netdev up then bring netdevice down */
if (if_running) {
(void)hns3_nic_net_stop(netdev);
msleep(100);
}
ret = h->ae_algo->ops->set_mtu(h, new_mtu);
if (ret)
netdev_err(netdev, "failed to change MTU in hardware %d\n",
ret);
else
netdev->mtu = new_mtu;
/* if the netdev was running earlier, bring it up again */
if (if_running && hns3_nic_net_open(netdev))
ret = -EINVAL;
return ret;
}
static bool hns3_get_tx_timeo_queue_info(struct net_device *ndev)
{
struct hns3_nic_priv *priv = netdev_priv(ndev);
struct hns3_enet_ring *tx_ring = NULL;
int timeout_queue = 0;
int hw_head, hw_tail;
int i;
/* Find the stopped queue the same way the stack does */
for (i = 0; i < ndev->real_num_tx_queues; i++) {
struct netdev_queue *q;
unsigned long trans_start;
q = netdev_get_tx_queue(ndev, i);
trans_start = q->trans_start;
if (netif_xmit_stopped(q) &&
time_after(jiffies,
(trans_start + ndev->watchdog_timeo))) {
timeout_queue = i;
break;
}
}
if (i == ndev->num_tx_queues) {
netdev_info(ndev,
"no netdev TX timeout queue found, timeout count: %llu\n",
priv->tx_timeout_count);
return false;
}
tx_ring = priv->ring_data[timeout_queue].ring;
hw_head = readl_relaxed(tx_ring->tqp->io_base +
HNS3_RING_TX_RING_HEAD_REG);
hw_tail = readl_relaxed(tx_ring->tqp->io_base +
HNS3_RING_TX_RING_TAIL_REG);
netdev_info(ndev,
"tx_timeout count: %llu, queue id: %d, SW_NTU: 0x%x, SW_NTC: 0x%x, HW_HEAD: 0x%x, HW_TAIL: 0x%x, INT: 0x%x\n",
priv->tx_timeout_count,
timeout_queue,
tx_ring->next_to_use,
tx_ring->next_to_clean,
hw_head,
hw_tail,
readl(tx_ring->tqp_vector->mask_addr));
return true;
}
static void hns3_nic_net_timeout(struct net_device *ndev)
{
struct hns3_nic_priv *priv = netdev_priv(ndev);
struct hnae3_handle *h = priv->ae_handle;
if (!hns3_get_tx_timeo_queue_info(ndev))
return;
priv->tx_timeout_count++;
/* request the reset, and let the hclge to determine
* which reset level should be done
*/
if (h->ae_algo->ops->reset_event)
h->ae_algo->ops->reset_event(h->pdev, h);
}
static const struct net_device_ops hns3_nic_netdev_ops = {
.ndo_open = hns3_nic_net_open,
.ndo_stop = hns3_nic_net_stop,
.ndo_start_xmit = hns3_nic_net_xmit,
.ndo_tx_timeout = hns3_nic_net_timeout,
.ndo_set_mac_address = hns3_nic_net_set_mac_address,
.ndo_do_ioctl = hns3_nic_do_ioctl,
.ndo_change_mtu = hns3_nic_change_mtu,
.ndo_set_features = hns3_nic_set_features,
.ndo_get_stats64 = hns3_nic_get_stats64,
.ndo_setup_tc = hns3_nic_setup_tc,
.ndo_set_rx_mode = hns3_nic_set_rx_mode,
.ndo_vlan_rx_add_vid = hns3_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = hns3_vlan_rx_kill_vid,
.ndo_set_vf_vlan = hns3_ndo_set_vf_vlan,
};
static bool hns3_is_phys_func(struct pci_dev *pdev)
{
u32 dev_id = pdev->device;
switch (dev_id) {
case HNAE3_DEV_ID_GE:
case HNAE3_DEV_ID_25GE:
case HNAE3_DEV_ID_25GE_RDMA:
case HNAE3_DEV_ID_25GE_RDMA_MACSEC:
case HNAE3_DEV_ID_50GE_RDMA:
case HNAE3_DEV_ID_50GE_RDMA_MACSEC:
case HNAE3_DEV_ID_100G_RDMA_MACSEC:
return true;
case HNAE3_DEV_ID_100G_VF:
case HNAE3_DEV_ID_100G_RDMA_DCB_PFC_VF:
return false;
default:
dev_warn(&pdev->dev, "un-recognized pci device-id %d",
dev_id);
}
return false;
}
static void hns3_disable_sriov(struct pci_dev *pdev)
{
/* If our VFs are assigned we cannot shut down SR-IOV
* without causing issues, so just leave the hardware
* available but disabled
*/
if (pci_vfs_assigned(pdev)) {
dev_warn(&pdev->dev,
"disabling driver while VFs are assigned\n");
return;
}
pci_disable_sriov(pdev);
}
static void hns3_get_dev_capability(struct pci_dev *pdev,
struct hnae3_ae_dev *ae_dev)
{
if (pdev->revision >= 0x21)
hnae3_set_bit(ae_dev->flag, HNAE3_DEV_SUPPORT_FD_B, 1);
}
/* hns3_probe - Device initialization routine
* @pdev: PCI device information struct
* @ent: entry in hns3_pci_tbl
*
* hns3_probe initializes a PF identified by a pci_dev structure.
* The OS initialization, configuring of the PF private structure,
* and a hardware reset occur.
*
* Returns 0 on success, negative on failure
*/
static int hns3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct hnae3_ae_dev *ae_dev;
int ret;
ae_dev = devm_kzalloc(&pdev->dev, sizeof(*ae_dev),
GFP_KERNEL);
if (!ae_dev) {
ret = -ENOMEM;
return ret;
}
ae_dev->pdev = pdev;
ae_dev->flag = ent->driver_data;
ae_dev->dev_type = HNAE3_DEV_KNIC;
ae_dev->reset_type = HNAE3_NONE_RESET;
hns3_get_dev_capability(pdev, ae_dev);
pci_set_drvdata(pdev, ae_dev);
hnae3_register_ae_dev(ae_dev);
return 0;
}
/* hns3_remove - Device removal routine
* @pdev: PCI device information struct
*/
static void hns3_remove(struct pci_dev *pdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
if (hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))
hns3_disable_sriov(pdev);
hnae3_unregister_ae_dev(ae_dev);
}
/**
* hns3_pci_sriov_configure
* @pdev: pointer to a pci_dev structure
* @num_vfs: number of VFs to allocate
*
* Enable or change the number of VFs. Called when the user updates the number
* of VFs in sysfs.
**/
static int hns3_pci_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
int ret;
if (!(hns3_is_phys_func(pdev) && IS_ENABLED(CONFIG_PCI_IOV))) {
dev_warn(&pdev->dev, "Can not config SRIOV\n");
return -EINVAL;
}
if (num_vfs) {
ret = pci_enable_sriov(pdev, num_vfs);
if (ret)
dev_err(&pdev->dev, "SRIOV enable failed %d\n", ret);
else
return num_vfs;
} else if (!pci_vfs_assigned(pdev)) {
pci_disable_sriov(pdev);
} else {
dev_warn(&pdev->dev,
"Unable to free VFs because some are assigned to VMs.\n");
}
return 0;
}
static void hns3_shutdown(struct pci_dev *pdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
hnae3_unregister_ae_dev(ae_dev);
devm_kfree(&pdev->dev, ae_dev);
pci_set_drvdata(pdev, NULL);
if (system_state == SYSTEM_POWER_OFF)
pci_set_power_state(pdev, PCI_D3hot);
}
static pci_ers_result_t hns3_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
pci_ers_result_t ret;
dev_info(&pdev->dev, "PCI error detected, state(=%d)!!\n", state);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (!ae_dev) {
dev_err(&pdev->dev,
"Can't recover - error happened during device init\n");
return PCI_ERS_RESULT_NONE;
}
if (ae_dev->ops->process_hw_error)
ret = ae_dev->ops->process_hw_error(ae_dev);
else
return PCI_ERS_RESULT_NONE;
return ret;
}
static pci_ers_result_t hns3_slot_reset(struct pci_dev *pdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
struct device *dev = &pdev->dev;
dev_info(dev, "requesting reset due to PCI error\n");
/* request the reset */
if (ae_dev->ops->reset_event) {
ae_dev->ops->reset_event(pdev, NULL);
return PCI_ERS_RESULT_RECOVERED;
}
return PCI_ERS_RESULT_DISCONNECT;
}
static void hns3_reset_prepare(struct pci_dev *pdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
dev_info(&pdev->dev, "hns3 flr prepare\n");
if (ae_dev && ae_dev->ops && ae_dev->ops->flr_prepare)
ae_dev->ops->flr_prepare(ae_dev);
}
static void hns3_reset_done(struct pci_dev *pdev)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(pdev);
dev_info(&pdev->dev, "hns3 flr done\n");
if (ae_dev && ae_dev->ops && ae_dev->ops->flr_done)
ae_dev->ops->flr_done(ae_dev);
}
static const struct pci_error_handlers hns3_err_handler = {
.error_detected = hns3_error_detected,
.slot_reset = hns3_slot_reset,
.reset_prepare = hns3_reset_prepare,
.reset_done = hns3_reset_done,
};
static struct pci_driver hns3_driver = {
.name = hns3_driver_name,
.id_table = hns3_pci_tbl,
.probe = hns3_probe,
.remove = hns3_remove,
.shutdown = hns3_shutdown,
.sriov_configure = hns3_pci_sriov_configure,
.err_handler = &hns3_err_handler,
};
/* set default feature to hns3 */
static void hns3_set_default_feature(struct net_device *netdev)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
struct pci_dev *pdev = h->pdev;
netdev->priv_flags |= IFF_UNICAST_FLT;
netdev->hw_enc_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
netdev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
netdev->gso_partial_features |= NETIF_F_GSO_GRE_CSUM;
netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_HW_VLAN_CTAG_FILTER |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
netdev->vlan_features |=
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_RXCSUM |
NETIF_F_SG | NETIF_F_GSO | NETIF_F_GRO |
NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
netdev->hw_features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX |
NETIF_F_RXCSUM | NETIF_F_SG | NETIF_F_GSO |
NETIF_F_GRO | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_GSO_GRE |
NETIF_F_GSO_GRE_CSUM | NETIF_F_GSO_UDP_TUNNEL |
NETIF_F_GSO_UDP_TUNNEL_CSUM | NETIF_F_SCTP_CRC;
if (pdev->revision >= 0x21) {
netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_FILTER;
if (!(h->flags & HNAE3_SUPPORT_VF)) {
netdev->hw_features |= NETIF_F_NTUPLE;
netdev->features |= NETIF_F_NTUPLE;
}
}
}
static int hns3_alloc_buffer(struct hns3_enet_ring *ring,
struct hns3_desc_cb *cb)
{
unsigned int order = hnae3_page_order(ring);
struct page *p;
p = dev_alloc_pages(order);
if (!p)
return -ENOMEM;
cb->priv = p;
cb->page_offset = 0;
cb->reuse_flag = 0;
cb->buf = page_address(p);
cb->length = hnae3_page_size(ring);
cb->type = DESC_TYPE_PAGE;
return 0;
}
static void hns3_free_buffer(struct hns3_enet_ring *ring,
struct hns3_desc_cb *cb)
{
if (cb->type == DESC_TYPE_SKB)
dev_kfree_skb_any((struct sk_buff *)cb->priv);
else if (!HNAE3_IS_TX_RING(ring))
put_page((struct page *)cb->priv);
memset(cb, 0, sizeof(*cb));
}
static int hns3_map_buffer(struct hns3_enet_ring *ring, struct hns3_desc_cb *cb)
{
cb->dma = dma_map_page(ring_to_dev(ring), cb->priv, 0,
cb->length, ring_to_dma_dir(ring));
if (unlikely(dma_mapping_error(ring_to_dev(ring), cb->dma)))
return -EIO;
return 0;
}
static void hns3_unmap_buffer(struct hns3_enet_ring *ring,
struct hns3_desc_cb *cb)
{
if (cb->type == DESC_TYPE_SKB)
dma_unmap_single(ring_to_dev(ring), cb->dma, cb->length,
ring_to_dma_dir(ring));
else if (cb->length)
dma_unmap_page(ring_to_dev(ring), cb->dma, cb->length,
ring_to_dma_dir(ring));
}
static void hns3_buffer_detach(struct hns3_enet_ring *ring, int i)
{
hns3_unmap_buffer(ring, &ring->desc_cb[i]);
ring->desc[i].addr = 0;
}
static void hns3_free_buffer_detach(struct hns3_enet_ring *ring, int i)
{
struct hns3_desc_cb *cb = &ring->desc_cb[i];
if (!ring->desc_cb[i].dma)
return;
hns3_buffer_detach(ring, i);
hns3_free_buffer(ring, cb);
}
static void hns3_free_buffers(struct hns3_enet_ring *ring)
{
int i;
for (i = 0; i < ring->desc_num; i++)
hns3_free_buffer_detach(ring, i);
}
/* free desc along with its attached buffer */
static void hns3_free_desc(struct hns3_enet_ring *ring)
{
int size = ring->desc_num * sizeof(ring->desc[0]);
hns3_free_buffers(ring);
if (ring->desc) {
dma_free_coherent(ring_to_dev(ring), size,
ring->desc, ring->desc_dma_addr);
ring->desc = NULL;
}
}
static int hns3_alloc_desc(struct hns3_enet_ring *ring)
{
int size = ring->desc_num * sizeof(ring->desc[0]);
ring->desc = dma_zalloc_coherent(ring_to_dev(ring), size,
&ring->desc_dma_addr,
GFP_KERNEL);
if (!ring->desc)
return -ENOMEM;
return 0;
}
static int hns3_reserve_buffer_map(struct hns3_enet_ring *ring,
struct hns3_desc_cb *cb)
{
int ret;
ret = hns3_alloc_buffer(ring, cb);
if (ret)
goto out;
ret = hns3_map_buffer(ring, cb);
if (ret)
goto out_with_buf;
return 0;
out_with_buf:
hns3_free_buffer(ring, cb);
out:
return ret;
}
static int hns3_alloc_buffer_attach(struct hns3_enet_ring *ring, int i)
{
int ret = hns3_reserve_buffer_map(ring, &ring->desc_cb[i]);
if (ret)
return ret;
ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
return 0;
}
/* Allocate memory for raw pkg, and map with dma */
static int hns3_alloc_ring_buffers(struct hns3_enet_ring *ring)
{
int i, j, ret;
for (i = 0; i < ring->desc_num; i++) {
ret = hns3_alloc_buffer_attach(ring, i);
if (ret)
goto out_buffer_fail;
}
return 0;
out_buffer_fail:
for (j = i - 1; j >= 0; j--)
hns3_free_buffer_detach(ring, j);
return ret;
}
/* detach a in-used buffer and replace with a reserved one */
static void hns3_replace_buffer(struct hns3_enet_ring *ring, int i,
struct hns3_desc_cb *res_cb)
{
hns3_unmap_buffer(ring, &ring->desc_cb[i]);
ring->desc_cb[i] = *res_cb;
ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma);
ring->desc[i].rx.bd_base_info = 0;
}
static void hns3_reuse_buffer(struct hns3_enet_ring *ring, int i)
{
ring->desc_cb[i].reuse_flag = 0;
ring->desc[i].addr = cpu_to_le64(ring->desc_cb[i].dma
+ ring->desc_cb[i].page_offset);
ring->desc[i].rx.bd_base_info = 0;
}
static void hns3_nic_reclaim_one_desc(struct hns3_enet_ring *ring, int *bytes,
int *pkts)
{
struct hns3_desc_cb *desc_cb = &ring->desc_cb[ring->next_to_clean];
(*pkts) += (desc_cb->type == DESC_TYPE_SKB);
(*bytes) += desc_cb->length;
/* desc_cb will be cleaned, after hnae3_free_buffer_detach*/
hns3_free_buffer_detach(ring, ring->next_to_clean);
ring_ptr_move_fw(ring, next_to_clean);
}
static int is_valid_clean_head(struct hns3_enet_ring *ring, int h)
{
int u = ring->next_to_use;
int c = ring->next_to_clean;
if (unlikely(h > ring->desc_num))
return 0;
return u > c ? (h > c && h <= u) : (h > c || h <= u);
}
void hns3_clean_tx_ring(struct hns3_enet_ring *ring)
{
struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct netdev_queue *dev_queue;
int bytes, pkts;
int head;
head = readl_relaxed(ring->tqp->io_base + HNS3_RING_TX_RING_HEAD_REG);
rmb(); /* Make sure head is ready before touch any data */
if (is_ring_empty(ring) || head == ring->next_to_clean)
return; /* no data to poll */
if (unlikely(!is_valid_clean_head(ring, head))) {
netdev_err(netdev, "wrong head (%d, %d-%d)\n", head,
ring->next_to_use, ring->next_to_clean);
u64_stats_update_begin(&ring->syncp);
ring->stats.io_err_cnt++;
u64_stats_update_end(&ring->syncp);
return;
}
bytes = 0;
pkts = 0;
while (head != ring->next_to_clean) {
hns3_nic_reclaim_one_desc(ring, &bytes, &pkts);
/* Issue prefetch for next Tx descriptor */
prefetch(&ring->desc_cb[ring->next_to_clean]);
}
ring->tqp_vector->tx_group.total_bytes += bytes;
ring->tqp_vector->tx_group.total_packets += pkts;
u64_stats_update_begin(&ring->syncp);
ring->stats.tx_bytes += bytes;
ring->stats.tx_pkts += pkts;
u64_stats_update_end(&ring->syncp);
dev_queue = netdev_get_tx_queue(netdev, ring->tqp->tqp_index);
netdev_tx_completed_queue(dev_queue, pkts, bytes);
if (unlikely(pkts && netif_carrier_ok(netdev) &&
(ring_space(ring) > HNS3_MAX_BD_PER_PKT))) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (netif_tx_queue_stopped(dev_queue) &&
!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) {
netif_tx_wake_queue(dev_queue);
ring->stats.restart_queue++;
}
}
}
static int hns3_desc_unused(struct hns3_enet_ring *ring)
{
int ntc = ring->next_to_clean;
int ntu = ring->next_to_use;
return ((ntc >= ntu) ? 0 : ring->desc_num) + ntc - ntu;
}
static void
hns3_nic_alloc_rx_buffers(struct hns3_enet_ring *ring, int cleand_count)
{
struct hns3_desc_cb *desc_cb;
struct hns3_desc_cb res_cbs;
int i, ret;
for (i = 0; i < cleand_count; i++) {
desc_cb = &ring->desc_cb[ring->next_to_use];
if (desc_cb->reuse_flag) {
u64_stats_update_begin(&ring->syncp);
ring->stats.reuse_pg_cnt++;
u64_stats_update_end(&ring->syncp);
hns3_reuse_buffer(ring, ring->next_to_use);
} else {
ret = hns3_reserve_buffer_map(ring, &res_cbs);
if (ret) {
u64_stats_update_begin(&ring->syncp);
ring->stats.sw_err_cnt++;
u64_stats_update_end(&ring->syncp);
netdev_err(ring->tqp->handle->kinfo.netdev,
"hnae reserve buffer map failed.\n");
break;
}
hns3_replace_buffer(ring, ring->next_to_use, &res_cbs);
}
ring_ptr_move_fw(ring, next_to_use);
}
wmb(); /* Make all data has been write before submit */
writel_relaxed(i, ring->tqp->io_base + HNS3_RING_RX_RING_HEAD_REG);
}
static void hns3_nic_reuse_page(struct sk_buff *skb, int i,
struct hns3_enet_ring *ring, int pull_len,
struct hns3_desc_cb *desc_cb)
{
struct hns3_desc *desc;
u32 truesize;
int size;
int last_offset;
bool twobufs;
twobufs = ((PAGE_SIZE < 8192) &&
hnae3_buf_size(ring) == HNS3_BUFFER_SIZE_2048);
desc = &ring->desc[ring->next_to_clean];
size = le16_to_cpu(desc->rx.size);
truesize = hnae3_buf_size(ring);
if (!twobufs)
last_offset = hnae3_page_size(ring) - hnae3_buf_size(ring);
skb_add_rx_frag(skb, i, desc_cb->priv, desc_cb->page_offset + pull_len,
size - pull_len, truesize);
/* Avoid re-using remote pages,flag default unreuse */
if (unlikely(page_to_nid(desc_cb->priv) != numa_node_id()))
return;
if (twobufs) {
/* If we are only owner of page we can reuse it */
if (likely(page_count(desc_cb->priv) == 1)) {
/* Flip page offset to other buffer */
desc_cb->page_offset ^= truesize;
desc_cb->reuse_flag = 1;
/* bump ref count on page before it is given*/
get_page(desc_cb->priv);
}
return;
}
/* Move offset up to the next cache line */
desc_cb->page_offset += truesize;
if (desc_cb->page_offset <= last_offset) {
desc_cb->reuse_flag = 1;
/* Bump ref count on page before it is given*/
get_page(desc_cb->priv);
}
}
static void hns3_rx_checksum(struct hns3_enet_ring *ring, struct sk_buff *skb,
struct hns3_desc *desc)
{
struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
int l3_type, l4_type;
u32 bd_base_info;
int ol4_type;
u32 l234info;
bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
l234info = le32_to_cpu(desc->rx.l234_info);
skb->ip_summed = CHECKSUM_NONE;
skb_checksum_none_assert(skb);
if (!(netdev->features & NETIF_F_RXCSUM))
return;
/* check if hardware has done checksum */
if (!hnae3_get_bit(bd_base_info, HNS3_RXD_L3L4P_B))
return;
if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L3E_B) ||
hnae3_get_bit(l234info, HNS3_RXD_L4E_B) ||
hnae3_get_bit(l234info, HNS3_RXD_OL3E_B) ||
hnae3_get_bit(l234info, HNS3_RXD_OL4E_B))) {
u64_stats_update_begin(&ring->syncp);
ring->stats.l3l4_csum_err++;
u64_stats_update_end(&ring->syncp);
return;
}
l3_type = hnae3_get_field(l234info, HNS3_RXD_L3ID_M,
HNS3_RXD_L3ID_S);
l4_type = hnae3_get_field(l234info, HNS3_RXD_L4ID_M,
HNS3_RXD_L4ID_S);
ol4_type = hnae3_get_field(l234info, HNS3_RXD_OL4ID_M,
HNS3_RXD_OL4ID_S);
switch (ol4_type) {
case HNS3_OL4_TYPE_MAC_IN_UDP:
case HNS3_OL4_TYPE_NVGRE:
skb->csum_level = 1;
/* fall through */
case HNS3_OL4_TYPE_NO_TUN:
/* Can checksum ipv4 or ipv6 + UDP/TCP/SCTP packets */
if ((l3_type == HNS3_L3_TYPE_IPV4 ||
l3_type == HNS3_L3_TYPE_IPV6) &&
(l4_type == HNS3_L4_TYPE_UDP ||
l4_type == HNS3_L4_TYPE_TCP ||
l4_type == HNS3_L4_TYPE_SCTP))
skb->ip_summed = CHECKSUM_UNNECESSARY;
break;
default:
break;
}
}
static void hns3_rx_skb(struct hns3_enet_ring *ring, struct sk_buff *skb)
{
napi_gro_receive(&ring->tqp_vector->napi, skb);
}
static bool hns3_parse_vlan_tag(struct hns3_enet_ring *ring,
struct hns3_desc *desc, u32 l234info,
u16 *vlan_tag)
{
struct pci_dev *pdev = ring->tqp->handle->pdev;
if (pdev->revision == 0x20) {
*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
if (!(*vlan_tag & VLAN_VID_MASK))
*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
return (*vlan_tag != 0);
}
#define HNS3_STRP_OUTER_VLAN 0x1
#define HNS3_STRP_INNER_VLAN 0x2
switch (hnae3_get_field(l234info, HNS3_RXD_STRP_TAGP_M,
HNS3_RXD_STRP_TAGP_S)) {
case HNS3_STRP_OUTER_VLAN:
*vlan_tag = le16_to_cpu(desc->rx.ot_vlan_tag);
return true;
case HNS3_STRP_INNER_VLAN:
*vlan_tag = le16_to_cpu(desc->rx.vlan_tag);
return true;
default:
return false;
}
}
static void hns3_set_rx_skb_rss_type(struct hns3_enet_ring *ring,
struct sk_buff *skb)
{
struct hns3_desc *desc = &ring->desc[ring->next_to_clean];
struct hnae3_handle *handle = ring->tqp->handle;
enum pkt_hash_types rss_type;
if (le32_to_cpu(desc->rx.rss_hash))
rss_type = handle->kinfo.rss_type;
else
rss_type = PKT_HASH_TYPE_NONE;
skb_set_hash(skb, le32_to_cpu(desc->rx.rss_hash), rss_type);
}
static int hns3_handle_rx_bd(struct hns3_enet_ring *ring,
struct sk_buff **out_skb, int *out_bnum)
{
struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
struct hns3_desc_cb *desc_cb;
struct hns3_desc *desc;
struct sk_buff *skb;
unsigned char *va;
u32 bd_base_info;
int pull_len;
u32 l234info;
int length;
int bnum;
desc = &ring->desc[ring->next_to_clean];
desc_cb = &ring->desc_cb[ring->next_to_clean];
prefetch(desc);
length = le16_to_cpu(desc->rx.size);
bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
/* Check valid BD */
if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B)))
return -EFAULT;
va = (unsigned char *)desc_cb->buf + desc_cb->page_offset;
/* Prefetch first cache line of first page
* Idea is to cache few bytes of the header of the packet. Our L1 Cache
* line size is 64B so need to prefetch twice to make it 128B. But in
* actual we can have greater size of caches with 128B Level 1 cache
* lines. In such a case, single fetch would suffice to cache in the
* relevant part of the header.
*/
prefetch(va);
#if L1_CACHE_BYTES < 128
prefetch(va + L1_CACHE_BYTES);
#endif
skb = *out_skb = napi_alloc_skb(&ring->tqp_vector->napi,
HNS3_RX_HEAD_SIZE);
if (unlikely(!skb)) {
netdev_err(netdev, "alloc rx skb fail\n");
u64_stats_update_begin(&ring->syncp);
ring->stats.sw_err_cnt++;
u64_stats_update_end(&ring->syncp);
return -ENOMEM;
}
prefetchw(skb->data);
bnum = 1;
if (length <= HNS3_RX_HEAD_SIZE) {
memcpy(__skb_put(skb, length), va, ALIGN(length, sizeof(long)));
/* We can reuse buffer as-is, just make sure it is local */
if (likely(page_to_nid(desc_cb->priv) == numa_node_id()))
desc_cb->reuse_flag = 1;
else /* This page cannot be reused so discard it */
put_page(desc_cb->priv);
ring_ptr_move_fw(ring, next_to_clean);
} else {
u64_stats_update_begin(&ring->syncp);
ring->stats.seg_pkt_cnt++;
u64_stats_update_end(&ring->syncp);
pull_len = eth_get_headlen(va, HNS3_RX_HEAD_SIZE);
memcpy(__skb_put(skb, pull_len), va,
ALIGN(pull_len, sizeof(long)));
hns3_nic_reuse_page(skb, 0, ring, pull_len, desc_cb);
ring_ptr_move_fw(ring, next_to_clean);
while (!hnae3_get_bit(bd_base_info, HNS3_RXD_FE_B)) {
desc = &ring->desc[ring->next_to_clean];
desc_cb = &ring->desc_cb[ring->next_to_clean];
bd_base_info = le32_to_cpu(desc->rx.bd_base_info);
hns3_nic_reuse_page(skb, bnum, ring, 0, desc_cb);
ring_ptr_move_fw(ring, next_to_clean);
bnum++;
}
}
*out_bnum = bnum;
l234info = le32_to_cpu(desc->rx.l234_info);
/* Based on hw strategy, the tag offloaded will be stored at
* ot_vlan_tag in two layer tag case, and stored at vlan_tag
* in one layer tag case.
*/
if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX) {
u16 vlan_tag;
if (hns3_parse_vlan_tag(ring, desc, l234info, &vlan_tag))
__vlan_hwaccel_put_tag(skb,
htons(ETH_P_8021Q),
vlan_tag);
}
if (unlikely(!hnae3_get_bit(bd_base_info, HNS3_RXD_VLD_B))) {
u64_stats_update_begin(&ring->syncp);
ring->stats.non_vld_descs++;
u64_stats_update_end(&ring->syncp);
dev_kfree_skb_any(skb);
return -EINVAL;
}
if (unlikely((!desc->rx.pkt_len) ||
hnae3_get_bit(l234info, HNS3_RXD_TRUNCAT_B))) {
u64_stats_update_begin(&ring->syncp);
ring->stats.err_pkt_len++;
u64_stats_update_end(&ring->syncp);
dev_kfree_skb_any(skb);
return -EFAULT;
}
if (unlikely(hnae3_get_bit(l234info, HNS3_RXD_L2E_B))) {
u64_stats_update_begin(&ring->syncp);
ring->stats.l2_err++;
u64_stats_update_end(&ring->syncp);
dev_kfree_skb_any(skb);
return -EFAULT;
}
u64_stats_update_begin(&ring->syncp);
ring->stats.rx_pkts++;
ring->stats.rx_bytes += skb->len;
u64_stats_update_end(&ring->syncp);
ring->tqp_vector->rx_group.total_bytes += skb->len;
hns3_rx_checksum(ring, skb, desc);
hns3_set_rx_skb_rss_type(ring, skb);
return 0;
}
int hns3_clean_rx_ring(
struct hns3_enet_ring *ring, int budget,
void (*rx_fn)(struct hns3_enet_ring *, struct sk_buff *))
{
#define RCB_NOF_ALLOC_RX_BUFF_ONCE 16
struct net_device *netdev = ring->tqp->handle->kinfo.netdev;
int recv_pkts, recv_bds, clean_count, err;
int unused_count = hns3_desc_unused(ring);
struct sk_buff *skb = NULL;
int num, bnum = 0;
num = readl_relaxed(ring->tqp->io_base + HNS3_RING_RX_RING_FBDNUM_REG);
rmb(); /* Make sure num taken effect before the other data is touched */
recv_pkts = 0, recv_bds = 0, clean_count = 0;
num -= unused_count;
while (recv_pkts < budget && recv_bds < num) {
/* Reuse or realloc buffers */
if (clean_count + unused_count >= RCB_NOF_ALLOC_RX_BUFF_ONCE) {
hns3_nic_alloc_rx_buffers(ring,
clean_count + unused_count);
clean_count = 0;
unused_count = hns3_desc_unused(ring);
}
/* Poll one pkt */
err = hns3_handle_rx_bd(ring, &skb, &bnum);
if (unlikely(!skb)) /* This fault cannot be repaired */
goto out;
recv_bds += bnum;
clean_count += bnum;
if (unlikely(err)) { /* Do jump the err */
recv_pkts++;
continue;
}
/* Do update ip stack process */
skb->protocol = eth_type_trans(skb, netdev);
rx_fn(ring, skb);
recv_pkts++;
}
out:
/* Make all data has been write before submit */
if (clean_count + unused_count > 0)
hns3_nic_alloc_rx_buffers(ring,
clean_count + unused_count);
return recv_pkts;
}
static bool hns3_get_new_int_gl(struct hns3_enet_ring_group *ring_group)
{
struct hns3_enet_tqp_vector *tqp_vector =
ring_group->ring->tqp_vector;
enum hns3_flow_level_range new_flow_level;
int packets_per_msecs;
int bytes_per_msecs;
u32 time_passed_ms;
u16 new_int_gl;
if (!ring_group->coal.int_gl || !tqp_vector->last_jiffies)
return false;
if (ring_group->total_packets == 0) {
ring_group->coal.int_gl = HNS3_INT_GL_50K;
ring_group->coal.flow_level = HNS3_FLOW_LOW;
return true;
}
/* Simple throttlerate management
* 0-10MB/s lower (50000 ints/s)
* 10-20MB/s middle (20000 ints/s)
* 20-1249MB/s high (18000 ints/s)
* > 40000pps ultra (8000 ints/s)
*/
new_flow_level = ring_group->coal.flow_level;
new_int_gl = ring_group->coal.int_gl;
time_passed_ms =
jiffies_to_msecs(jiffies - tqp_vector->last_jiffies);
if (!time_passed_ms)
return false;
do_div(ring_group->total_packets, time_passed_ms);
packets_per_msecs = ring_group->total_packets;
do_div(ring_group->total_bytes, time_passed_ms);
bytes_per_msecs = ring_group->total_bytes;
#define HNS3_RX_LOW_BYTE_RATE 10000
#define HNS3_RX_MID_BYTE_RATE 20000
switch (new_flow_level) {
case HNS3_FLOW_LOW:
if (bytes_per_msecs > HNS3_RX_LOW_BYTE_RATE)
new_flow_level = HNS3_FLOW_MID;
break;
case HNS3_FLOW_MID:
if (bytes_per_msecs > HNS3_RX_MID_BYTE_RATE)
new_flow_level = HNS3_FLOW_HIGH;
else if (bytes_per_msecs <= HNS3_RX_LOW_BYTE_RATE)
new_flow_level = HNS3_FLOW_LOW;
break;
case HNS3_FLOW_HIGH:
case HNS3_FLOW_ULTRA:
default:
if (bytes_per_msecs <= HNS3_RX_MID_BYTE_RATE)
new_flow_level = HNS3_FLOW_MID;
break;
}
#define HNS3_RX_ULTRA_PACKET_RATE 40
if (packets_per_msecs > HNS3_RX_ULTRA_PACKET_RATE &&
&tqp_vector->rx_group == ring_group)
new_flow_level = HNS3_FLOW_ULTRA;
switch (new_flow_level) {
case HNS3_FLOW_LOW:
new_int_gl = HNS3_INT_GL_50K;
break;
case HNS3_FLOW_MID:
new_int_gl = HNS3_INT_GL_20K;
break;
case HNS3_FLOW_HIGH:
new_int_gl = HNS3_INT_GL_18K;
break;
case HNS3_FLOW_ULTRA:
new_int_gl = HNS3_INT_GL_8K;
break;
default:
break;
}
ring_group->total_bytes = 0;
ring_group->total_packets = 0;
ring_group->coal.flow_level = new_flow_level;
if (new_int_gl != ring_group->coal.int_gl) {
ring_group->coal.int_gl = new_int_gl;
return true;
}
return false;
}
static void hns3_update_new_int_gl(struct hns3_enet_tqp_vector *tqp_vector)
{
struct hns3_enet_ring_group *rx_group = &tqp_vector->rx_group;
struct hns3_enet_ring_group *tx_group = &tqp_vector->tx_group;
bool rx_update, tx_update;
if (tqp_vector->int_adapt_down > 0) {
tqp_vector->int_adapt_down--;
return;
}
if (rx_group->coal.gl_adapt_enable) {
rx_update = hns3_get_new_int_gl(rx_group);
if (rx_update)
hns3_set_vector_coalesce_rx_gl(tqp_vector,
rx_group->coal.int_gl);
}
if (tx_group->coal.gl_adapt_enable) {
tx_update = hns3_get_new_int_gl(&tqp_vector->tx_group);
if (tx_update)
hns3_set_vector_coalesce_tx_gl(tqp_vector,
tx_group->coal.int_gl);
}
tqp_vector->last_jiffies = jiffies;
tqp_vector->int_adapt_down = HNS3_INT_ADAPT_DOWN_START;
}
static int hns3_nic_common_poll(struct napi_struct *napi, int budget)
{
struct hns3_nic_priv *priv = netdev_priv(napi->dev);
struct hns3_enet_ring *ring;
int rx_pkt_total = 0;
struct hns3_enet_tqp_vector *tqp_vector =
container_of(napi, struct hns3_enet_tqp_vector, napi);
bool clean_complete = true;
int rx_budget;
if (unlikely(test_bit(HNS3_NIC_STATE_DOWN, &priv->state))) {
napi_complete(napi);
return 0;
}
/* Since the actual Tx work is minimal, we can give the Tx a larger
* budget and be more aggressive about cleaning up the Tx descriptors.
*/
hns3_for_each_ring(ring, tqp_vector->tx_group)
hns3_clean_tx_ring(ring);
/* make sure rx ring budget not smaller than 1 */
rx_budget = max(budget / tqp_vector->num_tqps, 1);
hns3_for_each_ring(ring, tqp_vector->rx_group) {
int rx_cleaned = hns3_clean_rx_ring(ring, rx_budget,
hns3_rx_skb);
if (rx_cleaned >= rx_budget)
clean_complete = false;
rx_pkt_total += rx_cleaned;
}
tqp_vector->rx_group.total_packets += rx_pkt_total;
if (!clean_complete)
return budget;
if (likely(!test_bit(HNS3_NIC_STATE_DOWN, &priv->state)) &&
napi_complete(napi)) {
hns3_update_new_int_gl(tqp_vector);
hns3_mask_vector_irq(tqp_vector, 1);
}
return rx_pkt_total;
}
static int hns3_get_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
struct hnae3_ring_chain_node *head)
{
struct pci_dev *pdev = tqp_vector->handle->pdev;
struct hnae3_ring_chain_node *cur_chain = head;
struct hnae3_ring_chain_node *chain;
struct hns3_enet_ring *tx_ring;
struct hns3_enet_ring *rx_ring;
tx_ring = tqp_vector->tx_group.ring;
if (tx_ring) {
cur_chain->tqp_index = tx_ring->tqp->tqp_index;
hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
HNAE3_RING_TYPE_TX);
hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_TX);
cur_chain->next = NULL;
while (tx_ring->next) {
tx_ring = tx_ring->next;
chain = devm_kzalloc(&pdev->dev, sizeof(*chain),
GFP_KERNEL);
if (!chain)
goto err_free_chain;
cur_chain->next = chain;
chain->tqp_index = tx_ring->tqp->tqp_index;
hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
HNAE3_RING_TYPE_TX);
hnae3_set_field(chain->int_gl_idx,
HNAE3_RING_GL_IDX_M,
HNAE3_RING_GL_IDX_S,
HNAE3_RING_GL_TX);
cur_chain = chain;
}
}
rx_ring = tqp_vector->rx_group.ring;
if (!tx_ring && rx_ring) {
cur_chain->next = NULL;
cur_chain->tqp_index = rx_ring->tqp->tqp_index;
hnae3_set_bit(cur_chain->flag, HNAE3_RING_TYPE_B,
HNAE3_RING_TYPE_RX);
hnae3_set_field(cur_chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
rx_ring = rx_ring->next;
}
while (rx_ring) {
chain = devm_kzalloc(&pdev->dev, sizeof(*chain), GFP_KERNEL);
if (!chain)
goto err_free_chain;
cur_chain->next = chain;
chain->tqp_index = rx_ring->tqp->tqp_index;
hnae3_set_bit(chain->flag, HNAE3_RING_TYPE_B,
HNAE3_RING_TYPE_RX);
hnae3_set_field(chain->int_gl_idx, HNAE3_RING_GL_IDX_M,
HNAE3_RING_GL_IDX_S, HNAE3_RING_GL_RX);
cur_chain = chain;
rx_ring = rx_ring->next;
}
return 0;
err_free_chain:
cur_chain = head->next;
while (cur_chain) {
chain = cur_chain->next;
devm_kfree(&pdev->dev, chain);
cur_chain = chain;
}
return -ENOMEM;
}
static void hns3_free_vector_ring_chain(struct hns3_enet_tqp_vector *tqp_vector,
struct hnae3_ring_chain_node *head)
{
struct pci_dev *pdev = tqp_vector->handle->pdev;
struct hnae3_ring_chain_node *chain_tmp, *chain;
chain = head->next;
while (chain) {
chain_tmp = chain->next;
devm_kfree(&pdev->dev, chain);
chain = chain_tmp;
}
}
static void hns3_add_ring_to_group(struct hns3_enet_ring_group *group,
struct hns3_enet_ring *ring)
{
ring->next = group->ring;
group->ring = ring;
group->count++;
}
static void hns3_nic_set_cpumask(struct hns3_nic_priv *priv)
{
struct pci_dev *pdev = priv->ae_handle->pdev;
struct hns3_enet_tqp_vector *tqp_vector;
int num_vectors = priv->vector_num;
int numa_node;
int vector_i;
numa_node = dev_to_node(&pdev->dev);
for (vector_i = 0; vector_i < num_vectors; vector_i++) {
tqp_vector = &priv->tqp_vector[vector_i];
cpumask_set_cpu(cpumask_local_spread(vector_i, numa_node),
&tqp_vector->affinity_mask);
}
}
static int hns3_nic_init_vector_data(struct hns3_nic_priv *priv)
{
struct hnae3_ring_chain_node vector_ring_chain;
struct hnae3_handle *h = priv->ae_handle;
struct hns3_enet_tqp_vector *tqp_vector;
int ret = 0;
int i;
hns3_nic_set_cpumask(priv);
for (i = 0; i < priv->vector_num; i++) {
tqp_vector = &priv->tqp_vector[i];
hns3_vector_gl_rl_init_hw(tqp_vector, priv);
tqp_vector->num_tqps = 0;
}
for (i = 0; i < h->kinfo.num_tqps; i++) {
u16 vector_i = i % priv->vector_num;
u16 tqp_num = h->kinfo.num_tqps;
tqp_vector = &priv->tqp_vector[vector_i];
hns3_add_ring_to_group(&tqp_vector->tx_group,
priv->ring_data[i].ring);
hns3_add_ring_to_group(&tqp_vector->rx_group,
priv->ring_data[i + tqp_num].ring);
priv->ring_data[i].ring->tqp_vector = tqp_vector;
priv->ring_data[i + tqp_num].ring->tqp_vector = tqp_vector;
tqp_vector->num_tqps++;
}
for (i = 0; i < priv->vector_num; i++) {
tqp_vector = &priv->tqp_vector[i];
tqp_vector->rx_group.total_bytes = 0;
tqp_vector->rx_group.total_packets = 0;
tqp_vector->tx_group.total_bytes = 0;
tqp_vector->tx_group.total_packets = 0;
tqp_vector->handle = h;
ret = hns3_get_vector_ring_chain(tqp_vector,
&vector_ring_chain);
if (ret)
return ret;
ret = h->ae_algo->ops->map_ring_to_vector(h,
tqp_vector->vector_irq, &vector_ring_chain);
hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
if (ret)
goto map_ring_fail;
netif_napi_add(priv->netdev, &tqp_vector->napi,
hns3_nic_common_poll, NAPI_POLL_WEIGHT);
}
return 0;
map_ring_fail:
while (i--)
netif_napi_del(&priv->tqp_vector[i].napi);
return ret;
}
static int hns3_nic_alloc_vector_data(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
struct hns3_enet_tqp_vector *tqp_vector;
struct hnae3_vector_info *vector;
struct pci_dev *pdev = h->pdev;
u16 tqp_num = h->kinfo.num_tqps;
u16 vector_num;
int ret = 0;
u16 i;
/* RSS size, cpu online and vector_num should be the same */
/* Should consider 2p/4p later */
vector_num = min_t(u16, num_online_cpus(), tqp_num);
vector = devm_kcalloc(&pdev->dev, vector_num, sizeof(*vector),
GFP_KERNEL);
if (!vector)
return -ENOMEM;
vector_num = h->ae_algo->ops->get_vector(h, vector_num, vector);
priv->vector_num = vector_num;
priv->tqp_vector = (struct hns3_enet_tqp_vector *)
devm_kcalloc(&pdev->dev, vector_num, sizeof(*priv->tqp_vector),
GFP_KERNEL);
if (!priv->tqp_vector) {
ret = -ENOMEM;
goto out;
}
for (i = 0; i < priv->vector_num; i++) {
tqp_vector = &priv->tqp_vector[i];
tqp_vector->idx = i;
tqp_vector->mask_addr = vector[i].io_addr;
tqp_vector->vector_irq = vector[i].vector;
hns3_vector_gl_rl_init(tqp_vector, priv);
}
out:
devm_kfree(&pdev->dev, vector);
return ret;
}
static void hns3_clear_ring_group(struct hns3_enet_ring_group *group)
{
group->ring = NULL;
group->count = 0;
}
static int hns3_nic_uninit_vector_data(struct hns3_nic_priv *priv)
{
struct hnae3_ring_chain_node vector_ring_chain;
struct hnae3_handle *h = priv->ae_handle;
struct hns3_enet_tqp_vector *tqp_vector;
int i, ret;
for (i = 0; i < priv->vector_num; i++) {
tqp_vector = &priv->tqp_vector[i];
ret = hns3_get_vector_ring_chain(tqp_vector,
&vector_ring_chain);
if (ret)
return ret;
ret = h->ae_algo->ops->unmap_ring_from_vector(h,
tqp_vector->vector_irq, &vector_ring_chain);
if (ret)
return ret;
hns3_free_vector_ring_chain(tqp_vector, &vector_ring_chain);
if (priv->tqp_vector[i].irq_init_flag == HNS3_VECTOR_INITED) {
(void)irq_set_affinity_hint(
priv->tqp_vector[i].vector_irq,
NULL);
free_irq(priv->tqp_vector[i].vector_irq,
&priv->tqp_vector[i]);
}
priv->ring_data[i].ring->irq_init_flag = HNS3_VECTOR_NOT_INITED;
hns3_clear_ring_group(&tqp_vector->rx_group);
hns3_clear_ring_group(&tqp_vector->tx_group);
netif_napi_del(&priv->tqp_vector[i].napi);
}
return 0;
}
static int hns3_nic_dealloc_vector_data(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
struct pci_dev *pdev = h->pdev;
int i, ret;
for (i = 0; i < priv->vector_num; i++) {
struct hns3_enet_tqp_vector *tqp_vector;
tqp_vector = &priv->tqp_vector[i];
ret = h->ae_algo->ops->put_vector(h, tqp_vector->vector_irq);
if (ret)
return ret;
}
devm_kfree(&pdev->dev, priv->tqp_vector);
return 0;
}
static int hns3_ring_get_cfg(struct hnae3_queue *q, struct hns3_nic_priv *priv,
int ring_type)
{
struct hns3_nic_ring_data *ring_data = priv->ring_data;
int queue_num = priv->ae_handle->kinfo.num_tqps;
struct pci_dev *pdev = priv->ae_handle->pdev;
struct hns3_enet_ring *ring;
ring = devm_kzalloc(&pdev->dev, sizeof(*ring), GFP_KERNEL);
if (!ring)
return -ENOMEM;
if (ring_type == HNAE3_RING_TYPE_TX) {
ring_data[q->tqp_index].ring = ring;
ring_data[q->tqp_index].queue_index = q->tqp_index;
ring->io_base = (u8 __iomem *)q->io_base + HNS3_TX_REG_OFFSET;
} else {
ring_data[q->tqp_index + queue_num].ring = ring;
ring_data[q->tqp_index + queue_num].queue_index = q->tqp_index;
ring->io_base = q->io_base;
}
hnae3_set_bit(ring->flag, HNAE3_RING_TYPE_B, ring_type);
ring->tqp = q;
ring->desc = NULL;
ring->desc_cb = NULL;
ring->dev = priv->dev;
ring->desc_dma_addr = 0;
ring->buf_size = q->buf_size;
ring->desc_num = q->desc_num;
ring->next_to_use = 0;
ring->next_to_clean = 0;
return 0;
}
static int hns3_queue_to_ring(struct hnae3_queue *tqp,
struct hns3_nic_priv *priv)
{
int ret;
ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_TX);
if (ret)
return ret;
ret = hns3_ring_get_cfg(tqp, priv, HNAE3_RING_TYPE_RX);
if (ret) {
devm_kfree(priv->dev, priv->ring_data[tqp->tqp_index].ring);
return ret;
}
return 0;
}
static int hns3_get_ring_config(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
struct pci_dev *pdev = h->pdev;
int i, ret;
priv->ring_data = devm_kzalloc(&pdev->dev,
array3_size(h->kinfo.num_tqps,
sizeof(*priv->ring_data),
2),
GFP_KERNEL);
if (!priv->ring_data)
return -ENOMEM;
for (i = 0; i < h->kinfo.num_tqps; i++) {
ret = hns3_queue_to_ring(h->kinfo.tqp[i], priv);
if (ret)
goto err;
}
return 0;
err:
while (i--) {
devm_kfree(priv->dev, priv->ring_data[i].ring);
devm_kfree(priv->dev,
priv->ring_data[i + h->kinfo.num_tqps].ring);
}
devm_kfree(&pdev->dev, priv->ring_data);
return ret;
}
static void hns3_put_ring_config(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
int i;
for (i = 0; i < h->kinfo.num_tqps; i++) {
devm_kfree(priv->dev, priv->ring_data[i].ring);
devm_kfree(priv->dev,
priv->ring_data[i + h->kinfo.num_tqps].ring);
}
devm_kfree(priv->dev, priv->ring_data);
}
static int hns3_alloc_ring_memory(struct hns3_enet_ring *ring)
{
int ret;
if (ring->desc_num <= 0 || ring->buf_size <= 0)
return -EINVAL;
ring->desc_cb = kcalloc(ring->desc_num, sizeof(ring->desc_cb[0]),
GFP_KERNEL);
if (!ring->desc_cb) {
ret = -ENOMEM;
goto out;
}
ret = hns3_alloc_desc(ring);
if (ret)
goto out_with_desc_cb;
if (!HNAE3_IS_TX_RING(ring)) {
ret = hns3_alloc_ring_buffers(ring);
if (ret)
goto out_with_desc;
}
return 0;
out_with_desc:
hns3_free_desc(ring);
out_with_desc_cb:
kfree(ring->desc_cb);
ring->desc_cb = NULL;
out:
return ret;
}
static void hns3_fini_ring(struct hns3_enet_ring *ring)
{
hns3_free_desc(ring);
kfree(ring->desc_cb);
ring->desc_cb = NULL;
ring->next_to_clean = 0;
ring->next_to_use = 0;
}
static int hns3_buf_size2type(u32 buf_size)
{
int bd_size_type;
switch (buf_size) {
case 512:
bd_size_type = HNS3_BD_SIZE_512_TYPE;
break;
case 1024:
bd_size_type = HNS3_BD_SIZE_1024_TYPE;
break;
case 2048:
bd_size_type = HNS3_BD_SIZE_2048_TYPE;
break;
case 4096:
bd_size_type = HNS3_BD_SIZE_4096_TYPE;
break;
default:
bd_size_type = HNS3_BD_SIZE_2048_TYPE;
}
return bd_size_type;
}
static void hns3_init_ring_hw(struct hns3_enet_ring *ring)
{
dma_addr_t dma = ring->desc_dma_addr;
struct hnae3_queue *q = ring->tqp;
if (!HNAE3_IS_TX_RING(ring)) {
hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_L_REG,
(u32)dma);
hns3_write_dev(q, HNS3_RING_RX_RING_BASEADDR_H_REG,
(u32)((dma >> 31) >> 1));
hns3_write_dev(q, HNS3_RING_RX_RING_BD_LEN_REG,
hns3_buf_size2type(ring->buf_size));
hns3_write_dev(q, HNS3_RING_RX_RING_BD_NUM_REG,
ring->desc_num / 8 - 1);
} else {
hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_L_REG,
(u32)dma);
hns3_write_dev(q, HNS3_RING_TX_RING_BASEADDR_H_REG,
(u32)((dma >> 31) >> 1));
hns3_write_dev(q, HNS3_RING_TX_RING_BD_NUM_REG,
ring->desc_num / 8 - 1);
}
}
static void hns3_init_tx_ring_tc(struct hns3_nic_priv *priv)
{
struct hnae3_knic_private_info *kinfo = &priv->ae_handle->kinfo;
int i;
for (i = 0; i < HNAE3_MAX_TC; i++) {
struct hnae3_tc_info *tc_info = &kinfo->tc_info[i];
int j;
if (!tc_info->enable)
continue;
for (j = 0; j < tc_info->tqp_count; j++) {
struct hnae3_queue *q;
q = priv->ring_data[tc_info->tqp_offset + j].ring->tqp;
hns3_write_dev(q, HNS3_RING_TX_RING_TC_REG,
tc_info->tc);
}
}
}
int hns3_init_all_ring(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
int ring_num = h->kinfo.num_tqps * 2;
int i, j;
int ret;
for (i = 0; i < ring_num; i++) {
ret = hns3_alloc_ring_memory(priv->ring_data[i].ring);
if (ret) {
dev_err(priv->dev,
"Alloc ring memory fail! ret=%d\n", ret);
goto out_when_alloc_ring_memory;
}
u64_stats_init(&priv->ring_data[i].ring->syncp);
}
return 0;
out_when_alloc_ring_memory:
for (j = i - 1; j >= 0; j--)
hns3_fini_ring(priv->ring_data[j].ring);
return -ENOMEM;
}
int hns3_uninit_all_ring(struct hns3_nic_priv *priv)
{
struct hnae3_handle *h = priv->ae_handle;
int i;
for (i = 0; i < h->kinfo.num_tqps; i++) {
hns3_fini_ring(priv->ring_data[i].ring);
hns3_fini_ring(priv->ring_data[i + h->kinfo.num_tqps].ring);
}
return 0;
}
/* Set mac addr if it is configured. or leave it to the AE driver */
static int hns3_init_mac_addr(struct net_device *netdev, bool init)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = priv->ae_handle;
u8 mac_addr_temp[ETH_ALEN];
int ret = 0;
if (h->ae_algo->ops->get_mac_addr && init) {
h->ae_algo->ops->get_mac_addr(h, mac_addr_temp);
ether_addr_copy(netdev->dev_addr, mac_addr_temp);
}
/* Check if the MAC address is valid, if not get a random one */
if (!is_valid_ether_addr(netdev->dev_addr)) {
eth_hw_addr_random(netdev);
dev_warn(priv->dev, "using random MAC address %pM\n",
netdev->dev_addr);
}
if (h->ae_algo->ops->set_mac_addr)
ret = h->ae_algo->ops->set_mac_addr(h, netdev->dev_addr, true);
return ret;
}
static int hns3_restore_fd_rules(struct net_device *netdev)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
int ret = 0;
if (h->ae_algo->ops->restore_fd_rules)
ret = h->ae_algo->ops->restore_fd_rules(h);
return ret;
}
static void hns3_del_all_fd_rules(struct net_device *netdev, bool clear_list)
{
struct hnae3_handle *h = hns3_get_handle(netdev);
if (h->ae_algo->ops->del_all_fd_entries)
h->ae_algo->ops->del_all_fd_entries(h, clear_list);
}
static void hns3_nic_set_priv_ops(struct net_device *netdev)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
priv->ops.fill_desc = hns3_fill_desc;
if ((netdev->features & NETIF_F_TSO) ||
(netdev->features & NETIF_F_TSO6))
priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tso;
else
priv->ops.maybe_stop_tx = hns3_nic_maybe_stop_tx;
}
static int hns3_client_init(struct hnae3_handle *handle)
{
struct pci_dev *pdev = handle->pdev;
u16 alloc_tqps, max_rss_size;
struct hns3_nic_priv *priv;
struct net_device *netdev;
int ret;
handle->ae_algo->ops->get_tqps_and_rss_info(handle, &alloc_tqps,
&max_rss_size);
netdev = alloc_etherdev_mq(sizeof(struct hns3_nic_priv), alloc_tqps);
if (!netdev)
return -ENOMEM;
priv = netdev_priv(netdev);
priv->dev = &pdev->dev;
priv->netdev = netdev;
priv->ae_handle = handle;
priv->tx_timeout_count = 0;
handle->kinfo.netdev = netdev;
handle->priv = (void *)priv;
hns3_init_mac_addr(netdev, true);
hns3_set_default_feature(netdev);
netdev->watchdog_timeo = HNS3_TX_TIMEOUT;
netdev->priv_flags |= IFF_UNICAST_FLT;
netdev->netdev_ops = &hns3_nic_netdev_ops;
SET_NETDEV_DEV(netdev, &pdev->dev);
hns3_ethtool_set_ops(netdev);
hns3_nic_set_priv_ops(netdev);
/* Carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
ret = hns3_get_ring_config(priv);
if (ret) {
ret = -ENOMEM;
goto out_get_ring_cfg;
}
ret = hns3_nic_alloc_vector_data(priv);
if (ret) {
ret = -ENOMEM;
goto out_alloc_vector_data;
}
ret = hns3_nic_init_vector_data(priv);
if (ret) {
ret = -ENOMEM;
goto out_init_vector_data;
}
ret = hns3_init_all_ring(priv);
if (ret) {
ret = -ENOMEM;
goto out_init_ring_data;
}
ret = register_netdev(netdev);
if (ret) {
dev_err(priv->dev, "probe register netdev fail!\n");
goto out_reg_netdev_fail;
}
hns3_dcbnl_setup(handle);
/* MTU range: (ETH_MIN_MTU(kernel default) - 9706) */
netdev->max_mtu = HNS3_MAX_MTU - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN);
set_bit(HNS3_NIC_STATE_INITED, &priv->state);
return ret;
out_reg_netdev_fail:
out_init_ring_data:
(void)hns3_nic_uninit_vector_data(priv);
out_init_vector_data:
hns3_nic_dealloc_vector_data(priv);
out_alloc_vector_data:
priv->ring_data = NULL;
out_get_ring_cfg:
priv->ae_handle = NULL;
free_netdev(netdev);
return ret;
}
static void hns3_client_uninit(struct hnae3_handle *handle, bool reset)
{
struct net_device *netdev = handle->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(netdev);
int ret;
hns3_remove_hw_addr(netdev);
if (netdev->reg_state != NETREG_UNINITIALIZED)
unregister_netdev(netdev);
if (!test_and_clear_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
netdev_warn(netdev, "already uninitialized\n");
goto out_netdev_free;
}
hns3_del_all_fd_rules(netdev, true);
hns3_force_clear_all_rx_ring(handle);
ret = hns3_nic_uninit_vector_data(priv);
if (ret)
netdev_err(netdev, "uninit vector error\n");
ret = hns3_nic_dealloc_vector_data(priv);
if (ret)
netdev_err(netdev, "dealloc vector error\n");
ret = hns3_uninit_all_ring(priv);
if (ret)
netdev_err(netdev, "uninit ring error\n");
hns3_put_ring_config(priv);
priv->ring_data = NULL;
out_netdev_free:
free_netdev(netdev);
}
static void hns3_link_status_change(struct hnae3_handle *handle, bool linkup)
{
struct net_device *netdev = handle->kinfo.netdev;
if (!netdev)
return;
if (linkup) {
netif_carrier_on(netdev);
netif_tx_wake_all_queues(netdev);
netdev_info(netdev, "link up\n");
} else {
netif_carrier_off(netdev);
netif_tx_stop_all_queues(netdev);
netdev_info(netdev, "link down\n");
}
}
static int hns3_client_setup_tc(struct hnae3_handle *handle, u8 tc)
{
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
struct net_device *ndev = kinfo->netdev;
bool if_running;
int ret;
if (tc > HNAE3_MAX_TC)
return -EINVAL;
if (!ndev)
return -ENODEV;
if_running = netif_running(ndev);
if (if_running) {
(void)hns3_nic_net_stop(ndev);
msleep(100);
}
ret = (kinfo->dcb_ops && kinfo->dcb_ops->map_update) ?
kinfo->dcb_ops->map_update(handle) : -EOPNOTSUPP;
if (ret)
goto err_out;
ret = hns3_nic_set_real_num_queue(ndev);
err_out:
if (if_running)
(void)hns3_nic_net_open(ndev);
return ret;
}
static int hns3_recover_hw_addr(struct net_device *ndev)
{
struct netdev_hw_addr_list *list;
struct netdev_hw_addr *ha, *tmp;
int ret = 0;
/* go through and sync uc_addr entries to the device */
list = &ndev->uc;
list_for_each_entry_safe(ha, tmp, &list->list, list) {
ret = hns3_nic_uc_sync(ndev, ha->addr);
if (ret)
return ret;
}
/* go through and sync mc_addr entries to the device */
list = &ndev->mc;
list_for_each_entry_safe(ha, tmp, &list->list, list) {
ret = hns3_nic_mc_sync(ndev, ha->addr);
if (ret)
return ret;
}
return ret;
}
static void hns3_remove_hw_addr(struct net_device *netdev)
{
struct netdev_hw_addr_list *list;
struct netdev_hw_addr *ha, *tmp;
hns3_nic_uc_unsync(netdev, netdev->dev_addr);
/* go through and unsync uc_addr entries to the device */
list = &netdev->uc;
list_for_each_entry_safe(ha, tmp, &list->list, list)
hns3_nic_uc_unsync(netdev, ha->addr);
/* go through and unsync mc_addr entries to the device */
list = &netdev->mc;
list_for_each_entry_safe(ha, tmp, &list->list, list)
if (ha->refcount > 1)
hns3_nic_mc_unsync(netdev, ha->addr);
}
static void hns3_clear_tx_ring(struct hns3_enet_ring *ring)
{
while (ring->next_to_clean != ring->next_to_use) {
ring->desc[ring->next_to_clean].tx.bdtp_fe_sc_vld_ra_ri = 0;
hns3_free_buffer_detach(ring, ring->next_to_clean);
ring_ptr_move_fw(ring, next_to_clean);
}
}
static int hns3_clear_rx_ring(struct hns3_enet_ring *ring)
{
struct hns3_desc_cb res_cbs;
int ret;
while (ring->next_to_use != ring->next_to_clean) {
/* When a buffer is not reused, it's memory has been
* freed in hns3_handle_rx_bd or will be freed by
* stack, so we need to replace the buffer here.
*/
if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
ret = hns3_reserve_buffer_map(ring, &res_cbs);
if (ret) {
u64_stats_update_begin(&ring->syncp);
ring->stats.sw_err_cnt++;
u64_stats_update_end(&ring->syncp);
/* if alloc new buffer fail, exit directly
* and reclear in up flow.
*/
netdev_warn(ring->tqp->handle->kinfo.netdev,
"reserve buffer map failed, ret = %d\n",
ret);
return ret;
}
hns3_replace_buffer(ring, ring->next_to_use,
&res_cbs);
}
ring_ptr_move_fw(ring, next_to_use);
}
return 0;
}
static void hns3_force_clear_rx_ring(struct hns3_enet_ring *ring)
{
while (ring->next_to_use != ring->next_to_clean) {
/* When a buffer is not reused, it's memory has been
* freed in hns3_handle_rx_bd or will be freed by
* stack, so only need to unmap the buffer here.
*/
if (!ring->desc_cb[ring->next_to_use].reuse_flag) {
hns3_unmap_buffer(ring,
&ring->desc_cb[ring->next_to_use]);
ring->desc_cb[ring->next_to_use].dma = 0;
}
ring_ptr_move_fw(ring, next_to_use);
}
}
static void hns3_force_clear_all_rx_ring(struct hnae3_handle *h)
{
struct net_device *ndev = h->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(ndev);
struct hns3_enet_ring *ring;
u32 i;
for (i = 0; i < h->kinfo.num_tqps; i++) {
ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
hns3_force_clear_rx_ring(ring);
}
}
static void hns3_clear_all_ring(struct hnae3_handle *h)
{
struct net_device *ndev = h->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(ndev);
u32 i;
for (i = 0; i < h->kinfo.num_tqps; i++) {
struct netdev_queue *dev_queue;
struct hns3_enet_ring *ring;
ring = priv->ring_data[i].ring;
hns3_clear_tx_ring(ring);
dev_queue = netdev_get_tx_queue(ndev,
priv->ring_data[i].queue_index);
netdev_tx_reset_queue(dev_queue);
ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
/* Continue to clear other rings even if clearing some
* rings failed.
*/
hns3_clear_rx_ring(ring);
}
}
int hns3_nic_reset_all_ring(struct hnae3_handle *h)
{
struct net_device *ndev = h->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(ndev);
struct hns3_enet_ring *rx_ring;
int i, j;
int ret;
for (i = 0; i < h->kinfo.num_tqps; i++) {
ret = h->ae_algo->ops->reset_queue(h, i);
if (ret)
return ret;
hns3_init_ring_hw(priv->ring_data[i].ring);
/* We need to clear tx ring here because self test will
* use the ring and will not run down before up
*/
hns3_clear_tx_ring(priv->ring_data[i].ring);
priv->ring_data[i].ring->next_to_clean = 0;
priv->ring_data[i].ring->next_to_use = 0;
rx_ring = priv->ring_data[i + h->kinfo.num_tqps].ring;
hns3_init_ring_hw(rx_ring);
ret = hns3_clear_rx_ring(rx_ring);
if (ret)
return ret;
/* We can not know the hardware head and tail when this
* function is called in reset flow, so we reuse all desc.
*/
for (j = 0; j < rx_ring->desc_num; j++)
hns3_reuse_buffer(rx_ring, j);
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
hns3_init_tx_ring_tc(priv);
return 0;
}
static void hns3_store_coal(struct hns3_nic_priv *priv)
{
/* ethtool only support setting and querying one coal
* configuation for now, so save the vector 0' coal
* configuation here in order to restore it.
*/
memcpy(&priv->tx_coal, &priv->tqp_vector[0].tx_group.coal,
sizeof(struct hns3_enet_coalesce));
memcpy(&priv->rx_coal, &priv->tqp_vector[0].rx_group.coal,
sizeof(struct hns3_enet_coalesce));
}
static void hns3_restore_coal(struct hns3_nic_priv *priv)
{
u16 vector_num = priv->vector_num;
int i;
for (i = 0; i < vector_num; i++) {
memcpy(&priv->tqp_vector[i].tx_group.coal, &priv->tx_coal,
sizeof(struct hns3_enet_coalesce));
memcpy(&priv->tqp_vector[i].rx_group.coal, &priv->rx_coal,
sizeof(struct hns3_enet_coalesce));
}
}
static int hns3_reset_notify_down_enet(struct hnae3_handle *handle)
{
struct hnae3_ae_dev *ae_dev = pci_get_drvdata(handle->pdev);
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
struct net_device *ndev = kinfo->netdev;
struct hns3_nic_priv *priv = netdev_priv(ndev);
if (test_and_set_bit(HNS3_NIC_STATE_RESETTING, &priv->state))
return 0;
/* it is cumbersome for hardware to pick-and-choose entries for deletion
* from table space. Hence, for function reset software intervention is
* required to delete the entries
*/
if (hns3_dev_ongoing_func_reset(ae_dev)) {
hns3_remove_hw_addr(ndev);
hns3_del_all_fd_rules(ndev, false);
}
if (!netif_running(ndev))
return 0;
return hns3_nic_net_stop(ndev);
}
static int hns3_reset_notify_up_enet(struct hnae3_handle *handle)
{
struct hnae3_knic_private_info *kinfo = &handle->kinfo;
struct hns3_nic_priv *priv = netdev_priv(kinfo->netdev);
int ret = 0;
if (netif_running(kinfo->netdev)) {
ret = hns3_nic_net_up(kinfo->netdev);
if (ret) {
netdev_err(kinfo->netdev,
"hns net up fail, ret=%d!\n", ret);
return ret;
}
}
clear_bit(HNS3_NIC_STATE_RESETTING, &priv->state);
return ret;
}
static int hns3_reset_notify_init_enet(struct hnae3_handle *handle)
{
struct net_device *netdev = handle->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(netdev);
bool vlan_filter_enable;
int ret;
ret = hns3_init_mac_addr(netdev, false);
if (ret)
return ret;
ret = hns3_recover_hw_addr(netdev);
if (ret)
return ret;
ret = hns3_update_promisc_mode(netdev, handle->netdev_flags);
if (ret)
return ret;
vlan_filter_enable = netdev->flags & IFF_PROMISC ? false : true;
hns3_enable_vlan_filter(netdev, vlan_filter_enable);
/* Hardware table is only clear when pf resets */
if (!(handle->flags & HNAE3_SUPPORT_VF)) {
ret = hns3_restore_vlan(netdev);
return ret;
}
ret = hns3_restore_fd_rules(netdev);
if (ret)
return ret;
/* Carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
ret = hns3_nic_alloc_vector_data(priv);
if (ret)
return ret;
hns3_restore_coal(priv);
ret = hns3_nic_init_vector_data(priv);
if (ret)
goto err_dealloc_vector;
ret = hns3_init_all_ring(priv);
if (ret)
goto err_uninit_vector;
set_bit(HNS3_NIC_STATE_INITED, &priv->state);
return ret;
err_uninit_vector:
hns3_nic_uninit_vector_data(priv);
priv->ring_data = NULL;
err_dealloc_vector:
hns3_nic_dealloc_vector_data(priv);
return ret;
}
static int hns3_reset_notify_uninit_enet(struct hnae3_handle *handle)
{
struct net_device *netdev = handle->kinfo.netdev;
struct hns3_nic_priv *priv = netdev_priv(netdev);
int ret;
if (!test_bit(HNS3_NIC_STATE_INITED, &priv->state)) {
netdev_warn(netdev, "already uninitialized\n");
return 0;
}
hns3_force_clear_all_rx_ring(handle);
ret = hns3_nic_uninit_vector_data(priv);
if (ret) {
netdev_err(netdev, "uninit vector error\n");
return ret;
}
hns3_store_coal(priv);
ret = hns3_nic_dealloc_vector_data(priv);
if (ret)
netdev_err(netdev, "dealloc vector error\n");
ret = hns3_uninit_all_ring(priv);
if (ret)
netdev_err(netdev, "uninit ring error\n");
clear_bit(HNS3_NIC_STATE_INITED, &priv->state);
return ret;
}
static int hns3_reset_notify(struct hnae3_handle *handle,
enum hnae3_reset_notify_type type)
{
int ret = 0;
switch (type) {
case HNAE3_UP_CLIENT:
ret = hns3_reset_notify_up_enet(handle);
break;
case HNAE3_DOWN_CLIENT:
ret = hns3_reset_notify_down_enet(handle);
break;
case HNAE3_INIT_CLIENT:
ret = hns3_reset_notify_init_enet(handle);
break;
case HNAE3_UNINIT_CLIENT:
ret = hns3_reset_notify_uninit_enet(handle);
break;
default:
break;
}
return ret;
}
static int hns3_modify_tqp_num(struct net_device *netdev, u16 new_tqp_num)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = hns3_get_handle(netdev);
int ret;
ret = h->ae_algo->ops->set_channels(h, new_tqp_num);
if (ret)
return ret;
ret = hns3_get_ring_config(priv);
if (ret)
return ret;
ret = hns3_nic_alloc_vector_data(priv);
if (ret)
goto err_alloc_vector;
hns3_restore_coal(priv);
ret = hns3_nic_init_vector_data(priv);
if (ret)
goto err_uninit_vector;
ret = hns3_init_all_ring(priv);
if (ret)
goto err_put_ring;
return 0;
err_put_ring:
hns3_put_ring_config(priv);
err_uninit_vector:
hns3_nic_uninit_vector_data(priv);
err_alloc_vector:
hns3_nic_dealloc_vector_data(priv);
return ret;
}
static int hns3_adjust_tqps_num(u8 num_tc, u32 new_tqp_num)
{
return (new_tqp_num / num_tc) * num_tc;
}
int hns3_set_channels(struct net_device *netdev,
struct ethtool_channels *ch)
{
struct hns3_nic_priv *priv = netdev_priv(netdev);
struct hnae3_handle *h = hns3_get_handle(netdev);
struct hnae3_knic_private_info *kinfo = &h->kinfo;
bool if_running = netif_running(netdev);
u32 new_tqp_num = ch->combined_count;
u16 org_tqp_num;
int ret;
if (ch->rx_count || ch->tx_count)
return -EINVAL;
if (new_tqp_num > hns3_get_max_available_channels(h) ||
new_tqp_num < kinfo->num_tc) {
dev_err(&netdev->dev,
"Change tqps fail, the tqp range is from %d to %d",
kinfo->num_tc,
hns3_get_max_available_channels(h));
return -EINVAL;
}
new_tqp_num = hns3_adjust_tqps_num(kinfo->num_tc, new_tqp_num);
if (kinfo->num_tqps == new_tqp_num)
return 0;
if (if_running)
hns3_nic_net_stop(netdev);
ret = hns3_nic_uninit_vector_data(priv);
if (ret) {
dev_err(&netdev->dev,
"Unbind vector with tqp fail, nothing is changed");
goto open_netdev;
}
hns3_store_coal(priv);
hns3_nic_dealloc_vector_data(priv);
hns3_uninit_all_ring(priv);
hns3_put_ring_config(priv);
org_tqp_num = h->kinfo.num_tqps;
ret = hns3_modify_tqp_num(netdev, new_tqp_num);
if (ret) {
ret = hns3_modify_tqp_num(netdev, org_tqp_num);
if (ret) {
/* If revert to old tqp failed, fatal error occurred */
dev_err(&netdev->dev,
"Revert to old tqp num fail, ret=%d", ret);
return ret;
}
dev_info(&netdev->dev,
"Change tqp num fail, Revert to old tqp num");
}
open_netdev:
if (if_running)
hns3_nic_net_open(netdev);
return ret;
}
static const struct hnae3_client_ops client_ops = {
.init_instance = hns3_client_init,
.uninit_instance = hns3_client_uninit,
.link_status_change = hns3_link_status_change,
.setup_tc = hns3_client_setup_tc,
.reset_notify = hns3_reset_notify,
};
/* hns3_init_module - Driver registration routine
* hns3_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
*/
static int __init hns3_init_module(void)
{
int ret;
pr_info("%s: %s - version\n", hns3_driver_name, hns3_driver_string);
pr_info("%s: %s\n", hns3_driver_name, hns3_copyright);
client.type = HNAE3_CLIENT_KNIC;
snprintf(client.name, HNAE3_CLIENT_NAME_LENGTH - 1, "%s",
hns3_driver_name);
client.ops = &client_ops;
INIT_LIST_HEAD(&client.node);
ret = hnae3_register_client(&client);
if (ret)
return ret;
ret = pci_register_driver(&hns3_driver);
if (ret)
hnae3_unregister_client(&client);
return ret;
}
module_init(hns3_init_module);
/* hns3_exit_module - Driver exit cleanup routine
* hns3_exit_module is called just before the driver is removed
* from memory.
*/
static void __exit hns3_exit_module(void)
{
pci_unregister_driver(&hns3_driver);
hnae3_unregister_client(&client);
}
module_exit(hns3_exit_module);
MODULE_DESCRIPTION("HNS3: Hisilicon Ethernet Driver");
MODULE_AUTHOR("Huawei Tech. Co., Ltd.");
MODULE_LICENSE("GPL");
MODULE_ALIAS("pci:hns-nic");
MODULE_VERSION(HNS3_MOD_VERSION);