mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 13:36:45 +07:00
70246286e9
These two are confusing leftover of the old world order, combining values of the REQ_OP_ and REQ_ namespaces. For callers that don't special case we mostly just replace bi_rw with bio_data_dir or op_is_write, except for the few cases where a switch over the REQ_OP_ values makes more sense. Any check for READA is replaced with an explicit check for REQ_RAHEAD. Also remove the READA alias for REQ_RAHEAD. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Reviewed-by: Mike Christie <mchristi@redhat.com> Signed-off-by: Jens Axboe <axboe@fb.com>
1482 lines
34 KiB
C
1482 lines
34 KiB
C
/*
|
|
* Copyright (C) 2015 IT University of Copenhagen
|
|
* Initial release: Matias Bjorling <m@bjorling.me>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License version
|
|
* 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
|
|
*/
|
|
|
|
#include "rrpc.h"
|
|
|
|
static struct kmem_cache *rrpc_gcb_cache, *rrpc_rq_cache;
|
|
static DECLARE_RWSEM(rrpc_lock);
|
|
|
|
static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
|
|
struct nvm_rq *rqd, unsigned long flags);
|
|
|
|
#define rrpc_for_each_lun(rrpc, rlun, i) \
|
|
for ((i) = 0, rlun = &(rrpc)->luns[0]; \
|
|
(i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
|
|
|
|
static void rrpc_page_invalidate(struct rrpc *rrpc, struct rrpc_addr *a)
|
|
{
|
|
struct rrpc_block *rblk = a->rblk;
|
|
unsigned int pg_offset;
|
|
|
|
lockdep_assert_held(&rrpc->rev_lock);
|
|
|
|
if (a->addr == ADDR_EMPTY || !rblk)
|
|
return;
|
|
|
|
spin_lock(&rblk->lock);
|
|
|
|
div_u64_rem(a->addr, rrpc->dev->sec_per_blk, &pg_offset);
|
|
WARN_ON(test_and_set_bit(pg_offset, rblk->invalid_pages));
|
|
rblk->nr_invalid_pages++;
|
|
|
|
spin_unlock(&rblk->lock);
|
|
|
|
rrpc->rev_trans_map[a->addr - rrpc->poffset].addr = ADDR_EMPTY;
|
|
}
|
|
|
|
static void rrpc_invalidate_range(struct rrpc *rrpc, sector_t slba,
|
|
unsigned int len)
|
|
{
|
|
sector_t i;
|
|
|
|
spin_lock(&rrpc->rev_lock);
|
|
for (i = slba; i < slba + len; i++) {
|
|
struct rrpc_addr *gp = &rrpc->trans_map[i];
|
|
|
|
rrpc_page_invalidate(rrpc, gp);
|
|
gp->rblk = NULL;
|
|
}
|
|
spin_unlock(&rrpc->rev_lock);
|
|
}
|
|
|
|
static struct nvm_rq *rrpc_inflight_laddr_acquire(struct rrpc *rrpc,
|
|
sector_t laddr, unsigned int pages)
|
|
{
|
|
struct nvm_rq *rqd;
|
|
struct rrpc_inflight_rq *inf;
|
|
|
|
rqd = mempool_alloc(rrpc->rq_pool, GFP_ATOMIC);
|
|
if (!rqd)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
inf = rrpc_get_inflight_rq(rqd);
|
|
if (rrpc_lock_laddr(rrpc, laddr, pages, inf)) {
|
|
mempool_free(rqd, rrpc->rq_pool);
|
|
return NULL;
|
|
}
|
|
|
|
return rqd;
|
|
}
|
|
|
|
static void rrpc_inflight_laddr_release(struct rrpc *rrpc, struct nvm_rq *rqd)
|
|
{
|
|
struct rrpc_inflight_rq *inf = rrpc_get_inflight_rq(rqd);
|
|
|
|
rrpc_unlock_laddr(rrpc, inf);
|
|
|
|
mempool_free(rqd, rrpc->rq_pool);
|
|
}
|
|
|
|
static void rrpc_discard(struct rrpc *rrpc, struct bio *bio)
|
|
{
|
|
sector_t slba = bio->bi_iter.bi_sector / NR_PHY_IN_LOG;
|
|
sector_t len = bio->bi_iter.bi_size / RRPC_EXPOSED_PAGE_SIZE;
|
|
struct nvm_rq *rqd;
|
|
|
|
while (1) {
|
|
rqd = rrpc_inflight_laddr_acquire(rrpc, slba, len);
|
|
if (rqd)
|
|
break;
|
|
|
|
schedule();
|
|
}
|
|
|
|
if (IS_ERR(rqd)) {
|
|
pr_err("rrpc: unable to acquire inflight IO\n");
|
|
bio_io_error(bio);
|
|
return;
|
|
}
|
|
|
|
rrpc_invalidate_range(rrpc, slba, len);
|
|
rrpc_inflight_laddr_release(rrpc, rqd);
|
|
}
|
|
|
|
static int block_is_full(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
{
|
|
return (rblk->next_page == rrpc->dev->sec_per_blk);
|
|
}
|
|
|
|
/* Calculate relative addr for the given block, considering instantiated LUNs */
|
|
static u64 block_to_rel_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
{
|
|
struct nvm_block *blk = rblk->parent;
|
|
int lun_blk = blk->id % (rrpc->dev->blks_per_lun * rrpc->nr_luns);
|
|
|
|
return lun_blk * rrpc->dev->sec_per_blk;
|
|
}
|
|
|
|
/* Calculate global addr for the given block */
|
|
static u64 block_to_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
{
|
|
struct nvm_block *blk = rblk->parent;
|
|
|
|
return blk->id * rrpc->dev->sec_per_blk;
|
|
}
|
|
|
|
static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
|
|
struct ppa_addr r)
|
|
{
|
|
struct ppa_addr l;
|
|
int secs, pgs, blks, luns;
|
|
sector_t ppa = r.ppa;
|
|
|
|
l.ppa = 0;
|
|
|
|
div_u64_rem(ppa, dev->sec_per_pg, &secs);
|
|
l.g.sec = secs;
|
|
|
|
sector_div(ppa, dev->sec_per_pg);
|
|
div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
|
|
l.g.pg = pgs;
|
|
|
|
sector_div(ppa, dev->pgs_per_blk);
|
|
div_u64_rem(ppa, dev->blks_per_lun, &blks);
|
|
l.g.blk = blks;
|
|
|
|
sector_div(ppa, dev->blks_per_lun);
|
|
div_u64_rem(ppa, dev->luns_per_chnl, &luns);
|
|
l.g.lun = luns;
|
|
|
|
sector_div(ppa, dev->luns_per_chnl);
|
|
l.g.ch = ppa;
|
|
|
|
return l;
|
|
}
|
|
|
|
static struct ppa_addr rrpc_ppa_to_gaddr(struct nvm_dev *dev, u64 addr)
|
|
{
|
|
struct ppa_addr paddr;
|
|
|
|
paddr.ppa = addr;
|
|
return linear_to_generic_addr(dev, paddr);
|
|
}
|
|
|
|
/* requires lun->lock taken */
|
|
static void rrpc_set_lun_cur(struct rrpc_lun *rlun, struct rrpc_block *new_rblk,
|
|
struct rrpc_block **cur_rblk)
|
|
{
|
|
struct rrpc *rrpc = rlun->rrpc;
|
|
|
|
if (*cur_rblk) {
|
|
spin_lock(&(*cur_rblk)->lock);
|
|
WARN_ON(!block_is_full(rrpc, *cur_rblk));
|
|
spin_unlock(&(*cur_rblk)->lock);
|
|
}
|
|
*cur_rblk = new_rblk;
|
|
}
|
|
|
|
static struct rrpc_block *rrpc_get_blk(struct rrpc *rrpc, struct rrpc_lun *rlun,
|
|
unsigned long flags)
|
|
{
|
|
struct nvm_block *blk;
|
|
struct rrpc_block *rblk;
|
|
|
|
blk = nvm_get_blk(rrpc->dev, rlun->parent, flags);
|
|
if (!blk) {
|
|
pr_err("nvm: rrpc: cannot get new block from media manager\n");
|
|
return NULL;
|
|
}
|
|
|
|
rblk = rrpc_get_rblk(rlun, blk->id);
|
|
blk->priv = rblk;
|
|
bitmap_zero(rblk->invalid_pages, rrpc->dev->sec_per_blk);
|
|
rblk->next_page = 0;
|
|
rblk->nr_invalid_pages = 0;
|
|
atomic_set(&rblk->data_cmnt_size, 0);
|
|
|
|
return rblk;
|
|
}
|
|
|
|
static void rrpc_put_blk(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
{
|
|
nvm_put_blk(rrpc->dev, rblk->parent);
|
|
}
|
|
|
|
static void rrpc_put_blks(struct rrpc *rrpc)
|
|
{
|
|
struct rrpc_lun *rlun;
|
|
int i;
|
|
|
|
for (i = 0; i < rrpc->nr_luns; i++) {
|
|
rlun = &rrpc->luns[i];
|
|
if (rlun->cur)
|
|
rrpc_put_blk(rrpc, rlun->cur);
|
|
if (rlun->gc_cur)
|
|
rrpc_put_blk(rrpc, rlun->gc_cur);
|
|
}
|
|
}
|
|
|
|
static struct rrpc_lun *get_next_lun(struct rrpc *rrpc)
|
|
{
|
|
int next = atomic_inc_return(&rrpc->next_lun);
|
|
|
|
return &rrpc->luns[next % rrpc->nr_luns];
|
|
}
|
|
|
|
static void rrpc_gc_kick(struct rrpc *rrpc)
|
|
{
|
|
struct rrpc_lun *rlun;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < rrpc->nr_luns; i++) {
|
|
rlun = &rrpc->luns[i];
|
|
queue_work(rrpc->krqd_wq, &rlun->ws_gc);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* timed GC every interval.
|
|
*/
|
|
static void rrpc_gc_timer(unsigned long data)
|
|
{
|
|
struct rrpc *rrpc = (struct rrpc *)data;
|
|
|
|
rrpc_gc_kick(rrpc);
|
|
mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
|
|
}
|
|
|
|
static void rrpc_end_sync_bio(struct bio *bio)
|
|
{
|
|
struct completion *waiting = bio->bi_private;
|
|
|
|
if (bio->bi_error)
|
|
pr_err("nvm: gc request failed (%u).\n", bio->bi_error);
|
|
|
|
complete(waiting);
|
|
}
|
|
|
|
/*
|
|
* rrpc_move_valid_pages -- migrate live data off the block
|
|
* @rrpc: the 'rrpc' structure
|
|
* @block: the block from which to migrate live pages
|
|
*
|
|
* Description:
|
|
* GC algorithms may call this function to migrate remaining live
|
|
* pages off the block prior to erasing it. This function blocks
|
|
* further execution until the operation is complete.
|
|
*/
|
|
static int rrpc_move_valid_pages(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
{
|
|
struct request_queue *q = rrpc->dev->q;
|
|
struct rrpc_rev_addr *rev;
|
|
struct nvm_rq *rqd;
|
|
struct bio *bio;
|
|
struct page *page;
|
|
int slot;
|
|
int nr_sec_per_blk = rrpc->dev->sec_per_blk;
|
|
u64 phys_addr;
|
|
DECLARE_COMPLETION_ONSTACK(wait);
|
|
|
|
if (bitmap_full(rblk->invalid_pages, nr_sec_per_blk))
|
|
return 0;
|
|
|
|
bio = bio_alloc(GFP_NOIO, 1);
|
|
if (!bio) {
|
|
pr_err("nvm: could not alloc bio to gc\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
page = mempool_alloc(rrpc->page_pool, GFP_NOIO);
|
|
if (!page) {
|
|
bio_put(bio);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
while ((slot = find_first_zero_bit(rblk->invalid_pages,
|
|
nr_sec_per_blk)) < nr_sec_per_blk) {
|
|
|
|
/* Lock laddr */
|
|
phys_addr = rblk->parent->id * nr_sec_per_blk + slot;
|
|
|
|
try:
|
|
spin_lock(&rrpc->rev_lock);
|
|
/* Get logical address from physical to logical table */
|
|
rev = &rrpc->rev_trans_map[phys_addr - rrpc->poffset];
|
|
/* already updated by previous regular write */
|
|
if (rev->addr == ADDR_EMPTY) {
|
|
spin_unlock(&rrpc->rev_lock);
|
|
continue;
|
|
}
|
|
|
|
rqd = rrpc_inflight_laddr_acquire(rrpc, rev->addr, 1);
|
|
if (IS_ERR_OR_NULL(rqd)) {
|
|
spin_unlock(&rrpc->rev_lock);
|
|
schedule();
|
|
goto try;
|
|
}
|
|
|
|
spin_unlock(&rrpc->rev_lock);
|
|
|
|
/* Perform read to do GC */
|
|
bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
|
|
bio_set_op_attrs(bio, REQ_OP_READ, 0);
|
|
bio->bi_private = &wait;
|
|
bio->bi_end_io = rrpc_end_sync_bio;
|
|
|
|
/* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
|
|
bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
|
|
|
|
if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
|
|
pr_err("rrpc: gc read failed.\n");
|
|
rrpc_inflight_laddr_release(rrpc, rqd);
|
|
goto finished;
|
|
}
|
|
wait_for_completion_io(&wait);
|
|
if (bio->bi_error) {
|
|
rrpc_inflight_laddr_release(rrpc, rqd);
|
|
goto finished;
|
|
}
|
|
|
|
bio_reset(bio);
|
|
reinit_completion(&wait);
|
|
|
|
bio->bi_iter.bi_sector = rrpc_get_sector(rev->addr);
|
|
bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
|
|
bio->bi_private = &wait;
|
|
bio->bi_end_io = rrpc_end_sync_bio;
|
|
|
|
bio_add_pc_page(q, bio, page, RRPC_EXPOSED_PAGE_SIZE, 0);
|
|
|
|
/* turn the command around and write the data back to a new
|
|
* address
|
|
*/
|
|
if (rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_GC)) {
|
|
pr_err("rrpc: gc write failed.\n");
|
|
rrpc_inflight_laddr_release(rrpc, rqd);
|
|
goto finished;
|
|
}
|
|
wait_for_completion_io(&wait);
|
|
|
|
rrpc_inflight_laddr_release(rrpc, rqd);
|
|
if (bio->bi_error)
|
|
goto finished;
|
|
|
|
bio_reset(bio);
|
|
}
|
|
|
|
finished:
|
|
mempool_free(page, rrpc->page_pool);
|
|
bio_put(bio);
|
|
|
|
if (!bitmap_full(rblk->invalid_pages, nr_sec_per_blk)) {
|
|
pr_err("nvm: failed to garbage collect block\n");
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rrpc_block_gc(struct work_struct *work)
|
|
{
|
|
struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
|
|
ws_gc);
|
|
struct rrpc *rrpc = gcb->rrpc;
|
|
struct rrpc_block *rblk = gcb->rblk;
|
|
struct rrpc_lun *rlun = rblk->rlun;
|
|
struct nvm_dev *dev = rrpc->dev;
|
|
|
|
mempool_free(gcb, rrpc->gcb_pool);
|
|
pr_debug("nvm: block '%lu' being reclaimed\n", rblk->parent->id);
|
|
|
|
if (rrpc_move_valid_pages(rrpc, rblk))
|
|
goto put_back;
|
|
|
|
if (nvm_erase_blk(dev, rblk->parent))
|
|
goto put_back;
|
|
|
|
rrpc_put_blk(rrpc, rblk);
|
|
|
|
return;
|
|
|
|
put_back:
|
|
spin_lock(&rlun->lock);
|
|
list_add_tail(&rblk->prio, &rlun->prio_list);
|
|
spin_unlock(&rlun->lock);
|
|
}
|
|
|
|
/* the block with highest number of invalid pages, will be in the beginning
|
|
* of the list
|
|
*/
|
|
static struct rrpc_block *rblock_max_invalid(struct rrpc_block *ra,
|
|
struct rrpc_block *rb)
|
|
{
|
|
if (ra->nr_invalid_pages == rb->nr_invalid_pages)
|
|
return ra;
|
|
|
|
return (ra->nr_invalid_pages < rb->nr_invalid_pages) ? rb : ra;
|
|
}
|
|
|
|
/* linearly find the block with highest number of invalid pages
|
|
* requires lun->lock
|
|
*/
|
|
static struct rrpc_block *block_prio_find_max(struct rrpc_lun *rlun)
|
|
{
|
|
struct list_head *prio_list = &rlun->prio_list;
|
|
struct rrpc_block *rblock, *max;
|
|
|
|
BUG_ON(list_empty(prio_list));
|
|
|
|
max = list_first_entry(prio_list, struct rrpc_block, prio);
|
|
list_for_each_entry(rblock, prio_list, prio)
|
|
max = rblock_max_invalid(max, rblock);
|
|
|
|
return max;
|
|
}
|
|
|
|
static void rrpc_lun_gc(struct work_struct *work)
|
|
{
|
|
struct rrpc_lun *rlun = container_of(work, struct rrpc_lun, ws_gc);
|
|
struct rrpc *rrpc = rlun->rrpc;
|
|
struct nvm_lun *lun = rlun->parent;
|
|
struct rrpc_block_gc *gcb;
|
|
unsigned int nr_blocks_need;
|
|
|
|
nr_blocks_need = rrpc->dev->blks_per_lun / GC_LIMIT_INVERSE;
|
|
|
|
if (nr_blocks_need < rrpc->nr_luns)
|
|
nr_blocks_need = rrpc->nr_luns;
|
|
|
|
spin_lock(&rlun->lock);
|
|
while (nr_blocks_need > lun->nr_free_blocks &&
|
|
!list_empty(&rlun->prio_list)) {
|
|
struct rrpc_block *rblock = block_prio_find_max(rlun);
|
|
struct nvm_block *block = rblock->parent;
|
|
|
|
if (!rblock->nr_invalid_pages)
|
|
break;
|
|
|
|
gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
|
|
if (!gcb)
|
|
break;
|
|
|
|
list_del_init(&rblock->prio);
|
|
|
|
BUG_ON(!block_is_full(rrpc, rblock));
|
|
|
|
pr_debug("rrpc: selected block '%lu' for GC\n", block->id);
|
|
|
|
gcb->rrpc = rrpc;
|
|
gcb->rblk = rblock;
|
|
INIT_WORK(&gcb->ws_gc, rrpc_block_gc);
|
|
|
|
queue_work(rrpc->kgc_wq, &gcb->ws_gc);
|
|
|
|
nr_blocks_need--;
|
|
}
|
|
spin_unlock(&rlun->lock);
|
|
|
|
/* TODO: Hint that request queue can be started again */
|
|
}
|
|
|
|
static void rrpc_gc_queue(struct work_struct *work)
|
|
{
|
|
struct rrpc_block_gc *gcb = container_of(work, struct rrpc_block_gc,
|
|
ws_gc);
|
|
struct rrpc *rrpc = gcb->rrpc;
|
|
struct rrpc_block *rblk = gcb->rblk;
|
|
struct rrpc_lun *rlun = rblk->rlun;
|
|
|
|
spin_lock(&rlun->lock);
|
|
list_add_tail(&rblk->prio, &rlun->prio_list);
|
|
spin_unlock(&rlun->lock);
|
|
|
|
mempool_free(gcb, rrpc->gcb_pool);
|
|
pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
|
|
rblk->parent->id);
|
|
}
|
|
|
|
static const struct block_device_operations rrpc_fops = {
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static struct rrpc_lun *rrpc_get_lun_rr(struct rrpc *rrpc, int is_gc)
|
|
{
|
|
unsigned int i;
|
|
struct rrpc_lun *rlun, *max_free;
|
|
|
|
if (!is_gc)
|
|
return get_next_lun(rrpc);
|
|
|
|
/* during GC, we don't care about RR, instead we want to make
|
|
* sure that we maintain evenness between the block luns.
|
|
*/
|
|
max_free = &rrpc->luns[0];
|
|
/* prevent GC-ing lun from devouring pages of a lun with
|
|
* little free blocks. We don't take the lock as we only need an
|
|
* estimate.
|
|
*/
|
|
rrpc_for_each_lun(rrpc, rlun, i) {
|
|
if (rlun->parent->nr_free_blocks >
|
|
max_free->parent->nr_free_blocks)
|
|
max_free = rlun;
|
|
}
|
|
|
|
return max_free;
|
|
}
|
|
|
|
static struct rrpc_addr *rrpc_update_map(struct rrpc *rrpc, sector_t laddr,
|
|
struct rrpc_block *rblk, u64 paddr)
|
|
{
|
|
struct rrpc_addr *gp;
|
|
struct rrpc_rev_addr *rev;
|
|
|
|
BUG_ON(laddr >= rrpc->nr_sects);
|
|
|
|
gp = &rrpc->trans_map[laddr];
|
|
spin_lock(&rrpc->rev_lock);
|
|
if (gp->rblk)
|
|
rrpc_page_invalidate(rrpc, gp);
|
|
|
|
gp->addr = paddr;
|
|
gp->rblk = rblk;
|
|
|
|
rev = &rrpc->rev_trans_map[gp->addr - rrpc->poffset];
|
|
rev->addr = laddr;
|
|
spin_unlock(&rrpc->rev_lock);
|
|
|
|
return gp;
|
|
}
|
|
|
|
static u64 rrpc_alloc_addr(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
{
|
|
u64 addr = ADDR_EMPTY;
|
|
|
|
spin_lock(&rblk->lock);
|
|
if (block_is_full(rrpc, rblk))
|
|
goto out;
|
|
|
|
addr = block_to_addr(rrpc, rblk) + rblk->next_page;
|
|
|
|
rblk->next_page++;
|
|
out:
|
|
spin_unlock(&rblk->lock);
|
|
return addr;
|
|
}
|
|
|
|
/* Map logical address to a physical page. The mapping implements a round robin
|
|
* approach and allocates a page from the next lun available.
|
|
*
|
|
* Returns rrpc_addr with the physical address and block. Returns NULL if no
|
|
* blocks in the next rlun are available.
|
|
*/
|
|
static struct rrpc_addr *rrpc_map_page(struct rrpc *rrpc, sector_t laddr,
|
|
int is_gc)
|
|
{
|
|
struct rrpc_lun *rlun;
|
|
struct rrpc_block *rblk, **cur_rblk;
|
|
struct nvm_lun *lun;
|
|
u64 paddr;
|
|
int gc_force = 0;
|
|
|
|
rlun = rrpc_get_lun_rr(rrpc, is_gc);
|
|
lun = rlun->parent;
|
|
|
|
if (!is_gc && lun->nr_free_blocks < rrpc->nr_luns * 4)
|
|
return NULL;
|
|
|
|
/*
|
|
* page allocation steps:
|
|
* 1. Try to allocate new page from current rblk
|
|
* 2a. If succeed, proceed to map it in and return
|
|
* 2b. If fail, first try to allocate a new block from media manger,
|
|
* and then retry step 1. Retry until the normal block pool is
|
|
* exhausted.
|
|
* 3. If exhausted, and garbage collector is requesting the block,
|
|
* go to the reserved block and retry step 1.
|
|
* In the case that this fails as well, or it is not GC
|
|
* requesting, report not able to retrieve a block and let the
|
|
* caller handle further processing.
|
|
*/
|
|
|
|
spin_lock(&rlun->lock);
|
|
cur_rblk = &rlun->cur;
|
|
rblk = rlun->cur;
|
|
retry:
|
|
paddr = rrpc_alloc_addr(rrpc, rblk);
|
|
|
|
if (paddr != ADDR_EMPTY)
|
|
goto done;
|
|
|
|
if (!list_empty(&rlun->wblk_list)) {
|
|
new_blk:
|
|
rblk = list_first_entry(&rlun->wblk_list, struct rrpc_block,
|
|
prio);
|
|
rrpc_set_lun_cur(rlun, rblk, cur_rblk);
|
|
list_del(&rblk->prio);
|
|
goto retry;
|
|
}
|
|
spin_unlock(&rlun->lock);
|
|
|
|
rblk = rrpc_get_blk(rrpc, rlun, gc_force);
|
|
if (rblk) {
|
|
spin_lock(&rlun->lock);
|
|
list_add_tail(&rblk->prio, &rlun->wblk_list);
|
|
/*
|
|
* another thread might already have added a new block,
|
|
* Therefore, make sure that one is used, instead of the
|
|
* one just added.
|
|
*/
|
|
goto new_blk;
|
|
}
|
|
|
|
if (unlikely(is_gc) && !gc_force) {
|
|
/* retry from emergency gc block */
|
|
cur_rblk = &rlun->gc_cur;
|
|
rblk = rlun->gc_cur;
|
|
gc_force = 1;
|
|
spin_lock(&rlun->lock);
|
|
goto retry;
|
|
}
|
|
|
|
pr_err("rrpc: failed to allocate new block\n");
|
|
return NULL;
|
|
done:
|
|
spin_unlock(&rlun->lock);
|
|
return rrpc_update_map(rrpc, laddr, rblk, paddr);
|
|
}
|
|
|
|
static void rrpc_run_gc(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
{
|
|
struct rrpc_block_gc *gcb;
|
|
|
|
gcb = mempool_alloc(rrpc->gcb_pool, GFP_ATOMIC);
|
|
if (!gcb) {
|
|
pr_err("rrpc: unable to queue block for gc.");
|
|
return;
|
|
}
|
|
|
|
gcb->rrpc = rrpc;
|
|
gcb->rblk = rblk;
|
|
|
|
INIT_WORK(&gcb->ws_gc, rrpc_gc_queue);
|
|
queue_work(rrpc->kgc_wq, &gcb->ws_gc);
|
|
}
|
|
|
|
static void rrpc_end_io_write(struct rrpc *rrpc, struct rrpc_rq *rrqd,
|
|
sector_t laddr, uint8_t npages)
|
|
{
|
|
struct rrpc_addr *p;
|
|
struct rrpc_block *rblk;
|
|
struct nvm_lun *lun;
|
|
int cmnt_size, i;
|
|
|
|
for (i = 0; i < npages; i++) {
|
|
p = &rrpc->trans_map[laddr + i];
|
|
rblk = p->rblk;
|
|
lun = rblk->parent->lun;
|
|
|
|
cmnt_size = atomic_inc_return(&rblk->data_cmnt_size);
|
|
if (unlikely(cmnt_size == rrpc->dev->sec_per_blk))
|
|
rrpc_run_gc(rrpc, rblk);
|
|
}
|
|
}
|
|
|
|
static void rrpc_end_io(struct nvm_rq *rqd)
|
|
{
|
|
struct rrpc *rrpc = container_of(rqd->ins, struct rrpc, instance);
|
|
struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
|
|
uint8_t npages = rqd->nr_ppas;
|
|
sector_t laddr = rrpc_get_laddr(rqd->bio) - npages;
|
|
|
|
if (bio_data_dir(rqd->bio) == WRITE)
|
|
rrpc_end_io_write(rrpc, rrqd, laddr, npages);
|
|
|
|
bio_put(rqd->bio);
|
|
|
|
if (rrqd->flags & NVM_IOTYPE_GC)
|
|
return;
|
|
|
|
rrpc_unlock_rq(rrpc, rqd);
|
|
|
|
if (npages > 1)
|
|
nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
|
|
|
|
mempool_free(rqd, rrpc->rq_pool);
|
|
}
|
|
|
|
static int rrpc_read_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
|
|
struct nvm_rq *rqd, unsigned long flags, int npages)
|
|
{
|
|
struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
|
|
struct rrpc_addr *gp;
|
|
sector_t laddr = rrpc_get_laddr(bio);
|
|
int is_gc = flags & NVM_IOTYPE_GC;
|
|
int i;
|
|
|
|
if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
|
|
nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
|
|
return NVM_IO_REQUEUE;
|
|
}
|
|
|
|
for (i = 0; i < npages; i++) {
|
|
/* We assume that mapping occurs at 4KB granularity */
|
|
BUG_ON(!(laddr + i >= 0 && laddr + i < rrpc->nr_sects));
|
|
gp = &rrpc->trans_map[laddr + i];
|
|
|
|
if (gp->rblk) {
|
|
rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
|
|
gp->addr);
|
|
} else {
|
|
BUG_ON(is_gc);
|
|
rrpc_unlock_laddr(rrpc, r);
|
|
nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
|
|
rqd->dma_ppa_list);
|
|
return NVM_IO_DONE;
|
|
}
|
|
}
|
|
|
|
rqd->opcode = NVM_OP_HBREAD;
|
|
|
|
return NVM_IO_OK;
|
|
}
|
|
|
|
static int rrpc_read_rq(struct rrpc *rrpc, struct bio *bio, struct nvm_rq *rqd,
|
|
unsigned long flags)
|
|
{
|
|
struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
|
|
int is_gc = flags & NVM_IOTYPE_GC;
|
|
sector_t laddr = rrpc_get_laddr(bio);
|
|
struct rrpc_addr *gp;
|
|
|
|
if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
|
|
return NVM_IO_REQUEUE;
|
|
|
|
BUG_ON(!(laddr >= 0 && laddr < rrpc->nr_sects));
|
|
gp = &rrpc->trans_map[laddr];
|
|
|
|
if (gp->rblk) {
|
|
rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, gp->addr);
|
|
} else {
|
|
BUG_ON(is_gc);
|
|
rrpc_unlock_rq(rrpc, rqd);
|
|
return NVM_IO_DONE;
|
|
}
|
|
|
|
rqd->opcode = NVM_OP_HBREAD;
|
|
rrqd->addr = gp;
|
|
|
|
return NVM_IO_OK;
|
|
}
|
|
|
|
static int rrpc_write_ppalist_rq(struct rrpc *rrpc, struct bio *bio,
|
|
struct nvm_rq *rqd, unsigned long flags, int npages)
|
|
{
|
|
struct rrpc_inflight_rq *r = rrpc_get_inflight_rq(rqd);
|
|
struct rrpc_addr *p;
|
|
sector_t laddr = rrpc_get_laddr(bio);
|
|
int is_gc = flags & NVM_IOTYPE_GC;
|
|
int i;
|
|
|
|
if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd)) {
|
|
nvm_dev_dma_free(rrpc->dev, rqd->ppa_list, rqd->dma_ppa_list);
|
|
return NVM_IO_REQUEUE;
|
|
}
|
|
|
|
for (i = 0; i < npages; i++) {
|
|
/* We assume that mapping occurs at 4KB granularity */
|
|
p = rrpc_map_page(rrpc, laddr + i, is_gc);
|
|
if (!p) {
|
|
BUG_ON(is_gc);
|
|
rrpc_unlock_laddr(rrpc, r);
|
|
nvm_dev_dma_free(rrpc->dev, rqd->ppa_list,
|
|
rqd->dma_ppa_list);
|
|
rrpc_gc_kick(rrpc);
|
|
return NVM_IO_REQUEUE;
|
|
}
|
|
|
|
rqd->ppa_list[i] = rrpc_ppa_to_gaddr(rrpc->dev,
|
|
p->addr);
|
|
}
|
|
|
|
rqd->opcode = NVM_OP_HBWRITE;
|
|
|
|
return NVM_IO_OK;
|
|
}
|
|
|
|
static int rrpc_write_rq(struct rrpc *rrpc, struct bio *bio,
|
|
struct nvm_rq *rqd, unsigned long flags)
|
|
{
|
|
struct rrpc_rq *rrqd = nvm_rq_to_pdu(rqd);
|
|
struct rrpc_addr *p;
|
|
int is_gc = flags & NVM_IOTYPE_GC;
|
|
sector_t laddr = rrpc_get_laddr(bio);
|
|
|
|
if (!is_gc && rrpc_lock_rq(rrpc, bio, rqd))
|
|
return NVM_IO_REQUEUE;
|
|
|
|
p = rrpc_map_page(rrpc, laddr, is_gc);
|
|
if (!p) {
|
|
BUG_ON(is_gc);
|
|
rrpc_unlock_rq(rrpc, rqd);
|
|
rrpc_gc_kick(rrpc);
|
|
return NVM_IO_REQUEUE;
|
|
}
|
|
|
|
rqd->ppa_addr = rrpc_ppa_to_gaddr(rrpc->dev, p->addr);
|
|
rqd->opcode = NVM_OP_HBWRITE;
|
|
rrqd->addr = p;
|
|
|
|
return NVM_IO_OK;
|
|
}
|
|
|
|
static int rrpc_setup_rq(struct rrpc *rrpc, struct bio *bio,
|
|
struct nvm_rq *rqd, unsigned long flags, uint8_t npages)
|
|
{
|
|
if (npages > 1) {
|
|
rqd->ppa_list = nvm_dev_dma_alloc(rrpc->dev, GFP_KERNEL,
|
|
&rqd->dma_ppa_list);
|
|
if (!rqd->ppa_list) {
|
|
pr_err("rrpc: not able to allocate ppa list\n");
|
|
return NVM_IO_ERR;
|
|
}
|
|
|
|
if (bio_op(bio) == REQ_OP_WRITE)
|
|
return rrpc_write_ppalist_rq(rrpc, bio, rqd, flags,
|
|
npages);
|
|
|
|
return rrpc_read_ppalist_rq(rrpc, bio, rqd, flags, npages);
|
|
}
|
|
|
|
if (bio_op(bio) == REQ_OP_WRITE)
|
|
return rrpc_write_rq(rrpc, bio, rqd, flags);
|
|
|
|
return rrpc_read_rq(rrpc, bio, rqd, flags);
|
|
}
|
|
|
|
static int rrpc_submit_io(struct rrpc *rrpc, struct bio *bio,
|
|
struct nvm_rq *rqd, unsigned long flags)
|
|
{
|
|
int err;
|
|
struct rrpc_rq *rrq = nvm_rq_to_pdu(rqd);
|
|
uint8_t nr_pages = rrpc_get_pages(bio);
|
|
int bio_size = bio_sectors(bio) << 9;
|
|
|
|
if (bio_size < rrpc->dev->sec_size)
|
|
return NVM_IO_ERR;
|
|
else if (bio_size > rrpc->dev->max_rq_size)
|
|
return NVM_IO_ERR;
|
|
|
|
err = rrpc_setup_rq(rrpc, bio, rqd, flags, nr_pages);
|
|
if (err)
|
|
return err;
|
|
|
|
bio_get(bio);
|
|
rqd->bio = bio;
|
|
rqd->ins = &rrpc->instance;
|
|
rqd->nr_ppas = nr_pages;
|
|
rrq->flags = flags;
|
|
|
|
err = nvm_submit_io(rrpc->dev, rqd);
|
|
if (err) {
|
|
pr_err("rrpc: I/O submission failed: %d\n", err);
|
|
bio_put(bio);
|
|
if (!(flags & NVM_IOTYPE_GC)) {
|
|
rrpc_unlock_rq(rrpc, rqd);
|
|
if (rqd->nr_ppas > 1)
|
|
nvm_dev_dma_free(rrpc->dev,
|
|
rqd->ppa_list, rqd->dma_ppa_list);
|
|
}
|
|
return NVM_IO_ERR;
|
|
}
|
|
|
|
return NVM_IO_OK;
|
|
}
|
|
|
|
static blk_qc_t rrpc_make_rq(struct request_queue *q, struct bio *bio)
|
|
{
|
|
struct rrpc *rrpc = q->queuedata;
|
|
struct nvm_rq *rqd;
|
|
int err;
|
|
|
|
if (bio_op(bio) == REQ_OP_DISCARD) {
|
|
rrpc_discard(rrpc, bio);
|
|
return BLK_QC_T_NONE;
|
|
}
|
|
|
|
rqd = mempool_alloc(rrpc->rq_pool, GFP_KERNEL);
|
|
if (!rqd) {
|
|
pr_err_ratelimited("rrpc: not able to queue bio.");
|
|
bio_io_error(bio);
|
|
return BLK_QC_T_NONE;
|
|
}
|
|
memset(rqd, 0, sizeof(struct nvm_rq));
|
|
|
|
err = rrpc_submit_io(rrpc, bio, rqd, NVM_IOTYPE_NONE);
|
|
switch (err) {
|
|
case NVM_IO_OK:
|
|
return BLK_QC_T_NONE;
|
|
case NVM_IO_ERR:
|
|
bio_io_error(bio);
|
|
break;
|
|
case NVM_IO_DONE:
|
|
bio_endio(bio);
|
|
break;
|
|
case NVM_IO_REQUEUE:
|
|
spin_lock(&rrpc->bio_lock);
|
|
bio_list_add(&rrpc->requeue_bios, bio);
|
|
spin_unlock(&rrpc->bio_lock);
|
|
queue_work(rrpc->kgc_wq, &rrpc->ws_requeue);
|
|
break;
|
|
}
|
|
|
|
mempool_free(rqd, rrpc->rq_pool);
|
|
return BLK_QC_T_NONE;
|
|
}
|
|
|
|
static void rrpc_requeue(struct work_struct *work)
|
|
{
|
|
struct rrpc *rrpc = container_of(work, struct rrpc, ws_requeue);
|
|
struct bio_list bios;
|
|
struct bio *bio;
|
|
|
|
bio_list_init(&bios);
|
|
|
|
spin_lock(&rrpc->bio_lock);
|
|
bio_list_merge(&bios, &rrpc->requeue_bios);
|
|
bio_list_init(&rrpc->requeue_bios);
|
|
spin_unlock(&rrpc->bio_lock);
|
|
|
|
while ((bio = bio_list_pop(&bios)))
|
|
rrpc_make_rq(rrpc->disk->queue, bio);
|
|
}
|
|
|
|
static void rrpc_gc_free(struct rrpc *rrpc)
|
|
{
|
|
if (rrpc->krqd_wq)
|
|
destroy_workqueue(rrpc->krqd_wq);
|
|
|
|
if (rrpc->kgc_wq)
|
|
destroy_workqueue(rrpc->kgc_wq);
|
|
}
|
|
|
|
static int rrpc_gc_init(struct rrpc *rrpc)
|
|
{
|
|
rrpc->krqd_wq = alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM|WQ_UNBOUND,
|
|
rrpc->nr_luns);
|
|
if (!rrpc->krqd_wq)
|
|
return -ENOMEM;
|
|
|
|
rrpc->kgc_wq = alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM, 1);
|
|
if (!rrpc->kgc_wq)
|
|
return -ENOMEM;
|
|
|
|
setup_timer(&rrpc->gc_timer, rrpc_gc_timer, (unsigned long)rrpc);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rrpc_map_free(struct rrpc *rrpc)
|
|
{
|
|
vfree(rrpc->rev_trans_map);
|
|
vfree(rrpc->trans_map);
|
|
}
|
|
|
|
static int rrpc_l2p_update(u64 slba, u32 nlb, __le64 *entries, void *private)
|
|
{
|
|
struct rrpc *rrpc = (struct rrpc *)private;
|
|
struct nvm_dev *dev = rrpc->dev;
|
|
struct rrpc_addr *addr = rrpc->trans_map + slba;
|
|
struct rrpc_rev_addr *raddr = rrpc->rev_trans_map;
|
|
u64 elba = slba + nlb;
|
|
u64 i;
|
|
|
|
if (unlikely(elba > dev->total_secs)) {
|
|
pr_err("nvm: L2P data from device is out of bounds!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < nlb; i++) {
|
|
u64 pba = le64_to_cpu(entries[i]);
|
|
unsigned int mod;
|
|
/* LNVM treats address-spaces as silos, LBA and PBA are
|
|
* equally large and zero-indexed.
|
|
*/
|
|
if (unlikely(pba >= dev->total_secs && pba != U64_MAX)) {
|
|
pr_err("nvm: L2P data entry is out of bounds!\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Address zero is a special one. The first page on a disk is
|
|
* protected. As it often holds internal device boot
|
|
* information.
|
|
*/
|
|
if (!pba)
|
|
continue;
|
|
|
|
div_u64_rem(pba, rrpc->nr_sects, &mod);
|
|
|
|
addr[i].addr = pba;
|
|
raddr[mod].addr = slba + i;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rrpc_map_init(struct rrpc *rrpc)
|
|
{
|
|
struct nvm_dev *dev = rrpc->dev;
|
|
sector_t i;
|
|
int ret;
|
|
|
|
rrpc->trans_map = vzalloc(sizeof(struct rrpc_addr) * rrpc->nr_sects);
|
|
if (!rrpc->trans_map)
|
|
return -ENOMEM;
|
|
|
|
rrpc->rev_trans_map = vmalloc(sizeof(struct rrpc_rev_addr)
|
|
* rrpc->nr_sects);
|
|
if (!rrpc->rev_trans_map)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < rrpc->nr_sects; i++) {
|
|
struct rrpc_addr *p = &rrpc->trans_map[i];
|
|
struct rrpc_rev_addr *r = &rrpc->rev_trans_map[i];
|
|
|
|
p->addr = ADDR_EMPTY;
|
|
r->addr = ADDR_EMPTY;
|
|
}
|
|
|
|
if (!dev->ops->get_l2p_tbl)
|
|
return 0;
|
|
|
|
/* Bring up the mapping table from device */
|
|
ret = dev->ops->get_l2p_tbl(dev, rrpc->soffset, rrpc->nr_sects,
|
|
rrpc_l2p_update, rrpc);
|
|
if (ret) {
|
|
pr_err("nvm: rrpc: could not read L2P table.\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Minimum pages needed within a lun */
|
|
#define PAGE_POOL_SIZE 16
|
|
#define ADDR_POOL_SIZE 64
|
|
|
|
static int rrpc_core_init(struct rrpc *rrpc)
|
|
{
|
|
down_write(&rrpc_lock);
|
|
if (!rrpc_gcb_cache) {
|
|
rrpc_gcb_cache = kmem_cache_create("rrpc_gcb",
|
|
sizeof(struct rrpc_block_gc), 0, 0, NULL);
|
|
if (!rrpc_gcb_cache) {
|
|
up_write(&rrpc_lock);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
rrpc_rq_cache = kmem_cache_create("rrpc_rq",
|
|
sizeof(struct nvm_rq) + sizeof(struct rrpc_rq),
|
|
0, 0, NULL);
|
|
if (!rrpc_rq_cache) {
|
|
kmem_cache_destroy(rrpc_gcb_cache);
|
|
up_write(&rrpc_lock);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
up_write(&rrpc_lock);
|
|
|
|
rrpc->page_pool = mempool_create_page_pool(PAGE_POOL_SIZE, 0);
|
|
if (!rrpc->page_pool)
|
|
return -ENOMEM;
|
|
|
|
rrpc->gcb_pool = mempool_create_slab_pool(rrpc->dev->nr_luns,
|
|
rrpc_gcb_cache);
|
|
if (!rrpc->gcb_pool)
|
|
return -ENOMEM;
|
|
|
|
rrpc->rq_pool = mempool_create_slab_pool(64, rrpc_rq_cache);
|
|
if (!rrpc->rq_pool)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_init(&rrpc->inflights.lock);
|
|
INIT_LIST_HEAD(&rrpc->inflights.reqs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rrpc_core_free(struct rrpc *rrpc)
|
|
{
|
|
mempool_destroy(rrpc->page_pool);
|
|
mempool_destroy(rrpc->gcb_pool);
|
|
mempool_destroy(rrpc->rq_pool);
|
|
}
|
|
|
|
static void rrpc_luns_free(struct rrpc *rrpc)
|
|
{
|
|
struct nvm_dev *dev = rrpc->dev;
|
|
struct nvm_lun *lun;
|
|
struct rrpc_lun *rlun;
|
|
int i;
|
|
|
|
if (!rrpc->luns)
|
|
return;
|
|
|
|
for (i = 0; i < rrpc->nr_luns; i++) {
|
|
rlun = &rrpc->luns[i];
|
|
lun = rlun->parent;
|
|
if (!lun)
|
|
break;
|
|
dev->mt->release_lun(dev, lun->id);
|
|
vfree(rlun->blocks);
|
|
}
|
|
|
|
kfree(rrpc->luns);
|
|
}
|
|
|
|
static int rrpc_luns_init(struct rrpc *rrpc, int lun_begin, int lun_end)
|
|
{
|
|
struct nvm_dev *dev = rrpc->dev;
|
|
struct rrpc_lun *rlun;
|
|
int i, j, ret = -EINVAL;
|
|
|
|
if (dev->sec_per_blk > MAX_INVALID_PAGES_STORAGE * BITS_PER_LONG) {
|
|
pr_err("rrpc: number of pages per block too high.");
|
|
return -EINVAL;
|
|
}
|
|
|
|
spin_lock_init(&rrpc->rev_lock);
|
|
|
|
rrpc->luns = kcalloc(rrpc->nr_luns, sizeof(struct rrpc_lun),
|
|
GFP_KERNEL);
|
|
if (!rrpc->luns)
|
|
return -ENOMEM;
|
|
|
|
/* 1:1 mapping */
|
|
for (i = 0; i < rrpc->nr_luns; i++) {
|
|
int lunid = lun_begin + i;
|
|
struct nvm_lun *lun;
|
|
|
|
if (dev->mt->reserve_lun(dev, lunid)) {
|
|
pr_err("rrpc: lun %u is already allocated\n", lunid);
|
|
goto err;
|
|
}
|
|
|
|
lun = dev->mt->get_lun(dev, lunid);
|
|
if (!lun)
|
|
goto err;
|
|
|
|
rlun = &rrpc->luns[i];
|
|
rlun->parent = lun;
|
|
rlun->blocks = vzalloc(sizeof(struct rrpc_block) *
|
|
rrpc->dev->blks_per_lun);
|
|
if (!rlun->blocks) {
|
|
ret = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
for (j = 0; j < rrpc->dev->blks_per_lun; j++) {
|
|
struct rrpc_block *rblk = &rlun->blocks[j];
|
|
struct nvm_block *blk = &lun->blocks[j];
|
|
|
|
rblk->parent = blk;
|
|
rblk->rlun = rlun;
|
|
INIT_LIST_HEAD(&rblk->prio);
|
|
spin_lock_init(&rblk->lock);
|
|
}
|
|
|
|
rlun->rrpc = rrpc;
|
|
INIT_LIST_HEAD(&rlun->prio_list);
|
|
INIT_LIST_HEAD(&rlun->wblk_list);
|
|
|
|
INIT_WORK(&rlun->ws_gc, rrpc_lun_gc);
|
|
spin_lock_init(&rlun->lock);
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
return ret;
|
|
}
|
|
|
|
/* returns 0 on success and stores the beginning address in *begin */
|
|
static int rrpc_area_init(struct rrpc *rrpc, sector_t *begin)
|
|
{
|
|
struct nvm_dev *dev = rrpc->dev;
|
|
struct nvmm_type *mt = dev->mt;
|
|
sector_t size = rrpc->nr_sects * dev->sec_size;
|
|
int ret;
|
|
|
|
size >>= 9;
|
|
|
|
ret = mt->get_area(dev, begin, size);
|
|
if (!ret)
|
|
*begin >>= (ilog2(dev->sec_size) - 9);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void rrpc_area_free(struct rrpc *rrpc)
|
|
{
|
|
struct nvm_dev *dev = rrpc->dev;
|
|
struct nvmm_type *mt = dev->mt;
|
|
sector_t begin = rrpc->soffset << (ilog2(dev->sec_size) - 9);
|
|
|
|
mt->put_area(dev, begin);
|
|
}
|
|
|
|
static void rrpc_free(struct rrpc *rrpc)
|
|
{
|
|
rrpc_gc_free(rrpc);
|
|
rrpc_map_free(rrpc);
|
|
rrpc_core_free(rrpc);
|
|
rrpc_luns_free(rrpc);
|
|
rrpc_area_free(rrpc);
|
|
|
|
kfree(rrpc);
|
|
}
|
|
|
|
static void rrpc_exit(void *private)
|
|
{
|
|
struct rrpc *rrpc = private;
|
|
|
|
del_timer(&rrpc->gc_timer);
|
|
|
|
flush_workqueue(rrpc->krqd_wq);
|
|
flush_workqueue(rrpc->kgc_wq);
|
|
|
|
rrpc_free(rrpc);
|
|
}
|
|
|
|
static sector_t rrpc_capacity(void *private)
|
|
{
|
|
struct rrpc *rrpc = private;
|
|
struct nvm_dev *dev = rrpc->dev;
|
|
sector_t reserved, provisioned;
|
|
|
|
/* cur, gc, and two emergency blocks for each lun */
|
|
reserved = rrpc->nr_luns * dev->sec_per_blk * 4;
|
|
provisioned = rrpc->nr_sects - reserved;
|
|
|
|
if (reserved > rrpc->nr_sects) {
|
|
pr_err("rrpc: not enough space available to expose storage.\n");
|
|
return 0;
|
|
}
|
|
|
|
sector_div(provisioned, 10);
|
|
return provisioned * 9 * NR_PHY_IN_LOG;
|
|
}
|
|
|
|
/*
|
|
* Looks up the logical address from reverse trans map and check if its valid by
|
|
* comparing the logical to physical address with the physical address.
|
|
* Returns 0 on free, otherwise 1 if in use
|
|
*/
|
|
static void rrpc_block_map_update(struct rrpc *rrpc, struct rrpc_block *rblk)
|
|
{
|
|
struct nvm_dev *dev = rrpc->dev;
|
|
int offset;
|
|
struct rrpc_addr *laddr;
|
|
u64 bpaddr, paddr, pladdr;
|
|
|
|
bpaddr = block_to_rel_addr(rrpc, rblk);
|
|
for (offset = 0; offset < dev->sec_per_blk; offset++) {
|
|
paddr = bpaddr + offset;
|
|
|
|
pladdr = rrpc->rev_trans_map[paddr].addr;
|
|
if (pladdr == ADDR_EMPTY)
|
|
continue;
|
|
|
|
laddr = &rrpc->trans_map[pladdr];
|
|
|
|
if (paddr == laddr->addr) {
|
|
laddr->rblk = rblk;
|
|
} else {
|
|
set_bit(offset, rblk->invalid_pages);
|
|
rblk->nr_invalid_pages++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int rrpc_blocks_init(struct rrpc *rrpc)
|
|
{
|
|
struct rrpc_lun *rlun;
|
|
struct rrpc_block *rblk;
|
|
int lun_iter, blk_iter;
|
|
|
|
for (lun_iter = 0; lun_iter < rrpc->nr_luns; lun_iter++) {
|
|
rlun = &rrpc->luns[lun_iter];
|
|
|
|
for (blk_iter = 0; blk_iter < rrpc->dev->blks_per_lun;
|
|
blk_iter++) {
|
|
rblk = &rlun->blocks[blk_iter];
|
|
rrpc_block_map_update(rrpc, rblk);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rrpc_luns_configure(struct rrpc *rrpc)
|
|
{
|
|
struct rrpc_lun *rlun;
|
|
struct rrpc_block *rblk;
|
|
int i;
|
|
|
|
for (i = 0; i < rrpc->nr_luns; i++) {
|
|
rlun = &rrpc->luns[i];
|
|
|
|
rblk = rrpc_get_blk(rrpc, rlun, 0);
|
|
if (!rblk)
|
|
goto err;
|
|
rrpc_set_lun_cur(rlun, rblk, &rlun->cur);
|
|
|
|
/* Emergency gc block */
|
|
rblk = rrpc_get_blk(rrpc, rlun, 1);
|
|
if (!rblk)
|
|
goto err;
|
|
rrpc_set_lun_cur(rlun, rblk, &rlun->gc_cur);
|
|
}
|
|
|
|
return 0;
|
|
err:
|
|
rrpc_put_blks(rrpc);
|
|
return -EINVAL;
|
|
}
|
|
|
|
static struct nvm_tgt_type tt_rrpc;
|
|
|
|
static void *rrpc_init(struct nvm_dev *dev, struct gendisk *tdisk,
|
|
int lun_begin, int lun_end)
|
|
{
|
|
struct request_queue *bqueue = dev->q;
|
|
struct request_queue *tqueue = tdisk->queue;
|
|
struct rrpc *rrpc;
|
|
sector_t soffset;
|
|
int ret;
|
|
|
|
if (!(dev->identity.dom & NVM_RSP_L2P)) {
|
|
pr_err("nvm: rrpc: device does not support l2p (%x)\n",
|
|
dev->identity.dom);
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
|
|
rrpc = kzalloc(sizeof(struct rrpc), GFP_KERNEL);
|
|
if (!rrpc)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
rrpc->instance.tt = &tt_rrpc;
|
|
rrpc->dev = dev;
|
|
rrpc->disk = tdisk;
|
|
|
|
bio_list_init(&rrpc->requeue_bios);
|
|
spin_lock_init(&rrpc->bio_lock);
|
|
INIT_WORK(&rrpc->ws_requeue, rrpc_requeue);
|
|
|
|
rrpc->nr_luns = lun_end - lun_begin + 1;
|
|
rrpc->total_blocks = (unsigned long)dev->blks_per_lun * rrpc->nr_luns;
|
|
rrpc->nr_sects = (unsigned long long)dev->sec_per_lun * rrpc->nr_luns;
|
|
|
|
/* simple round-robin strategy */
|
|
atomic_set(&rrpc->next_lun, -1);
|
|
|
|
ret = rrpc_area_init(rrpc, &soffset);
|
|
if (ret < 0) {
|
|
pr_err("nvm: rrpc: could not initialize area\n");
|
|
return ERR_PTR(ret);
|
|
}
|
|
rrpc->soffset = soffset;
|
|
|
|
ret = rrpc_luns_init(rrpc, lun_begin, lun_end);
|
|
if (ret) {
|
|
pr_err("nvm: rrpc: could not initialize luns\n");
|
|
goto err;
|
|
}
|
|
|
|
rrpc->poffset = dev->sec_per_lun * lun_begin;
|
|
rrpc->lun_offset = lun_begin;
|
|
|
|
ret = rrpc_core_init(rrpc);
|
|
if (ret) {
|
|
pr_err("nvm: rrpc: could not initialize core\n");
|
|
goto err;
|
|
}
|
|
|
|
ret = rrpc_map_init(rrpc);
|
|
if (ret) {
|
|
pr_err("nvm: rrpc: could not initialize maps\n");
|
|
goto err;
|
|
}
|
|
|
|
ret = rrpc_blocks_init(rrpc);
|
|
if (ret) {
|
|
pr_err("nvm: rrpc: could not initialize state for blocks\n");
|
|
goto err;
|
|
}
|
|
|
|
ret = rrpc_luns_configure(rrpc);
|
|
if (ret) {
|
|
pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
|
|
goto err;
|
|
}
|
|
|
|
ret = rrpc_gc_init(rrpc);
|
|
if (ret) {
|
|
pr_err("nvm: rrpc: could not initialize gc\n");
|
|
goto err;
|
|
}
|
|
|
|
/* inherit the size from the underlying device */
|
|
blk_queue_logical_block_size(tqueue, queue_physical_block_size(bqueue));
|
|
blk_queue_max_hw_sectors(tqueue, queue_max_hw_sectors(bqueue));
|
|
|
|
pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
|
|
rrpc->nr_luns, (unsigned long long)rrpc->nr_sects);
|
|
|
|
mod_timer(&rrpc->gc_timer, jiffies + msecs_to_jiffies(10));
|
|
|
|
return rrpc;
|
|
err:
|
|
rrpc_free(rrpc);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/* round robin, page-based FTL, and cost-based GC */
|
|
static struct nvm_tgt_type tt_rrpc = {
|
|
.name = "rrpc",
|
|
.version = {1, 0, 0},
|
|
|
|
.make_rq = rrpc_make_rq,
|
|
.capacity = rrpc_capacity,
|
|
.end_io = rrpc_end_io,
|
|
|
|
.init = rrpc_init,
|
|
.exit = rrpc_exit,
|
|
};
|
|
|
|
static int __init rrpc_module_init(void)
|
|
{
|
|
return nvm_register_tgt_type(&tt_rrpc);
|
|
}
|
|
|
|
static void rrpc_module_exit(void)
|
|
{
|
|
nvm_unregister_tgt_type(&tt_rrpc);
|
|
}
|
|
|
|
module_init(rrpc_module_init);
|
|
module_exit(rrpc_module_exit);
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");
|