linux_dsm_epyc7002/arch/x86/kvm/vmx/nested.c
Sean Christopherson 68cda40d9f KVM: nVMX: Tweak handling of failure code for nested VM-Enter failure
Use an enum for passing around the failure code for a failed VM-Enter
that results in VM-Exit to provide a level of indirection from the final
resting place of the failure code, vmcs.EXIT_QUALIFICATION.  The exit
qualification field is an unsigned long, e.g. passing around
'u32 exit_qual' throws up red flags as it suggests KVM may be dropping
bits when reporting errors to L1.  This is a red herring because the
only defined failure codes are 0, 2, 3, and 4, i.e. don't come remotely
close to overflowing a u32.

Setting vmcs.EXIT_QUALIFICATION on entry failure is further complicated
by the MSR load list, which returns the (1-based) entry that failed, and
the number of MSRs to load is a 32-bit VMCS field.  At first blush, it
would appear that overflowing a u32 is possible, but the number of MSRs
that can be loaded is hardcapped at 4096 (limited by MSR_IA32_VMX_MISC).

In other words, there are two completely disparate types of data that
eventually get stuffed into vmcs.EXIT_QUALIFICATION, neither of which is
an 'unsigned long' in nature.  This was presumably the reasoning for
switching to 'u32' when the related code was refactored in commit
ca0bde28f2 ("kvm: nVMX: Split VMCS checks from nested_vmx_run()").

Using an enum for the failure code addresses the technically-possible-
but-will-never-happen scenario where Intel defines a failure code that
doesn't fit in a 32-bit integer.  The enum variables and values will
either be automatically sized (gcc 5.4 behavior) or be subjected to some
combination of truncation.  The former case will simply work, while the
latter will trigger a compile-time warning unless the compiler is being
particularly unhelpful.

Separating the failure code from the failed MSR entry allows for
disassociating both from vmcs.EXIT_QUALIFICATION, which avoids the
conundrum where KVM has to choose between 'u32 exit_qual' and tracking
values as 'unsigned long' that have no business being tracked as such.
To cement the split, set vmcs12->exit_qualification directly from the
entry error code or failed MSR index instead of bouncing through a local
variable.

Opportunistically rename the variables in load_vmcs12_host_state() and
vmx_set_nested_state() to call out that they're ignored, set exit_reason
on demand on nested VM-Enter failure, and add a comment in
nested_vmx_load_msr() to call out that returning 'i + 1' can't wrap.

No functional change intended.

Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200511220529.11402-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-05-15 12:07:31 -04:00

6477 lines
198 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/frame.h>
#include <linux/percpu.h>
#include <asm/debugreg.h>
#include <asm/mmu_context.h>
#include "cpuid.h"
#include "hyperv.h"
#include "mmu.h"
#include "nested.h"
#include "pmu.h"
#include "trace.h"
#include "x86.h"
static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
static bool __read_mostly nested_early_check = 0;
module_param(nested_early_check, bool, S_IRUGO);
#define CC(consistency_check) \
({ \
bool failed = (consistency_check); \
if (failed) \
trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
failed; \
})
/*
* Hyper-V requires all of these, so mark them as supported even though
* they are just treated the same as all-context.
*/
#define VMX_VPID_EXTENT_SUPPORTED_MASK \
(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
enum {
VMX_VMREAD_BITMAP,
VMX_VMWRITE_BITMAP,
VMX_BITMAP_NR
};
static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
struct shadow_vmcs_field {
u16 encoding;
u16 offset;
};
static struct shadow_vmcs_field shadow_read_only_fields[] = {
#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_only_fields =
ARRAY_SIZE(shadow_read_only_fields);
static struct shadow_vmcs_field shadow_read_write_fields[] = {
#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_write_fields =
ARRAY_SIZE(shadow_read_write_fields);
static void init_vmcs_shadow_fields(void)
{
int i, j;
memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
for (i = j = 0; i < max_shadow_read_only_fields; i++) {
struct shadow_vmcs_field entry = shadow_read_only_fields[i];
u16 field = entry.encoding;
if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
(i + 1 == max_shadow_read_only_fields ||
shadow_read_only_fields[i + 1].encoding != field + 1))
pr_err("Missing field from shadow_read_only_field %x\n",
field + 1);
clear_bit(field, vmx_vmread_bitmap);
if (field & 1)
#ifdef CONFIG_X86_64
continue;
#else
entry.offset += sizeof(u32);
#endif
shadow_read_only_fields[j++] = entry;
}
max_shadow_read_only_fields = j;
for (i = j = 0; i < max_shadow_read_write_fields; i++) {
struct shadow_vmcs_field entry = shadow_read_write_fields[i];
u16 field = entry.encoding;
if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
(i + 1 == max_shadow_read_write_fields ||
shadow_read_write_fields[i + 1].encoding != field + 1))
pr_err("Missing field from shadow_read_write_field %x\n",
field + 1);
WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
field <= GUEST_TR_AR_BYTES,
"Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
/*
* PML and the preemption timer can be emulated, but the
* processor cannot vmwrite to fields that don't exist
* on bare metal.
*/
switch (field) {
case GUEST_PML_INDEX:
if (!cpu_has_vmx_pml())
continue;
break;
case VMX_PREEMPTION_TIMER_VALUE:
if (!cpu_has_vmx_preemption_timer())
continue;
break;
case GUEST_INTR_STATUS:
if (!cpu_has_vmx_apicv())
continue;
break;
default:
break;
}
clear_bit(field, vmx_vmwrite_bitmap);
clear_bit(field, vmx_vmread_bitmap);
if (field & 1)
#ifdef CONFIG_X86_64
continue;
#else
entry.offset += sizeof(u32);
#endif
shadow_read_write_fields[j++] = entry;
}
max_shadow_read_write_fields = j;
}
/*
* The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
* set the success or error code of an emulated VMX instruction (as specified
* by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
* instruction.
*/
static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
{
vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
return kvm_skip_emulated_instruction(vcpu);
}
static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
{
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
X86_EFLAGS_SF | X86_EFLAGS_OF))
| X86_EFLAGS_CF);
return kvm_skip_emulated_instruction(vcpu);
}
static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
u32 vm_instruction_error)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* failValid writes the error number to the current VMCS, which
* can't be done if there isn't a current VMCS.
*/
if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
return nested_vmx_failInvalid(vcpu);
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
X86_EFLAGS_SF | X86_EFLAGS_OF))
| X86_EFLAGS_ZF);
get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
/*
* We don't need to force a shadow sync because
* VM_INSTRUCTION_ERROR is not shadowed
*/
return kvm_skip_emulated_instruction(vcpu);
}
static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
{
/* TODO: not to reset guest simply here. */
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
}
static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
return fixed_bits_valid(control, low, high);
}
static inline u64 vmx_control_msr(u32 low, u32 high)
{
return low | ((u64)high << 32);
}
static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
{
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
vmcs_write64(VMCS_LINK_POINTER, -1ull);
vmx->nested.need_vmcs12_to_shadow_sync = false;
}
static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!vmx->nested.hv_evmcs)
return;
kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
vmx->nested.hv_evmcs_vmptr = 0;
vmx->nested.hv_evmcs = NULL;
}
/*
* Free whatever needs to be freed from vmx->nested when L1 goes down, or
* just stops using VMX.
*/
static void free_nested(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
return;
kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
vmx->nested.vmxon = false;
vmx->nested.smm.vmxon = false;
free_vpid(vmx->nested.vpid02);
vmx->nested.posted_intr_nv = -1;
vmx->nested.current_vmptr = -1ull;
if (enable_shadow_vmcs) {
vmx_disable_shadow_vmcs(vmx);
vmcs_clear(vmx->vmcs01.shadow_vmcs);
free_vmcs(vmx->vmcs01.shadow_vmcs);
vmx->vmcs01.shadow_vmcs = NULL;
}
kfree(vmx->nested.cached_vmcs12);
vmx->nested.cached_vmcs12 = NULL;
kfree(vmx->nested.cached_shadow_vmcs12);
vmx->nested.cached_shadow_vmcs12 = NULL;
/* Unpin physical memory we referred to in the vmcs02 */
if (vmx->nested.apic_access_page) {
kvm_release_page_clean(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = NULL;
}
kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
vmx->nested.pi_desc = NULL;
kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
nested_release_evmcs(vcpu);
free_loaded_vmcs(&vmx->nested.vmcs02);
}
static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
struct loaded_vmcs *prev)
{
struct vmcs_host_state *dest, *src;
if (unlikely(!vmx->guest_state_loaded))
return;
src = &prev->host_state;
dest = &vmx->loaded_vmcs->host_state;
vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
dest->ldt_sel = src->ldt_sel;
#ifdef CONFIG_X86_64
dest->ds_sel = src->ds_sel;
dest->es_sel = src->es_sel;
#endif
}
static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct loaded_vmcs *prev;
int cpu;
if (vmx->loaded_vmcs == vmcs)
return;
cpu = get_cpu();
prev = vmx->loaded_vmcs;
vmx->loaded_vmcs = vmcs;
vmx_vcpu_load_vmcs(vcpu, cpu, prev);
vmx_sync_vmcs_host_state(vmx, prev);
put_cpu();
vmx_register_cache_reset(vcpu);
}
/*
* Ensure that the current vmcs of the logical processor is the
* vmcs01 of the vcpu before calling free_nested().
*/
void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
vmx_leave_nested(vcpu);
vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
free_nested(vcpu);
vcpu_put(vcpu);
}
static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vm_exit_reason;
unsigned long exit_qualification = vcpu->arch.exit_qualification;
if (vmx->nested.pml_full) {
vm_exit_reason = EXIT_REASON_PML_FULL;
vmx->nested.pml_full = false;
exit_qualification &= INTR_INFO_UNBLOCK_NMI;
} else if (fault->error_code & PFERR_RSVD_MASK)
vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
else
vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
vmcs12->guest_physical_address = fault->address;
}
static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
{
WARN_ON(mmu_is_nested(vcpu));
vcpu->arch.mmu = &vcpu->arch.guest_mmu;
kvm_init_shadow_ept_mmu(vcpu,
to_vmx(vcpu)->nested.msrs.ept_caps &
VMX_EPT_EXECUTE_ONLY_BIT,
nested_ept_ad_enabled(vcpu),
nested_ept_get_eptp(vcpu));
vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
}
static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
vcpu->arch.mmu = &vcpu->arch.root_mmu;
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
}
static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
u16 error_code)
{
bool inequality, bit;
bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
inequality =
(error_code & vmcs12->page_fault_error_code_mask) !=
vmcs12->page_fault_error_code_match;
return inequality ^ bit;
}
/*
* KVM wants to inject page-faults which it got to the guest. This function
* checks whether in a nested guest, we need to inject them to L1 or L2.
*/
static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned int nr = vcpu->arch.exception.nr;
bool has_payload = vcpu->arch.exception.has_payload;
unsigned long payload = vcpu->arch.exception.payload;
if (nr == PF_VECTOR) {
if (vcpu->arch.exception.nested_apf) {
*exit_qual = vcpu->arch.apf.nested_apf_token;
return 1;
}
if (nested_vmx_is_page_fault_vmexit(vmcs12,
vcpu->arch.exception.error_code)) {
*exit_qual = has_payload ? payload : vcpu->arch.cr2;
return 1;
}
} else if (vmcs12->exception_bitmap & (1u << nr)) {
if (nr == DB_VECTOR) {
if (!has_payload) {
payload = vcpu->arch.dr6;
payload &= ~(DR6_FIXED_1 | DR6_BT);
payload ^= DR6_RTM;
}
*exit_qual = payload;
} else
*exit_qual = 0;
return 1;
}
return 0;
}
static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
WARN_ON(!is_guest_mode(vcpu));
if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
!to_vmx(vcpu)->nested.nested_run_pending) {
vmcs12->vm_exit_intr_error_code = fault->error_code;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
fault->address);
} else {
kvm_inject_page_fault(vcpu, fault);
}
}
static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
{
return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
}
static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
return 0;
if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return 0;
if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
return 0;
if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
return -EINVAL;
return 0;
}
/*
* Check if MSR is intercepted for L01 MSR bitmap.
*/
static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
{
unsigned long *msr_bitmap;
int f = sizeof(unsigned long);
if (!cpu_has_vmx_msr_bitmap())
return true;
msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
if (msr <= 0x1fff) {
return !!test_bit(msr, msr_bitmap + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
return !!test_bit(msr, msr_bitmap + 0xc00 / f);
}
return true;
}
/*
* If a msr is allowed by L0, we should check whether it is allowed by L1.
* The corresponding bit will be cleared unless both of L0 and L1 allow it.
*/
static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
unsigned long *msr_bitmap_nested,
u32 msr, int type)
{
int f = sizeof(unsigned long);
/*
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
* have the write-low and read-high bitmap offsets the wrong way round.
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
*/
if (msr <= 0x1fff) {
if (type & MSR_TYPE_R &&
!test_bit(msr, msr_bitmap_l1 + 0x000 / f))
/* read-low */
__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
if (type & MSR_TYPE_W &&
!test_bit(msr, msr_bitmap_l1 + 0x800 / f))
/* write-low */
__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
if (type & MSR_TYPE_R &&
!test_bit(msr, msr_bitmap_l1 + 0x400 / f))
/* read-high */
__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
if (type & MSR_TYPE_W &&
!test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
/* write-high */
__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
}
}
static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
{
int msr;
for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
unsigned word = msr / BITS_PER_LONG;
msr_bitmap[word] = ~0;
msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
}
}
/*
* Merge L0's and L1's MSR bitmap, return false to indicate that
* we do not use the hardware.
*/
static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
int msr;
unsigned long *msr_bitmap_l1;
unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
/* Nothing to do if the MSR bitmap is not in use. */
if (!cpu_has_vmx_msr_bitmap() ||
!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return false;
if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
return false;
msr_bitmap_l1 = (unsigned long *)map->hva;
/*
* To keep the control flow simple, pay eight 8-byte writes (sixteen
* 4-byte writes on 32-bit systems) up front to enable intercepts for
* the x2APIC MSR range and selectively disable them below.
*/
enable_x2apic_msr_intercepts(msr_bitmap_l0);
if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
if (nested_cpu_has_apic_reg_virt(vmcs12)) {
/*
* L0 need not intercept reads for MSRs between 0x800
* and 0x8ff, it just lets the processor take the value
* from the virtual-APIC page; take those 256 bits
* directly from the L1 bitmap.
*/
for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
unsigned word = msr / BITS_PER_LONG;
msr_bitmap_l0[word] = msr_bitmap_l1[word];
}
}
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
X2APIC_MSR(APIC_TASKPRI),
MSR_TYPE_R | MSR_TYPE_W);
if (nested_cpu_has_vid(vmcs12)) {
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
X2APIC_MSR(APIC_EOI),
MSR_TYPE_W);
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
X2APIC_MSR(APIC_SELF_IPI),
MSR_TYPE_W);
}
}
/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
MSR_FS_BASE, MSR_TYPE_RW);
nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
MSR_GS_BASE, MSR_TYPE_RW);
nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
/*
* Checking the L0->L1 bitmap is trying to verify two things:
*
* 1. L0 gave a permission to L1 to actually passthrough the MSR. This
* ensures that we do not accidentally generate an L02 MSR bitmap
* from the L12 MSR bitmap that is too permissive.
* 2. That L1 or L2s have actually used the MSR. This avoids
* unnecessarily merging of the bitmap if the MSR is unused. This
* works properly because we only update the L01 MSR bitmap lazily.
* So even if L0 should pass L1 these MSRs, the L01 bitmap is only
* updated to reflect this when L1 (or its L2s) actually write to
* the MSR.
*/
if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
MSR_IA32_SPEC_CTRL,
MSR_TYPE_R | MSR_TYPE_W);
if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
MSR_IA32_PRED_CMD,
MSR_TYPE_W);
kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
return true;
}
static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct kvm_host_map map;
struct vmcs12 *shadow;
if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
vmcs12->vmcs_link_pointer == -1ull)
return;
shadow = get_shadow_vmcs12(vcpu);
if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
return;
memcpy(shadow, map.hva, VMCS12_SIZE);
kvm_vcpu_unmap(vcpu, &map, false);
}
static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
vmcs12->vmcs_link_pointer == -1ull)
return;
kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
get_shadow_vmcs12(vcpu), VMCS12_SIZE);
}
/*
* In nested virtualization, check if L1 has set
* VM_EXIT_ACK_INTR_ON_EXIT
*/
static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
{
return get_vmcs12(vcpu)->vm_exit_controls &
VM_EXIT_ACK_INTR_ON_EXIT;
}
static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
return -EINVAL;
else
return 0;
}
static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
!nested_cpu_has_apic_reg_virt(vmcs12) &&
!nested_cpu_has_vid(vmcs12) &&
!nested_cpu_has_posted_intr(vmcs12))
return 0;
/*
* If virtualize x2apic mode is enabled,
* virtualize apic access must be disabled.
*/
if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
return -EINVAL;
/*
* If virtual interrupt delivery is enabled,
* we must exit on external interrupts.
*/
if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
return -EINVAL;
/*
* bits 15:8 should be zero in posted_intr_nv,
* the descriptor address has been already checked
* in nested_get_vmcs12_pages.
*
* bits 5:0 of posted_intr_desc_addr should be zero.
*/
if (nested_cpu_has_posted_intr(vmcs12) &&
(CC(!nested_cpu_has_vid(vmcs12)) ||
CC(!nested_exit_intr_ack_set(vcpu)) ||
CC((vmcs12->posted_intr_nv & 0xff00)) ||
CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
return -EINVAL;
/* tpr shadow is needed by all apicv features. */
if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
u32 count, u64 addr)
{
int maxphyaddr;
if (count == 0)
return 0;
maxphyaddr = cpuid_maxphyaddr(vcpu);
if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
(addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
return -EINVAL;
return 0;
}
static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (CC(nested_vmx_check_msr_switch(vcpu,
vmcs12->vm_exit_msr_load_count,
vmcs12->vm_exit_msr_load_addr)) ||
CC(nested_vmx_check_msr_switch(vcpu,
vmcs12->vm_exit_msr_store_count,
vmcs12->vm_exit_msr_store_addr)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (CC(nested_vmx_check_msr_switch(vcpu,
vmcs12->vm_entry_msr_load_count,
vmcs12->vm_entry_msr_load_addr)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has_pml(vmcs12))
return 0;
if (CC(!nested_cpu_has_ept(vmcs12)) ||
CC(!page_address_valid(vcpu, vmcs12->pml_address)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
!nested_cpu_has_ept(vmcs12)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
!nested_cpu_has_ept(vmcs12)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has_shadow_vmcs(vmcs12))
return 0;
if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
return -EINVAL;
return 0;
}
static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
/* x2APIC MSR accesses are not allowed */
if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
return -EINVAL;
if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
CC(e->index == MSR_IA32_UCODE_REV))
return -EINVAL;
if (CC(e->reserved != 0))
return -EINVAL;
return 0;
}
static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
if (CC(e->index == MSR_FS_BASE) ||
CC(e->index == MSR_GS_BASE) ||
CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
nested_vmx_msr_check_common(vcpu, e))
return -EINVAL;
return 0;
}
static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
nested_vmx_msr_check_common(vcpu, e))
return -EINVAL;
return 0;
}
static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
vmx->nested.msrs.misc_high);
return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
}
/*
* Load guest's/host's msr at nested entry/exit.
* return 0 for success, entry index for failure.
*
* One of the failure modes for MSR load/store is when a list exceeds the
* virtual hardware's capacity. To maintain compatibility with hardware inasmuch
* as possible, process all valid entries before failing rather than precheck
* for a capacity violation.
*/
static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
u32 i;
struct vmx_msr_entry e;
u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
for (i = 0; i < count; i++) {
if (unlikely(i >= max_msr_list_size))
goto fail;
if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
&e, sizeof(e))) {
pr_debug_ratelimited(
"%s cannot read MSR entry (%u, 0x%08llx)\n",
__func__, i, gpa + i * sizeof(e));
goto fail;
}
if (nested_vmx_load_msr_check(vcpu, &e)) {
pr_debug_ratelimited(
"%s check failed (%u, 0x%x, 0x%x)\n",
__func__, i, e.index, e.reserved);
goto fail;
}
if (kvm_set_msr(vcpu, e.index, e.value)) {
pr_debug_ratelimited(
"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
__func__, i, e.index, e.value);
goto fail;
}
}
return 0;
fail:
/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
return i + 1;
}
static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
u32 msr_index,
u64 *data)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* If the L0 hypervisor stored a more accurate value for the TSC that
* does not include the time taken for emulation of the L2->L1
* VM-exit in L0, use the more accurate value.
*/
if (msr_index == MSR_IA32_TSC) {
int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
MSR_IA32_TSC);
if (index >= 0) {
u64 val = vmx->msr_autostore.guest.val[index].value;
*data = kvm_read_l1_tsc(vcpu, val);
return true;
}
}
if (kvm_get_msr(vcpu, msr_index, data)) {
pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
msr_index);
return false;
}
return true;
}
static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
struct vmx_msr_entry *e)
{
if (kvm_vcpu_read_guest(vcpu,
gpa + i * sizeof(*e),
e, 2 * sizeof(u32))) {
pr_debug_ratelimited(
"%s cannot read MSR entry (%u, 0x%08llx)\n",
__func__, i, gpa + i * sizeof(*e));
return false;
}
if (nested_vmx_store_msr_check(vcpu, e)) {
pr_debug_ratelimited(
"%s check failed (%u, 0x%x, 0x%x)\n",
__func__, i, e->index, e->reserved);
return false;
}
return true;
}
static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
u64 data;
u32 i;
struct vmx_msr_entry e;
u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
for (i = 0; i < count; i++) {
if (unlikely(i >= max_msr_list_size))
return -EINVAL;
if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
return -EINVAL;
if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
return -EINVAL;
if (kvm_vcpu_write_guest(vcpu,
gpa + i * sizeof(e) +
offsetof(struct vmx_msr_entry, value),
&data, sizeof(data))) {
pr_debug_ratelimited(
"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
__func__, i, e.index, data);
return -EINVAL;
}
}
return 0;
}
static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
u32 count = vmcs12->vm_exit_msr_store_count;
u64 gpa = vmcs12->vm_exit_msr_store_addr;
struct vmx_msr_entry e;
u32 i;
for (i = 0; i < count; i++) {
if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
return false;
if (e.index == msr_index)
return true;
}
return false;
}
static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
u32 msr_index)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
bool in_vmcs12_store_list;
int msr_autostore_index;
bool in_autostore_list;
int last;
msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
in_autostore_list = msr_autostore_index >= 0;
in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
if (in_vmcs12_store_list && !in_autostore_list) {
if (autostore->nr == NR_LOADSTORE_MSRS) {
/*
* Emulated VMEntry does not fail here. Instead a less
* accurate value will be returned by
* nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
* instead of reading the value from the vmcs02 VMExit
* MSR-store area.
*/
pr_warn_ratelimited(
"Not enough msr entries in msr_autostore. Can't add msr %x\n",
msr_index);
return;
}
last = autostore->nr++;
autostore->val[last].index = msr_index;
} else if (!in_vmcs12_store_list && in_autostore_list) {
last = --autostore->nr;
autostore->val[msr_autostore_index] = autostore->val[last];
}
}
static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
{
unsigned long invalid_mask;
invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
return (val & invalid_mask) == 0;
}
/*
* Returns true if the MMU needs to be sync'd on nested VM-Enter/VM-Exit.
* tl;dr: the MMU needs a sync if L0 is using shadow paging and L1 didn't
* enable VPID for L2 (implying it expects a TLB flush on VMX transitions).
* Here's why.
*
* If EPT is enabled by L0 a sync is never needed:
* - if it is disabled by L1, then L0 is not shadowing L1 or L2 PTEs, there
* cannot be unsync'd SPTEs for either L1 or L2.
*
* - if it is also enabled by L1, then L0 doesn't need to sync on VM-Enter
* VM-Enter as VM-Enter isn't required to invalidate guest-physical mappings
* (irrespective of VPID), i.e. L1 can't rely on the (virtual) CPU to flush
* stale guest-physical mappings for L2 from the TLB. And as above, L0 isn't
* shadowing L1 PTEs so there are no unsync'd SPTEs to sync on VM-Exit.
*
* If EPT is disabled by L0:
* - if VPID is enabled by L1 (for L2), the situation is similar to when L1
* enables EPT: L0 doesn't need to sync as VM-Enter and VM-Exit aren't
* required to invalidate linear mappings (EPT is disabled so there are
* no combined or guest-physical mappings), i.e. L1 can't rely on the
* (virtual) CPU to flush stale linear mappings for either L2 or itself (L1).
*
* - however if VPID is disabled by L1, then a sync is needed as L1 expects all
* linear mappings (EPT is disabled so there are no combined or guest-physical
* mappings) to be invalidated on both VM-Enter and VM-Exit.
*
* Note, this logic is subtly different than nested_has_guest_tlb_tag(), which
* additionally checks that L2 has been assigned a VPID (when EPT is disabled).
* Whether or not L2 has been assigned a VPID by L0 is irrelevant with respect
* to L1's expectations, e.g. L0 needs to invalidate hardware TLB entries if L2
* doesn't have a unique VPID to prevent reusing L1's entries (assuming L1 has
* been assigned a VPID), but L0 doesn't need to do a MMU sync because L1
* doesn't expect stale (virtual) TLB entries to be flushed, i.e. L1 doesn't
* know that L0 will flush the TLB and so L1 will do INVVPID as needed to flush
* stale TLB entries, at which point L0 will sync L2's MMU.
*/
static bool nested_vmx_transition_mmu_sync(struct kvm_vcpu *vcpu)
{
return !enable_ept && !nested_cpu_has_vpid(get_vmcs12(vcpu));
}
/*
* Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
* emulating VM-Entry into a guest with EPT enabled. On failure, the expected
* Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
* @entry_failure_code.
*/
static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
enum vm_entry_failure_code *entry_failure_code)
{
if (CC(!nested_cr3_valid(vcpu, cr3))) {
*entry_failure_code = ENTRY_FAIL_DEFAULT;
return -EINVAL;
}
/*
* If PAE paging and EPT are both on, CR3 is not used by the CPU and
* must not be dereferenced.
*/
if (!nested_ept && is_pae_paging(vcpu) &&
(cr3 != kvm_read_cr3(vcpu) || pdptrs_changed(vcpu))) {
if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
*entry_failure_code = ENTRY_FAIL_PDPTE;
return -EINVAL;
}
}
/*
* Unconditionally skip the TLB flush on fast CR3 switch, all TLB
* flushes are handled by nested_vmx_transition_tlb_flush(). See
* nested_vmx_transition_mmu_sync for details on skipping the MMU sync.
*/
if (!nested_ept)
kvm_mmu_new_pgd(vcpu, cr3, true,
!nested_vmx_transition_mmu_sync(vcpu));
vcpu->arch.cr3 = cr3;
kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
kvm_init_mmu(vcpu, false);
return 0;
}
/*
* Returns if KVM is able to config CPU to tag TLB entries
* populated by L2 differently than TLB entries populated
* by L1.
*
* If L0 uses EPT, L1 and L2 run with different EPTP because
* guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
* are tagged with different EPTP.
*
* If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
* with different VPID (L1 entries are tagged with vmx->vpid
* while L2 entries are tagged with vmx->nested.vpid02).
*/
static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
return enable_ept ||
(nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
}
static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
bool is_vmenter)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* If VPID is disabled, linear and combined mappings are flushed on
* VM-Enter/VM-Exit, and guest-physical mappings are valid only for
* their associated EPTP.
*/
if (!enable_vpid)
return;
/*
* If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
* for *all* contexts to be flushed on VM-Enter/VM-Exit.
*
* If VPID is enabled and used by vmc12, but L2 does not have a unique
* TLB tag (ASID), i.e. EPT is disabled and KVM was unable to allocate
* a VPID for L2, flush the current context as the effective ASID is
* common to both L1 and L2.
*
* Defer the flush so that it runs after vmcs02.EPTP has been set by
* KVM_REQ_LOAD_MMU_PGD (if nested EPT is enabled) and to avoid
* redundant flushes further down the nested pipeline.
*
* If a TLB flush isn't required due to any of the above, and vpid12 is
* changing then the new "virtual" VPID (vpid12) will reuse the same
* "real" VPID (vpid02), and so needs to be sync'd. There is no direct
* mapping between vpid02 and vpid12, vpid02 is per-vCPU and reused for
* all nested vCPUs.
*/
if (!nested_cpu_has_vpid(vmcs12)) {
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
} else if (!nested_has_guest_tlb_tag(vcpu)) {
kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
} else if (is_vmenter &&
vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
vmx->nested.last_vpid = vmcs12->virtual_processor_id;
vpid_sync_context(nested_get_vpid02(vcpu));
}
}
static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
{
superset &= mask;
subset &= mask;
return (superset | subset) == superset;
}
static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
{
const u64 feature_and_reserved =
/* feature (except bit 48; see below) */
BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
/* reserved */
BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
u64 vmx_basic = vmx->nested.msrs.basic;
if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
return -EINVAL;
/*
* KVM does not emulate a version of VMX that constrains physical
* addresses of VMX structures (e.g. VMCS) to 32-bits.
*/
if (data & BIT_ULL(48))
return -EINVAL;
if (vmx_basic_vmcs_revision_id(vmx_basic) !=
vmx_basic_vmcs_revision_id(data))
return -EINVAL;
if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
return -EINVAL;
vmx->nested.msrs.basic = data;
return 0;
}
static int
vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
u64 supported;
u32 *lowp, *highp;
switch (msr_index) {
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
lowp = &vmx->nested.msrs.pinbased_ctls_low;
highp = &vmx->nested.msrs.pinbased_ctls_high;
break;
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
lowp = &vmx->nested.msrs.procbased_ctls_low;
highp = &vmx->nested.msrs.procbased_ctls_high;
break;
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
lowp = &vmx->nested.msrs.exit_ctls_low;
highp = &vmx->nested.msrs.exit_ctls_high;
break;
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
lowp = &vmx->nested.msrs.entry_ctls_low;
highp = &vmx->nested.msrs.entry_ctls_high;
break;
case MSR_IA32_VMX_PROCBASED_CTLS2:
lowp = &vmx->nested.msrs.secondary_ctls_low;
highp = &vmx->nested.msrs.secondary_ctls_high;
break;
default:
BUG();
}
supported = vmx_control_msr(*lowp, *highp);
/* Check must-be-1 bits are still 1. */
if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
return -EINVAL;
/* Check must-be-0 bits are still 0. */
if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
return -EINVAL;
*lowp = data;
*highp = data >> 32;
return 0;
}
static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
{
const u64 feature_and_reserved_bits =
/* feature */
BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
/* reserved */
GENMASK_ULL(13, 9) | BIT_ULL(31);
u64 vmx_misc;
vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
vmx->nested.msrs.misc_high);
if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
return -EINVAL;
if ((vmx->nested.msrs.pinbased_ctls_high &
PIN_BASED_VMX_PREEMPTION_TIMER) &&
vmx_misc_preemption_timer_rate(data) !=
vmx_misc_preemption_timer_rate(vmx_misc))
return -EINVAL;
if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
return -EINVAL;
if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
return -EINVAL;
if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
return -EINVAL;
vmx->nested.msrs.misc_low = data;
vmx->nested.msrs.misc_high = data >> 32;
return 0;
}
static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
{
u64 vmx_ept_vpid_cap;
vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
vmx->nested.msrs.vpid_caps);
/* Every bit is either reserved or a feature bit. */
if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
return -EINVAL;
vmx->nested.msrs.ept_caps = data;
vmx->nested.msrs.vpid_caps = data >> 32;
return 0;
}
static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
u64 *msr;
switch (msr_index) {
case MSR_IA32_VMX_CR0_FIXED0:
msr = &vmx->nested.msrs.cr0_fixed0;
break;
case MSR_IA32_VMX_CR4_FIXED0:
msr = &vmx->nested.msrs.cr4_fixed0;
break;
default:
BUG();
}
/*
* 1 bits (which indicates bits which "must-be-1" during VMX operation)
* must be 1 in the restored value.
*/
if (!is_bitwise_subset(data, *msr, -1ULL))
return -EINVAL;
*msr = data;
return 0;
}
/*
* Called when userspace is restoring VMX MSRs.
*
* Returns 0 on success, non-0 otherwise.
*/
int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Don't allow changes to the VMX capability MSRs while the vCPU
* is in VMX operation.
*/
if (vmx->nested.vmxon)
return -EBUSY;
switch (msr_index) {
case MSR_IA32_VMX_BASIC:
return vmx_restore_vmx_basic(vmx, data);
case MSR_IA32_VMX_PINBASED_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS:
case MSR_IA32_VMX_EXIT_CTLS:
case MSR_IA32_VMX_ENTRY_CTLS:
/*
* The "non-true" VMX capability MSRs are generated from the
* "true" MSRs, so we do not support restoring them directly.
*
* If userspace wants to emulate VMX_BASIC[55]=0, userspace
* should restore the "true" MSRs with the must-be-1 bits
* set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
* DEFAULT SETTINGS".
*/
return -EINVAL;
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS2:
return vmx_restore_control_msr(vmx, msr_index, data);
case MSR_IA32_VMX_MISC:
return vmx_restore_vmx_misc(vmx, data);
case MSR_IA32_VMX_CR0_FIXED0:
case MSR_IA32_VMX_CR4_FIXED0:
return vmx_restore_fixed0_msr(vmx, msr_index, data);
case MSR_IA32_VMX_CR0_FIXED1:
case MSR_IA32_VMX_CR4_FIXED1:
/*
* These MSRs are generated based on the vCPU's CPUID, so we
* do not support restoring them directly.
*/
return -EINVAL;
case MSR_IA32_VMX_EPT_VPID_CAP:
return vmx_restore_vmx_ept_vpid_cap(vmx, data);
case MSR_IA32_VMX_VMCS_ENUM:
vmx->nested.msrs.vmcs_enum = data;
return 0;
case MSR_IA32_VMX_VMFUNC:
if (data & ~vmx->nested.msrs.vmfunc_controls)
return -EINVAL;
vmx->nested.msrs.vmfunc_controls = data;
return 0;
default:
/*
* The rest of the VMX capability MSRs do not support restore.
*/
return -EINVAL;
}
}
/* Returns 0 on success, non-0 otherwise. */
int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
{
switch (msr_index) {
case MSR_IA32_VMX_BASIC:
*pdata = msrs->basic;
break;
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
case MSR_IA32_VMX_PINBASED_CTLS:
*pdata = vmx_control_msr(
msrs->pinbased_ctls_low,
msrs->pinbased_ctls_high);
if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS:
*pdata = vmx_control_msr(
msrs->procbased_ctls_low,
msrs->procbased_ctls_high);
if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
case MSR_IA32_VMX_EXIT_CTLS:
*pdata = vmx_control_msr(
msrs->exit_ctls_low,
msrs->exit_ctls_high);
if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
case MSR_IA32_VMX_ENTRY_CTLS:
*pdata = vmx_control_msr(
msrs->entry_ctls_low,
msrs->entry_ctls_high);
if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_MISC:
*pdata = vmx_control_msr(
msrs->misc_low,
msrs->misc_high);
break;
case MSR_IA32_VMX_CR0_FIXED0:
*pdata = msrs->cr0_fixed0;
break;
case MSR_IA32_VMX_CR0_FIXED1:
*pdata = msrs->cr0_fixed1;
break;
case MSR_IA32_VMX_CR4_FIXED0:
*pdata = msrs->cr4_fixed0;
break;
case MSR_IA32_VMX_CR4_FIXED1:
*pdata = msrs->cr4_fixed1;
break;
case MSR_IA32_VMX_VMCS_ENUM:
*pdata = msrs->vmcs_enum;
break;
case MSR_IA32_VMX_PROCBASED_CTLS2:
*pdata = vmx_control_msr(
msrs->secondary_ctls_low,
msrs->secondary_ctls_high);
break;
case MSR_IA32_VMX_EPT_VPID_CAP:
*pdata = msrs->ept_caps |
((u64)msrs->vpid_caps << 32);
break;
case MSR_IA32_VMX_VMFUNC:
*pdata = msrs->vmfunc_controls;
break;
default:
return 1;
}
return 0;
}
/*
* Copy the writable VMCS shadow fields back to the VMCS12, in case they have
* been modified by the L1 guest. Note, "writable" in this context means
* "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
* fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
* VM-exit information fields (which are actually writable if the vCPU is
* configured to support "VMWRITE to any supported field in the VMCS").
*/
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
{
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
struct shadow_vmcs_field field;
unsigned long val;
int i;
if (WARN_ON(!shadow_vmcs))
return;
preempt_disable();
vmcs_load(shadow_vmcs);
for (i = 0; i < max_shadow_read_write_fields; i++) {
field = shadow_read_write_fields[i];
val = __vmcs_readl(field.encoding);
vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
}
vmcs_clear(shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
preempt_enable();
}
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
{
const struct shadow_vmcs_field *fields[] = {
shadow_read_write_fields,
shadow_read_only_fields
};
const int max_fields[] = {
max_shadow_read_write_fields,
max_shadow_read_only_fields
};
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
struct shadow_vmcs_field field;
unsigned long val;
int i, q;
if (WARN_ON(!shadow_vmcs))
return;
vmcs_load(shadow_vmcs);
for (q = 0; q < ARRAY_SIZE(fields); q++) {
for (i = 0; i < max_fields[q]; i++) {
field = fields[q][i];
val = vmcs12_read_any(vmcs12, field.encoding,
field.offset);
__vmcs_writel(field.encoding, val);
}
}
vmcs_clear(shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
}
static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
{
struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
vmcs12->tpr_threshold = evmcs->tpr_threshold;
vmcs12->guest_rip = evmcs->guest_rip;
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
vmcs12->guest_rsp = evmcs->guest_rsp;
vmcs12->guest_rflags = evmcs->guest_rflags;
vmcs12->guest_interruptibility_info =
evmcs->guest_interruptibility_info;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
vmcs12->cpu_based_vm_exec_control =
evmcs->cpu_based_vm_exec_control;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
vmcs12->exception_bitmap = evmcs->exception_bitmap;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
vmcs12->vm_entry_intr_info_field =
evmcs->vm_entry_intr_info_field;
vmcs12->vm_entry_exception_error_code =
evmcs->vm_entry_exception_error_code;
vmcs12->vm_entry_instruction_len =
evmcs->vm_entry_instruction_len;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
vmcs12->host_cr0 = evmcs->host_cr0;
vmcs12->host_cr3 = evmcs->host_cr3;
vmcs12->host_cr4 = evmcs->host_cr4;
vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
vmcs12->host_rip = evmcs->host_rip;
vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
vmcs12->host_es_selector = evmcs->host_es_selector;
vmcs12->host_cs_selector = evmcs->host_cs_selector;
vmcs12->host_ss_selector = evmcs->host_ss_selector;
vmcs12->host_ds_selector = evmcs->host_ds_selector;
vmcs12->host_fs_selector = evmcs->host_fs_selector;
vmcs12->host_gs_selector = evmcs->host_gs_selector;
vmcs12->host_tr_selector = evmcs->host_tr_selector;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
vmcs12->pin_based_vm_exec_control =
evmcs->pin_based_vm_exec_control;
vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
vmcs12->secondary_vm_exec_control =
evmcs->secondary_vm_exec_control;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
vmcs12->msr_bitmap = evmcs->msr_bitmap;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
vmcs12->guest_es_base = evmcs->guest_es_base;
vmcs12->guest_cs_base = evmcs->guest_cs_base;
vmcs12->guest_ss_base = evmcs->guest_ss_base;
vmcs12->guest_ds_base = evmcs->guest_ds_base;
vmcs12->guest_fs_base = evmcs->guest_fs_base;
vmcs12->guest_gs_base = evmcs->guest_gs_base;
vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
vmcs12->guest_tr_base = evmcs->guest_tr_base;
vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
vmcs12->guest_es_limit = evmcs->guest_es_limit;
vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
vmcs12->guest_es_selector = evmcs->guest_es_selector;
vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
vmcs12->tsc_offset = evmcs->tsc_offset;
vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
vmcs12->guest_cr0 = evmcs->guest_cr0;
vmcs12->guest_cr3 = evmcs->guest_cr3;
vmcs12->guest_cr4 = evmcs->guest_cr4;
vmcs12->guest_dr7 = evmcs->guest_dr7;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
vmcs12->host_fs_base = evmcs->host_fs_base;
vmcs12->host_gs_base = evmcs->host_gs_base;
vmcs12->host_tr_base = evmcs->host_tr_base;
vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
vmcs12->host_idtr_base = evmcs->host_idtr_base;
vmcs12->host_rsp = evmcs->host_rsp;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
vmcs12->ept_pointer = evmcs->ept_pointer;
vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
vmcs12->guest_pending_dbg_exceptions =
evmcs->guest_pending_dbg_exceptions;
vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
vmcs12->guest_activity_state = evmcs->guest_activity_state;
vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
}
/*
* Not used?
* vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
* vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
* vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
* vmcs12->page_fault_error_code_mask =
* evmcs->page_fault_error_code_mask;
* vmcs12->page_fault_error_code_match =
* evmcs->page_fault_error_code_match;
* vmcs12->cr3_target_count = evmcs->cr3_target_count;
* vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
* vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
* vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
*/
/*
* Read only fields:
* vmcs12->guest_physical_address = evmcs->guest_physical_address;
* vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
* vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
* vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
* vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
* vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
* vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
* vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
* vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
* vmcs12->exit_qualification = evmcs->exit_qualification;
* vmcs12->guest_linear_address = evmcs->guest_linear_address;
*
* Not present in struct vmcs12:
* vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
* vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
* vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
* vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
*/
return 0;
}
static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
{
struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
/*
* Should not be changed by KVM:
*
* evmcs->host_es_selector = vmcs12->host_es_selector;
* evmcs->host_cs_selector = vmcs12->host_cs_selector;
* evmcs->host_ss_selector = vmcs12->host_ss_selector;
* evmcs->host_ds_selector = vmcs12->host_ds_selector;
* evmcs->host_fs_selector = vmcs12->host_fs_selector;
* evmcs->host_gs_selector = vmcs12->host_gs_selector;
* evmcs->host_tr_selector = vmcs12->host_tr_selector;
* evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
* evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
* evmcs->host_cr0 = vmcs12->host_cr0;
* evmcs->host_cr3 = vmcs12->host_cr3;
* evmcs->host_cr4 = vmcs12->host_cr4;
* evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
* evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
* evmcs->host_rip = vmcs12->host_rip;
* evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
* evmcs->host_fs_base = vmcs12->host_fs_base;
* evmcs->host_gs_base = vmcs12->host_gs_base;
* evmcs->host_tr_base = vmcs12->host_tr_base;
* evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
* evmcs->host_idtr_base = vmcs12->host_idtr_base;
* evmcs->host_rsp = vmcs12->host_rsp;
* sync_vmcs02_to_vmcs12() doesn't read these:
* evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
* evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
* evmcs->msr_bitmap = vmcs12->msr_bitmap;
* evmcs->ept_pointer = vmcs12->ept_pointer;
* evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
* evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
* evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
* evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
* evmcs->tpr_threshold = vmcs12->tpr_threshold;
* evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
* evmcs->exception_bitmap = vmcs12->exception_bitmap;
* evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
* evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
* evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
* evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
* evmcs->page_fault_error_code_mask =
* vmcs12->page_fault_error_code_mask;
* evmcs->page_fault_error_code_match =
* vmcs12->page_fault_error_code_match;
* evmcs->cr3_target_count = vmcs12->cr3_target_count;
* evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
* evmcs->tsc_offset = vmcs12->tsc_offset;
* evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
* evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
* evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
* evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
* evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
* evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
* evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
* evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
*
* Not present in struct vmcs12:
* evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
* evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
* evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
* evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
*/
evmcs->guest_es_selector = vmcs12->guest_es_selector;
evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
evmcs->guest_es_limit = vmcs12->guest_es_limit;
evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
evmcs->guest_es_base = vmcs12->guest_es_base;
evmcs->guest_cs_base = vmcs12->guest_cs_base;
evmcs->guest_ss_base = vmcs12->guest_ss_base;
evmcs->guest_ds_base = vmcs12->guest_ds_base;
evmcs->guest_fs_base = vmcs12->guest_fs_base;
evmcs->guest_gs_base = vmcs12->guest_gs_base;
evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
evmcs->guest_tr_base = vmcs12->guest_tr_base;
evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
evmcs->guest_pending_dbg_exceptions =
vmcs12->guest_pending_dbg_exceptions;
evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
evmcs->guest_activity_state = vmcs12->guest_activity_state;
evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
evmcs->guest_cr0 = vmcs12->guest_cr0;
evmcs->guest_cr3 = vmcs12->guest_cr3;
evmcs->guest_cr4 = vmcs12->guest_cr4;
evmcs->guest_dr7 = vmcs12->guest_dr7;
evmcs->guest_physical_address = vmcs12->guest_physical_address;
evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
evmcs->exit_qualification = vmcs12->exit_qualification;
evmcs->guest_linear_address = vmcs12->guest_linear_address;
evmcs->guest_rsp = vmcs12->guest_rsp;
evmcs->guest_rflags = vmcs12->guest_rflags;
evmcs->guest_interruptibility_info =
vmcs12->guest_interruptibility_info;
evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
evmcs->vm_entry_exception_error_code =
vmcs12->vm_entry_exception_error_code;
evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
evmcs->guest_rip = vmcs12->guest_rip;
evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
return 0;
}
/*
* This is an equivalent of the nested hypervisor executing the vmptrld
* instruction.
*/
static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
struct kvm_vcpu *vcpu, bool from_launch)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
bool evmcs_gpa_changed = false;
u64 evmcs_gpa;
if (likely(!vmx->nested.enlightened_vmcs_enabled))
return EVMPTRLD_DISABLED;
if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
return EVMPTRLD_DISABLED;
if (unlikely(!vmx->nested.hv_evmcs ||
evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
if (!vmx->nested.hv_evmcs)
vmx->nested.current_vmptr = -1ull;
nested_release_evmcs(vcpu);
if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
&vmx->nested.hv_evmcs_map))
return EVMPTRLD_ERROR;
vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
/*
* Currently, KVM only supports eVMCS version 1
* (== KVM_EVMCS_VERSION) and thus we expect guest to set this
* value to first u32 field of eVMCS which should specify eVMCS
* VersionNumber.
*
* Guest should be aware of supported eVMCS versions by host by
* examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
* expected to set this CPUID leaf according to the value
* returned in vmcs_version from nested_enable_evmcs().
*
* However, it turns out that Microsoft Hyper-V fails to comply
* to their own invented interface: When Hyper-V use eVMCS, it
* just sets first u32 field of eVMCS to revision_id specified
* in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
* which is one of the supported versions specified in
* CPUID.0x4000000A.EAX[0:15].
*
* To overcome Hyper-V bug, we accept here either a supported
* eVMCS version or VMCS12 revision_id as valid values for first
* u32 field of eVMCS.
*/
if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
(vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
nested_release_evmcs(vcpu);
return EVMPTRLD_VMFAIL;
}
vmx->nested.dirty_vmcs12 = true;
vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
evmcs_gpa_changed = true;
/*
* Unlike normal vmcs12, enlightened vmcs12 is not fully
* reloaded from guest's memory (read only fields, fields not
* present in struct hv_enlightened_vmcs, ...). Make sure there
* are no leftovers.
*/
if (from_launch) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
memset(vmcs12, 0, sizeof(*vmcs12));
vmcs12->hdr.revision_id = VMCS12_REVISION;
}
}
/*
* Clean fields data can't be used on VMLAUNCH and when we switch
* between different L2 guests as KVM keeps a single VMCS12 per L1.
*/
if (from_launch || evmcs_gpa_changed)
vmx->nested.hv_evmcs->hv_clean_fields &=
~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
return EVMPTRLD_SUCCEEDED;
}
void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->nested.hv_evmcs) {
copy_vmcs12_to_enlightened(vmx);
/* All fields are clean */
vmx->nested.hv_evmcs->hv_clean_fields |=
HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
} else {
copy_vmcs12_to_shadow(vmx);
}
vmx->nested.need_vmcs12_to_shadow_sync = false;
}
static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
{
struct vcpu_vmx *vmx =
container_of(timer, struct vcpu_vmx, nested.preemption_timer);
vmx->nested.preemption_timer_expired = true;
kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
kvm_vcpu_kick(&vmx->vcpu);
return HRTIMER_NORESTART;
}
static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
{
u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* A timer value of zero is architecturally guaranteed to cause
* a VMExit prior to executing any instructions in the guest.
*/
if (preemption_timeout == 0) {
vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
return;
}
if (vcpu->arch.virtual_tsc_khz == 0)
return;
preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
preemption_timeout *= 1000000;
do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
hrtimer_start(&vmx->nested.preemption_timer,
ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
}
static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
if (vmx->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
return vmcs12->guest_ia32_efer;
else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
else
return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
}
static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
{
/*
* If vmcs02 hasn't been initialized, set the constant vmcs02 state
* according to L0's settings (vmcs12 is irrelevant here). Host
* fields that come from L0 and are not constant, e.g. HOST_CR3,
* will be set as needed prior to VMLAUNCH/VMRESUME.
*/
if (vmx->nested.vmcs02_initialized)
return;
vmx->nested.vmcs02_initialized = true;
/*
* We don't care what the EPTP value is we just need to guarantee
* it's valid so we don't get a false positive when doing early
* consistency checks.
*/
if (enable_ept && nested_early_check)
vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
/* All VMFUNCs are currently emulated through L0 vmexits. */
if (cpu_has_vmx_vmfunc())
vmcs_write64(VM_FUNCTION_CONTROL, 0);
if (cpu_has_vmx_posted_intr())
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
if (cpu_has_vmx_msr_bitmap())
vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
/*
* The PML address never changes, so it is constant in vmcs02.
* Conceptually we want to copy the PML index from vmcs01 here,
* and then back to vmcs01 on nested vmexit. But since we flush
* the log and reset GUEST_PML_INDEX on each vmexit, the PML
* index is also effectively constant in vmcs02.
*/
if (enable_pml) {
vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}
if (cpu_has_vmx_encls_vmexit())
vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
/*
* Set the MSR load/store lists to match L0's settings. Only the
* addresses are constant (for vmcs02), the counts can change based
* on L2's behavior, e.g. switching to/from long mode.
*/
vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
vmx_set_constant_host_state(vmx);
}
static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
struct vmcs12 *vmcs12)
{
prepare_vmcs02_constant_state(vmx);
vmcs_write64(VMCS_LINK_POINTER, -1ull);
if (enable_vpid) {
if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
else
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
}
}
static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
u32 exec_control, vmcs12_exec_ctrl;
u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
prepare_vmcs02_early_rare(vmx, vmcs12);
/*
* PIN CONTROLS
*/
exec_control = vmx_pin_based_exec_ctrl(vmx);
exec_control |= (vmcs12->pin_based_vm_exec_control &
~PIN_BASED_VMX_PREEMPTION_TIMER);
/* Posted interrupts setting is only taken from vmcs12. */
if (nested_cpu_has_posted_intr(vmcs12)) {
vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
vmx->nested.pi_pending = false;
} else {
exec_control &= ~PIN_BASED_POSTED_INTR;
}
pin_controls_set(vmx, exec_control);
/*
* EXEC CONTROLS
*/
exec_control = vmx_exec_control(vmx); /* L0's desires */
exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
exec_control &= ~CPU_BASED_TPR_SHADOW;
exec_control |= vmcs12->cpu_based_vm_exec_control;
vmx->nested.l1_tpr_threshold = -1;
if (exec_control & CPU_BASED_TPR_SHADOW)
vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
#ifdef CONFIG_X86_64
else
exec_control |= CPU_BASED_CR8_LOAD_EXITING |
CPU_BASED_CR8_STORE_EXITING;
#endif
/*
* A vmexit (to either L1 hypervisor or L0 userspace) is always needed
* for I/O port accesses.
*/
exec_control |= CPU_BASED_UNCOND_IO_EXITING;
exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
/*
* This bit will be computed in nested_get_vmcs12_pages, because
* we do not have access to L1's MSR bitmap yet. For now, keep
* the same bit as before, hoping to avoid multiple VMWRITEs that
* only set/clear this bit.
*/
exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
exec_controls_set(vmx, exec_control);
/*
* SECONDARY EXEC CONTROLS
*/
if (cpu_has_secondary_exec_ctrls()) {
exec_control = vmx->secondary_exec_control;
/* Take the following fields only from vmcs12 */
exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_XSAVES |
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_ENABLE_VMFUNC);
if (nested_cpu_has(vmcs12,
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
~SECONDARY_EXEC_ENABLE_PML;
exec_control |= vmcs12_exec_ctrl;
}
/* VMCS shadowing for L2 is emulated for now */
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
/*
* Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
* will not have to rewrite the controls just for this bit.
*/
if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
(vmcs12->guest_cr4 & X86_CR4_UMIP))
exec_control |= SECONDARY_EXEC_DESC;
if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
vmcs_write16(GUEST_INTR_STATUS,
vmcs12->guest_intr_status);
secondary_exec_controls_set(vmx, exec_control);
}
/*
* ENTRY CONTROLS
*
* vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
* are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
* on the related bits (if supported by the CPU) in the hope that
* we can avoid VMWrites during vmx_set_efer().
*/
exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
if (cpu_has_load_ia32_efer()) {
if (guest_efer & EFER_LMA)
exec_control |= VM_ENTRY_IA32E_MODE;
if (guest_efer != host_efer)
exec_control |= VM_ENTRY_LOAD_IA32_EFER;
}
vm_entry_controls_set(vmx, exec_control);
/*
* EXIT CONTROLS
*
* L2->L1 exit controls are emulated - the hardware exit is to L0 so
* we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
* bits may be modified by vmx_set_efer() in prepare_vmcs02().
*/
exec_control = vmx_vmexit_ctrl();
if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
exec_control |= VM_EXIT_LOAD_IA32_EFER;
vm_exit_controls_set(vmx, exec_control);
/*
* Interrupt/Exception Fields
*/
if (vmx->nested.nested_run_pending) {
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
vmcs12->vm_entry_intr_info_field);
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
vmcs12->vm_entry_exception_error_code);
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmcs12->vm_entry_instruction_len);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
vmcs12->guest_interruptibility_info);
vmx->loaded_vmcs->nmi_known_unmasked =
!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
} else {
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
}
}
static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
}
if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
vmcs12->guest_pending_dbg_exceptions);
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
/*
* L1 may access the L2's PDPTR, so save them to construct
* vmcs12
*/
if (enable_ept) {
vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
}
if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
}
if (nested_cpu_has_xsaves(vmcs12))
vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
/*
* Whether page-faults are trapped is determined by a combination of
* 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
* If enable_ept, L0 doesn't care about page faults and we should
* set all of these to L1's desires. However, if !enable_ept, L0 does
* care about (at least some) page faults, and because it is not easy
* (if at all possible?) to merge L0 and L1's desires, we simply ask
* to exit on each and every L2 page fault. This is done by setting
* MASK=MATCH=0 and (see below) EB.PF=1.
* Note that below we don't need special code to set EB.PF beyond the
* "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
* vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
* !enable_ept, EB.PF is 1, so the "or" will always be 1.
*/
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
enable_ept ? vmcs12->page_fault_error_code_mask : 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
enable_ept ? vmcs12->page_fault_error_code_match : 0);
if (cpu_has_vmx_apicv()) {
vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
}
/*
* Make sure the msr_autostore list is up to date before we set the
* count in the vmcs02.
*/
prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
set_cr4_guest_host_mask(vmx);
}
/*
* prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
* L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
* with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
* guest in a way that will both be appropriate to L1's requests, and our
* needs. In addition to modifying the active vmcs (which is vmcs02), this
* function also has additional necessary side-effects, like setting various
* vcpu->arch fields.
* Returns 0 on success, 1 on failure. Invalid state exit qualification code
* is assigned to entry_failure_code on failure.
*/
static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
enum vm_entry_failure_code *entry_failure_code)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
bool load_guest_pdptrs_vmcs12 = false;
if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
prepare_vmcs02_rare(vmx, vmcs12);
vmx->nested.dirty_vmcs12 = false;
load_guest_pdptrs_vmcs12 = !hv_evmcs ||
!(hv_evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
}
if (vmx->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
} else {
kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
}
if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
vmx_set_rflags(vcpu, vmcs12->guest_rflags);
/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
* bitwise-or of what L1 wants to trap for L2, and what we want to
* trap. Note that CR0.TS also needs updating - we do this later.
*/
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
if (vmx->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
vcpu->arch.pat = vmcs12->guest_ia32_pat;
} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
}
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
if (kvm_has_tsc_control)
decache_tsc_multiplier(vmx);
nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
if (nested_cpu_has_ept(vmcs12))
nested_ept_init_mmu_context(vcpu);
/*
* This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
* bits which we consider mandatory enabled.
* The CR0_READ_SHADOW is what L2 should have expected to read given
* the specifications by L1; It's not enough to take
* vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
* have more bits than L1 expected.
*/
vmx_set_cr0(vcpu, vmcs12->guest_cr0);
vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
vmx_set_cr4(vcpu, vmcs12->guest_cr4);
vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
vmx_set_efer(vcpu, vcpu->arch.efer);
/*
* Guest state is invalid and unrestricted guest is disabled,
* which means L1 attempted VMEntry to L2 with invalid state.
* Fail the VMEntry.
*/
if (vmx->emulation_required) {
*entry_failure_code = ENTRY_FAIL_DEFAULT;
return -EINVAL;
}
/* Shadow page tables on either EPT or shadow page tables. */
if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
entry_failure_code))
return -EINVAL;
/*
* Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
* on nested VM-Exit, which can occur without actually running L2 and
* thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
* vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
* transition to HLT instead of running L2.
*/
if (enable_ept)
vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
is_pae_paging(vcpu)) {
vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
}
if (!enable_ept)
vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
vmcs12->guest_ia32_perf_global_ctrl)))
return -EINVAL;
kvm_rsp_write(vcpu, vmcs12->guest_rsp);
kvm_rip_write(vcpu, vmcs12->guest_rip);
return 0;
}
static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
{
if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
nested_cpu_has_virtual_nmis(vmcs12)))
return -EINVAL;
if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
return -EINVAL;
return 0;
}
static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int maxphyaddr = cpuid_maxphyaddr(vcpu);
/* Check for memory type validity */
switch (new_eptp & VMX_EPTP_MT_MASK) {
case VMX_EPTP_MT_UC:
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
return false;
break;
case VMX_EPTP_MT_WB:
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
return false;
break;
default:
return false;
}
/* Page-walk levels validity. */
switch (new_eptp & VMX_EPTP_PWL_MASK) {
case VMX_EPTP_PWL_5:
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
return false;
break;
case VMX_EPTP_PWL_4:
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
return false;
break;
default:
return false;
}
/* Reserved bits should not be set */
if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
return false;
/* AD, if set, should be supported */
if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
return false;
}
return true;
}
/*
* Checks related to VM-Execution Control Fields
*/
static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
vmx->nested.msrs.pinbased_ctls_low,
vmx->nested.msrs.pinbased_ctls_high)) ||
CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
vmx->nested.msrs.procbased_ctls_low,
vmx->nested.msrs.procbased_ctls_high)))
return -EINVAL;
if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
vmx->nested.msrs.secondary_ctls_low,
vmx->nested.msrs.secondary_ctls_high)))
return -EINVAL;
if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
nested_vmx_check_nmi_controls(vmcs12) ||
nested_vmx_check_pml_controls(vcpu, vmcs12) ||
nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
return -EINVAL;
if (!nested_cpu_has_preemption_timer(vmcs12) &&
nested_cpu_has_save_preemption_timer(vmcs12))
return -EINVAL;
if (nested_cpu_has_ept(vmcs12) &&
CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
return -EINVAL;
if (nested_cpu_has_vmfunc(vmcs12)) {
if (CC(vmcs12->vm_function_control &
~vmx->nested.msrs.vmfunc_controls))
return -EINVAL;
if (nested_cpu_has_eptp_switching(vmcs12)) {
if (CC(!nested_cpu_has_ept(vmcs12)) ||
CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
return -EINVAL;
}
}
return 0;
}
/*
* Checks related to VM-Exit Control Fields
*/
static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
vmx->nested.msrs.exit_ctls_low,
vmx->nested.msrs.exit_ctls_high)) ||
CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
return -EINVAL;
return 0;
}
/*
* Checks related to VM-Entry Control Fields
*/
static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
vmx->nested.msrs.entry_ctls_low,
vmx->nested.msrs.entry_ctls_high)))
return -EINVAL;
/*
* From the Intel SDM, volume 3:
* Fields relevant to VM-entry event injection must be set properly.
* These fields are the VM-entry interruption-information field, the
* VM-entry exception error code, and the VM-entry instruction length.
*/
if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
u32 intr_info = vmcs12->vm_entry_intr_info_field;
u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
bool should_have_error_code;
bool urg = nested_cpu_has2(vmcs12,
SECONDARY_EXEC_UNRESTRICTED_GUEST);
bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
/* VM-entry interruption-info field: interruption type */
if (CC(intr_type == INTR_TYPE_RESERVED) ||
CC(intr_type == INTR_TYPE_OTHER_EVENT &&
!nested_cpu_supports_monitor_trap_flag(vcpu)))
return -EINVAL;
/* VM-entry interruption-info field: vector */
if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
return -EINVAL;
/* VM-entry interruption-info field: deliver error code */
should_have_error_code =
intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
x86_exception_has_error_code(vector);
if (CC(has_error_code != should_have_error_code))
return -EINVAL;
/* VM-entry exception error code */
if (CC(has_error_code &&
vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
return -EINVAL;
/* VM-entry interruption-info field: reserved bits */
if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
return -EINVAL;
/* VM-entry instruction length */
switch (intr_type) {
case INTR_TYPE_SOFT_EXCEPTION:
case INTR_TYPE_SOFT_INTR:
case INTR_TYPE_PRIV_SW_EXCEPTION:
if (CC(vmcs12->vm_entry_instruction_len > 15) ||
CC(vmcs12->vm_entry_instruction_len == 0 &&
CC(!nested_cpu_has_zero_length_injection(vcpu))))
return -EINVAL;
}
}
if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
return -EINVAL;
return 0;
}
static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
nested_check_vm_exit_controls(vcpu, vmcs12) ||
nested_check_vm_entry_controls(vcpu, vmcs12))
return -EINVAL;
if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
return nested_evmcs_check_controls(vmcs12);
return 0;
}
static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
bool ia32e;
if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
return -EINVAL;
if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
return -EINVAL;
if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
return -EINVAL;
if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
vmcs12->host_ia32_perf_global_ctrl)))
return -EINVAL;
#ifdef CONFIG_X86_64
ia32e = !!(vcpu->arch.efer & EFER_LMA);
#else
ia32e = false;
#endif
if (ia32e) {
if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
return -EINVAL;
} else {
if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
CC((vmcs12->host_rip) >> 32))
return -EINVAL;
}
if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_cs_selector == 0) ||
CC(vmcs12->host_tr_selector == 0) ||
CC(vmcs12->host_ss_selector == 0 && !ia32e))
return -EINVAL;
if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
return -EINVAL;
/*
* If the load IA32_EFER VM-exit control is 1, bits reserved in the
* IA32_EFER MSR must be 0 in the field for that register. In addition,
* the values of the LMA and LME bits in the field must each be that of
* the host address-space size VM-exit control.
*/
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
return -EINVAL;
}
return 0;
}
static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
int r = 0;
struct vmcs12 *shadow;
struct kvm_host_map map;
if (vmcs12->vmcs_link_pointer == -1ull)
return 0;
if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
return -EINVAL;
if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
return -EINVAL;
shadow = map.hva;
if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
r = -EINVAL;
kvm_vcpu_unmap(vcpu, &map, false);
return r;
}
/*
* Checks related to Guest Non-register State
*/
static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
{
if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
return -EINVAL;
return 0;
}
static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
enum vm_entry_failure_code *entry_failure_code)
{
bool ia32e;
*entry_failure_code = ENTRY_FAIL_DEFAULT;
if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
return -EINVAL;
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
return -EINVAL;
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
return -EINVAL;
if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
return -EINVAL;
}
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
vmcs12->guest_ia32_perf_global_ctrl)))
return -EINVAL;
/*
* If the load IA32_EFER VM-entry control is 1, the following checks
* are performed on the field for the IA32_EFER MSR:
* - Bits reserved in the IA32_EFER MSR must be 0.
* - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
* the IA-32e mode guest VM-exit control. It must also be identical
* to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
* CR0.PG) is 1.
*/
if (to_vmx(vcpu)->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
return -EINVAL;
}
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
(CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
return -EINVAL;
if (nested_check_guest_non_reg_state(vmcs12))
return -EINVAL;
return 0;
}
static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long cr3, cr4;
bool vm_fail;
if (!nested_early_check)
return 0;
if (vmx->msr_autoload.host.nr)
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
if (vmx->msr_autoload.guest.nr)
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
preempt_disable();
vmx_prepare_switch_to_guest(vcpu);
/*
* Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
* which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
* be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
* there is no need to preserve other bits or save/restore the field.
*/
vmcs_writel(GUEST_RFLAGS, 0);
cr3 = __get_current_cr3_fast();
if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
vmcs_writel(HOST_CR3, cr3);
vmx->loaded_vmcs->host_state.cr3 = cr3;
}
cr4 = cr4_read_shadow();
if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
vmcs_writel(HOST_CR4, cr4);
vmx->loaded_vmcs->host_state.cr4 = cr4;
}
asm(
"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
"cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
"je 1f \n\t"
__ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
"mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
"1: \n\t"
"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
/* Check if vmlaunch or vmresume is needed */
"cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
/*
* VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
* RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
* Valid. vmx_vmenter() directly "returns" RFLAGS, and so the
* results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
*/
"call vmx_vmenter\n\t"
CC_SET(be)
: ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
: [HOST_RSP]"r"((unsigned long)HOST_RSP),
[loaded_vmcs]"r"(vmx->loaded_vmcs),
[launched]"i"(offsetof(struct loaded_vmcs, launched)),
[host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
[wordsize]"i"(sizeof(ulong))
: "memory"
);
if (vmx->msr_autoload.host.nr)
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
if (vmx->msr_autoload.guest.nr)
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
if (vm_fail) {
u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
preempt_enable();
trace_kvm_nested_vmenter_failed(
"early hardware check VM-instruction error: ", error);
WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
return 1;
}
/*
* VMExit clears RFLAGS.IF and DR7, even on a consistency check.
*/
local_irq_enable();
if (hw_breakpoint_active())
set_debugreg(__this_cpu_read(cpu_dr7), 7);
preempt_enable();
/*
* A non-failing VMEntry means we somehow entered guest mode with
* an illegal RIP, and that's just the tip of the iceberg. There
* is no telling what memory has been modified or what state has
* been exposed to unknown code. Hitting this all but guarantees
* a (very critical) hardware issue.
*/
WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
VMX_EXIT_REASONS_FAILED_VMENTRY));
return 0;
}
static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_host_map *map;
struct page *page;
u64 hpa;
/*
* hv_evmcs may end up being not mapped after migration (when
* L2 was running), map it here to make sure vmcs12 changes are
* properly reflected.
*/
if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
enum nested_evmptrld_status evmptrld_status =
nested_vmx_handle_enlightened_vmptrld(vcpu, false);
if (evmptrld_status == EVMPTRLD_VMFAIL ||
evmptrld_status == EVMPTRLD_ERROR) {
pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
__func__);
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror =
KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return false;
}
}
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
/*
* Translate L1 physical address to host physical
* address for vmcs02. Keep the page pinned, so this
* physical address remains valid. We keep a reference
* to it so we can release it later.
*/
if (vmx->nested.apic_access_page) { /* shouldn't happen */
kvm_release_page_clean(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = NULL;
}
page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
if (!is_error_page(page)) {
vmx->nested.apic_access_page = page;
hpa = page_to_phys(vmx->nested.apic_access_page);
vmcs_write64(APIC_ACCESS_ADDR, hpa);
} else {
pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
__func__);
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror =
KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return false;
}
}
if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
map = &vmx->nested.virtual_apic_map;
if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
!nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
/*
* The processor will never use the TPR shadow, simply
* clear the bit from the execution control. Such a
* configuration is useless, but it happens in tests.
* For any other configuration, failing the vm entry is
* _not_ what the processor does but it's basically the
* only possibility we have.
*/
exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
} else {
/*
* Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
* force VM-Entry to fail.
*/
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
}
}
if (nested_cpu_has_posted_intr(vmcs12)) {
map = &vmx->nested.pi_desc_map;
if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
vmx->nested.pi_desc =
(struct pi_desc *)(((void *)map->hva) +
offset_in_page(vmcs12->posted_intr_desc_addr));
vmcs_write64(POSTED_INTR_DESC_ADDR,
pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
}
}
if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
else
exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
return true;
}
/*
* Intel's VMX Instruction Reference specifies a common set of prerequisites
* for running VMX instructions (except VMXON, whose prerequisites are
* slightly different). It also specifies what exception to inject otherwise.
* Note that many of these exceptions have priority over VM exits, so they
* don't have to be checked again here.
*/
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
{
if (!to_vmx(vcpu)->nested.vmxon) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 0;
}
if (vmx_get_cpl(vcpu)) {
kvm_inject_gp(vcpu, 0);
return 0;
}
return 1;
}
static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
{
u8 rvi = vmx_get_rvi();
u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
return ((rvi & 0xf0) > (vppr & 0xf0));
}
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12);
/*
* If from_vmentry is false, this is being called from state restore (either RSM
* or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
*
* Returns:
* NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
* NVMX_VMENTRY_VMFAIL: Consistency check VMFail
* NVMX_VMENTRY_VMEXIT: Consistency check VMExit
* NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
*/
enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
bool from_vmentry)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
enum vm_entry_failure_code entry_failure_code;
bool evaluate_pending_interrupts;
u32 exit_reason, failed_index;
if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
kvm_vcpu_flush_tlb_current(vcpu);
evaluate_pending_interrupts = exec_controls_get(vmx) &
(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
if (kvm_mpx_supported() &&
!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
/*
* Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
* nested early checks are disabled. In the event of a "late" VM-Fail,
* i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
* software model to the pre-VMEntry host state. When EPT is disabled,
* GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
* nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
* vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
* the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
* VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
* guaranteed to be overwritten with a shadow CR3 prior to re-entering
* L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
* KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
* pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
* path would need to manually save/restore vmcs01.GUEST_CR3.
*/
if (!enable_ept && !nested_early_check)
vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
prepare_vmcs02_early(vmx, vmcs12);
if (from_vmentry) {
if (unlikely(!nested_get_vmcs12_pages(vcpu)))
return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
if (nested_vmx_check_vmentry_hw(vcpu)) {
vmx_switch_vmcs(vcpu, &vmx->vmcs01);
return NVMX_VMENTRY_VMFAIL;
}
if (nested_vmx_check_guest_state(vcpu, vmcs12,
&entry_failure_code)) {
exit_reason = EXIT_REASON_INVALID_STATE;
vmcs12->exit_qualification = entry_failure_code;
goto vmentry_fail_vmexit;
}
}
enter_guest_mode(vcpu);
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
vcpu->arch.tsc_offset += vmcs12->tsc_offset;
if (prepare_vmcs02(vcpu, vmcs12, &entry_failure_code)) {
exit_reason = EXIT_REASON_INVALID_STATE;
vmcs12->exit_qualification = entry_failure_code;
goto vmentry_fail_vmexit_guest_mode;
}
if (from_vmentry) {
failed_index = nested_vmx_load_msr(vcpu,
vmcs12->vm_entry_msr_load_addr,
vmcs12->vm_entry_msr_load_count);
if (failed_index) {
exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
vmcs12->exit_qualification = failed_index;
goto vmentry_fail_vmexit_guest_mode;
}
} else {
/*
* The MMU is not initialized to point at the right entities yet and
* "get pages" would need to read data from the guest (i.e. we will
* need to perform gpa to hpa translation). Request a call
* to nested_get_vmcs12_pages before the next VM-entry. The MSRs
* have already been set at vmentry time and should not be reset.
*/
kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
}
/*
* If L1 had a pending IRQ/NMI until it executed
* VMLAUNCH/VMRESUME which wasn't delivered because it was
* disallowed (e.g. interrupts disabled), L0 needs to
* evaluate if this pending event should cause an exit from L2
* to L1 or delivered directly to L2 (e.g. In case L1 don't
* intercept EXTERNAL_INTERRUPT).
*
* Usually this would be handled by the processor noticing an
* IRQ/NMI window request, or checking RVI during evaluation of
* pending virtual interrupts. However, this setting was done
* on VMCS01 and now VMCS02 is active instead. Thus, we force L0
* to perform pending event evaluation by requesting a KVM_REQ_EVENT.
*/
if (unlikely(evaluate_pending_interrupts))
kvm_make_request(KVM_REQ_EVENT, vcpu);
/*
* Do not start the preemption timer hrtimer until after we know
* we are successful, so that only nested_vmx_vmexit needs to cancel
* the timer.
*/
vmx->nested.preemption_timer_expired = false;
if (nested_cpu_has_preemption_timer(vmcs12))
vmx_start_preemption_timer(vcpu);
/*
* Note no nested_vmx_succeed or nested_vmx_fail here. At this point
* we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
* returned as far as L1 is concerned. It will only return (and set
* the success flag) when L2 exits (see nested_vmx_vmexit()).
*/
return NVMX_VMENTRY_SUCCESS;
/*
* A failed consistency check that leads to a VMExit during L1's
* VMEnter to L2 is a variation of a normal VMexit, as explained in
* 26.7 "VM-entry failures during or after loading guest state".
*/
vmentry_fail_vmexit_guest_mode:
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
leave_guest_mode(vcpu);
vmentry_fail_vmexit:
vmx_switch_vmcs(vcpu, &vmx->vmcs01);
if (!from_vmentry)
return NVMX_VMENTRY_VMEXIT;
load_vmcs12_host_state(vcpu, vmcs12);
vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
vmx->nested.need_vmcs12_to_shadow_sync = true;
return NVMX_VMENTRY_VMEXIT;
}
/*
* nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
* for running an L2 nested guest.
*/
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
{
struct vmcs12 *vmcs12;
enum nvmx_vmentry_status status;
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
enum nested_evmptrld_status evmptrld_status;
if (!nested_vmx_check_permission(vcpu))
return 1;
evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
if (evmptrld_status == EVMPTRLD_ERROR) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
} else if (evmptrld_status == EVMPTRLD_VMFAIL) {
return nested_vmx_failInvalid(vcpu);
}
if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
return nested_vmx_failInvalid(vcpu);
vmcs12 = get_vmcs12(vcpu);
/*
* Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
* that there *is* a valid VMCS pointer, RFLAGS.CF is set
* rather than RFLAGS.ZF, and no error number is stored to the
* VM-instruction error field.
*/
if (vmcs12->hdr.shadow_vmcs)
return nested_vmx_failInvalid(vcpu);
if (vmx->nested.hv_evmcs) {
copy_enlightened_to_vmcs12(vmx);
/* Enlightened VMCS doesn't have launch state */
vmcs12->launch_state = !launch;
} else if (enable_shadow_vmcs) {
copy_shadow_to_vmcs12(vmx);
}
/*
* The nested entry process starts with enforcing various prerequisites
* on vmcs12 as required by the Intel SDM, and act appropriately when
* they fail: As the SDM explains, some conditions should cause the
* instruction to fail, while others will cause the instruction to seem
* to succeed, but return an EXIT_REASON_INVALID_STATE.
* To speed up the normal (success) code path, we should avoid checking
* for misconfigurations which will anyway be caught by the processor
* when using the merged vmcs02.
*/
if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
return nested_vmx_failValid(vcpu,
VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
if (vmcs12->launch_state == launch)
return nested_vmx_failValid(vcpu,
launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
: VMXERR_VMRESUME_NONLAUNCHED_VMCS);
if (nested_vmx_check_controls(vcpu, vmcs12))
return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
if (nested_vmx_check_host_state(vcpu, vmcs12))
return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
/*
* We're finally done with prerequisite checking, and can start with
* the nested entry.
*/
vmx->nested.nested_run_pending = 1;
status = nested_vmx_enter_non_root_mode(vcpu, true);
if (unlikely(status != NVMX_VMENTRY_SUCCESS))
goto vmentry_failed;
/* Hide L1D cache contents from the nested guest. */
vmx->vcpu.arch.l1tf_flush_l1d = true;
/*
* Must happen outside of nested_vmx_enter_non_root_mode() as it will
* also be used as part of restoring nVMX state for
* snapshot restore (migration).
*
* In this flow, it is assumed that vmcs12 cache was
* trasferred as part of captured nVMX state and should
* therefore not be read from guest memory (which may not
* exist on destination host yet).
*/
nested_cache_shadow_vmcs12(vcpu, vmcs12);
/*
* If we're entering a halted L2 vcpu and the L2 vcpu won't be
* awakened by event injection or by an NMI-window VM-exit or
* by an interrupt-window VM-exit, halt the vcpu.
*/
if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
!(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
!((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
(vmcs12->guest_rflags & X86_EFLAGS_IF))) {
vmx->nested.nested_run_pending = 0;
return kvm_vcpu_halt(vcpu);
}
return 1;
vmentry_failed:
vmx->nested.nested_run_pending = 0;
if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
return 0;
if (status == NVMX_VMENTRY_VMEXIT)
return 1;
WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
}
/*
* On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
* because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
* This function returns the new value we should put in vmcs12.guest_cr0.
* It's not enough to just return the vmcs02 GUEST_CR0. Rather,
* 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
* available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
* didn't trap the bit, because if L1 did, so would L0).
* 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
* been modified by L2, and L1 knows it. So just leave the old value of
* the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
* isn't relevant, because if L0 traps this bit it can set it to anything.
* 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
* changed these bits, and therefore they need to be updated, but L0
* didn't necessarily allow them to be changed in GUEST_CR0 - and rather
* put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
*/
static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
return
/*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
/*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
/*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
vcpu->arch.cr0_guest_owned_bits));
}
static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
return
/*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
/*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
/*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
vcpu->arch.cr4_guest_owned_bits));
}
static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
u32 idt_vectoring;
unsigned int nr;
if (vcpu->arch.exception.injected) {
nr = vcpu->arch.exception.nr;
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
if (kvm_exception_is_soft(nr)) {
vmcs12->vm_exit_instruction_len =
vcpu->arch.event_exit_inst_len;
idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
} else
idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
if (vcpu->arch.exception.has_error_code) {
idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
vmcs12->idt_vectoring_error_code =
vcpu->arch.exception.error_code;
}
vmcs12->idt_vectoring_info_field = idt_vectoring;
} else if (vcpu->arch.nmi_injected) {
vmcs12->idt_vectoring_info_field =
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
} else if (vcpu->arch.interrupt.injected) {
nr = vcpu->arch.interrupt.nr;
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
if (vcpu->arch.interrupt.soft) {
idt_vectoring |= INTR_TYPE_SOFT_INTR;
vmcs12->vm_entry_instruction_len =
vcpu->arch.event_exit_inst_len;
} else
idt_vectoring |= INTR_TYPE_EXT_INTR;
vmcs12->idt_vectoring_info_field = idt_vectoring;
}
}
void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
gfn_t gfn;
/*
* Don't need to mark the APIC access page dirty; it is never
* written to by the CPU during APIC virtualization.
*/
if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
kvm_vcpu_mark_page_dirty(vcpu, gfn);
}
if (nested_cpu_has_posted_intr(vmcs12)) {
gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
kvm_vcpu_mark_page_dirty(vcpu, gfn);
}
}
static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int max_irr;
void *vapic_page;
u16 status;
if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
return;
vmx->nested.pi_pending = false;
if (!pi_test_and_clear_on(vmx->nested.pi_desc))
return;
max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
if (max_irr != 256) {
vapic_page = vmx->nested.virtual_apic_map.hva;
if (!vapic_page)
return;
__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
vapic_page, &max_irr);
status = vmcs_read16(GUEST_INTR_STATUS);
if ((u8)max_irr > ((u8)status & 0xff)) {
status &= ~0xff;
status |= (u8)max_irr;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
nested_mark_vmcs12_pages_dirty(vcpu);
}
static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
unsigned long exit_qual)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned int nr = vcpu->arch.exception.nr;
u32 intr_info = nr | INTR_INFO_VALID_MASK;
if (vcpu->arch.exception.has_error_code) {
vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
}
if (kvm_exception_is_soft(nr))
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
else
intr_info |= INTR_TYPE_HARD_EXCEPTION;
if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
vmx_get_nmi_mask(vcpu))
intr_info |= INTR_INFO_UNBLOCK_NMI;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
}
/*
* Returns true if a debug trap is pending delivery.
*
* In KVM, debug traps bear an exception payload. As such, the class of a #DB
* exception may be inferred from the presence of an exception payload.
*/
static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
{
return vcpu->arch.exception.pending &&
vcpu->arch.exception.nr == DB_VECTOR &&
vcpu->arch.exception.payload;
}
/*
* Certain VM-exits set the 'pending debug exceptions' field to indicate a
* recognized #DB (data or single-step) that has yet to be delivered. Since KVM
* represents these debug traps with a payload that is said to be compatible
* with the 'pending debug exceptions' field, write the payload to the VMCS
* field if a VM-exit is delivered before the debug trap.
*/
static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
{
if (vmx_pending_dbg_trap(vcpu))
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
vcpu->arch.exception.payload);
}
static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
{
return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
to_vmx(vcpu)->nested.preemption_timer_expired;
}
static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long exit_qual;
bool block_nested_events =
vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
bool mtf_pending = vmx->nested.mtf_pending;
struct kvm_lapic *apic = vcpu->arch.apic;
/*
* Clear the MTF state. If a higher priority VM-exit is delivered first,
* this state is discarded.
*/
if (!block_nested_events)
vmx->nested.mtf_pending = false;
if (lapic_in_kernel(vcpu) &&
test_bit(KVM_APIC_INIT, &apic->pending_events)) {
if (block_nested_events)
return -EBUSY;
nested_vmx_update_pending_dbg(vcpu);
clear_bit(KVM_APIC_INIT, &apic->pending_events);
nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
return 0;
}
/*
* Process any exceptions that are not debug traps before MTF.
*/
if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
if (block_nested_events)
return -EBUSY;
if (!nested_vmx_check_exception(vcpu, &exit_qual))
goto no_vmexit;
nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
return 0;
}
if (mtf_pending) {
if (block_nested_events)
return -EBUSY;
nested_vmx_update_pending_dbg(vcpu);
nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
return 0;
}
if (vcpu->arch.exception.pending) {
if (block_nested_events)
return -EBUSY;
if (!nested_vmx_check_exception(vcpu, &exit_qual))
goto no_vmexit;
nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
return 0;
}
if (nested_vmx_preemption_timer_pending(vcpu)) {
if (block_nested_events)
return -EBUSY;
nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
return 0;
}
if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
if (block_nested_events)
return -EBUSY;
goto no_vmexit;
}
if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_nmi(vcpu))
goto no_vmexit;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
NMI_VECTOR | INTR_TYPE_NMI_INTR |
INTR_INFO_VALID_MASK, 0);
/*
* The NMI-triggered VM exit counts as injection:
* clear this one and block further NMIs.
*/
vcpu->arch.nmi_pending = 0;
vmx_set_nmi_mask(vcpu, true);
return 0;
}
if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
if (block_nested_events)
return -EBUSY;
if (!nested_exit_on_intr(vcpu))
goto no_vmexit;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
return 0;
}
no_vmexit:
vmx_complete_nested_posted_interrupt(vcpu);
return 0;
}
static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
{
ktime_t remaining =
hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
u64 value;
if (ktime_to_ns(remaining) <= 0)
return 0;
value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
do_div(value, 1000000);
return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
}
static bool is_vmcs12_ext_field(unsigned long field)
{
switch (field) {
case GUEST_ES_SELECTOR:
case GUEST_CS_SELECTOR:
case GUEST_SS_SELECTOR:
case GUEST_DS_SELECTOR:
case GUEST_FS_SELECTOR:
case GUEST_GS_SELECTOR:
case GUEST_LDTR_SELECTOR:
case GUEST_TR_SELECTOR:
case GUEST_ES_LIMIT:
case GUEST_CS_LIMIT:
case GUEST_SS_LIMIT:
case GUEST_DS_LIMIT:
case GUEST_FS_LIMIT:
case GUEST_GS_LIMIT:
case GUEST_LDTR_LIMIT:
case GUEST_TR_LIMIT:
case GUEST_GDTR_LIMIT:
case GUEST_IDTR_LIMIT:
case GUEST_ES_AR_BYTES:
case GUEST_DS_AR_BYTES:
case GUEST_FS_AR_BYTES:
case GUEST_GS_AR_BYTES:
case GUEST_LDTR_AR_BYTES:
case GUEST_TR_AR_BYTES:
case GUEST_ES_BASE:
case GUEST_CS_BASE:
case GUEST_SS_BASE:
case GUEST_DS_BASE:
case GUEST_FS_BASE:
case GUEST_GS_BASE:
case GUEST_LDTR_BASE:
case GUEST_TR_BASE:
case GUEST_GDTR_BASE:
case GUEST_IDTR_BASE:
case GUEST_PENDING_DBG_EXCEPTIONS:
case GUEST_BNDCFGS:
return true;
default:
break;
}
return false;
}
static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
vmcs12->guest_pending_dbg_exceptions =
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
if (kvm_mpx_supported())
vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
}
static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int cpu;
if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
return;
WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
cpu = get_cpu();
vmx->loaded_vmcs = &vmx->nested.vmcs02;
vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
vmx->loaded_vmcs = &vmx->vmcs01;
vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
put_cpu();
}
/*
* Update the guest state fields of vmcs12 to reflect changes that
* occurred while L2 was running. (The "IA-32e mode guest" bit of the
* VM-entry controls is also updated, since this is really a guest
* state bit.)
*/
static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->nested.hv_evmcs)
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
vmcs12->guest_rsp = kvm_rsp_read(vcpu);
vmcs12->guest_rip = kvm_rip_read(vcpu);
vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
vmcs12->guest_interruptibility_info =
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
else
vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
if (nested_cpu_has_preemption_timer(vmcs12) &&
vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
vmcs12->vmx_preemption_timer_value =
vmx_get_preemption_timer_value(vcpu);
/*
* In some cases (usually, nested EPT), L2 is allowed to change its
* own CR3 without exiting. If it has changed it, we must keep it.
* Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
* by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
*
* Additionally, restore L2's PDPTR to vmcs12.
*/
if (enable_ept) {
vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
}
}
vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
if (nested_cpu_has_vid(vmcs12))
vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
vmcs12->vm_entry_controls =
(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
vmcs12->guest_ia32_efer = vcpu->arch.efer;
}
/*
* prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
* and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
* and this function updates it to reflect the changes to the guest state while
* L2 was running (and perhaps made some exits which were handled directly by L0
* without going back to L1), and to reflect the exit reason.
* Note that we do not have to copy here all VMCS fields, just those that
* could have changed by the L2 guest or the exit - i.e., the guest-state and
* exit-information fields only. Other fields are modified by L1 with VMWRITE,
* which already writes to vmcs12 directly.
*/
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
u32 vm_exit_reason, u32 exit_intr_info,
unsigned long exit_qualification)
{
/* update exit information fields: */
vmcs12->vm_exit_reason = vm_exit_reason;
vmcs12->exit_qualification = exit_qualification;
vmcs12->vm_exit_intr_info = exit_intr_info;
vmcs12->idt_vectoring_info_field = 0;
vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
vmcs12->launch_state = 1;
/* vm_entry_intr_info_field is cleared on exit. Emulate this
* instead of reading the real value. */
vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
/*
* Transfer the event that L0 or L1 may wanted to inject into
* L2 to IDT_VECTORING_INFO_FIELD.
*/
vmcs12_save_pending_event(vcpu, vmcs12);
/*
* According to spec, there's no need to store the guest's
* MSRs if the exit is due to a VM-entry failure that occurs
* during or after loading the guest state. Since this exit
* does not fall in that category, we need to save the MSRs.
*/
if (nested_vmx_store_msr(vcpu,
vmcs12->vm_exit_msr_store_addr,
vmcs12->vm_exit_msr_store_count))
nested_vmx_abort(vcpu,
VMX_ABORT_SAVE_GUEST_MSR_FAIL);
}
/*
* Drop what we picked up for L2 via vmx_complete_interrupts. It is
* preserved above and would only end up incorrectly in L1.
*/
vcpu->arch.nmi_injected = false;
kvm_clear_exception_queue(vcpu);
kvm_clear_interrupt_queue(vcpu);
}
/*
* A part of what we need to when the nested L2 guest exits and we want to
* run its L1 parent, is to reset L1's guest state to the host state specified
* in vmcs12.
* This function is to be called not only on normal nested exit, but also on
* a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
* Failures During or After Loading Guest State").
* This function should be called when the active VMCS is L1's (vmcs01).
*/
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
enum vm_entry_failure_code ignored;
struct kvm_segment seg;
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
vcpu->arch.efer = vmcs12->host_ia32_efer;
else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
vcpu->arch.efer |= (EFER_LMA | EFER_LME);
else
vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
vmx_set_efer(vcpu, vcpu->arch.efer);
kvm_rsp_write(vcpu, vmcs12->host_rsp);
kvm_rip_write(vcpu, vmcs12->host_rip);
vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
vmx_set_interrupt_shadow(vcpu, 0);
/*
* Note that calling vmx_set_cr0 is important, even if cr0 hasn't
* actually changed, because vmx_set_cr0 refers to efer set above.
*
* CR0_GUEST_HOST_MASK is already set in the original vmcs01
* (KVM doesn't change it);
*/
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
vmx_set_cr0(vcpu, vmcs12->host_cr0);
/* Same as above - no reason to call set_cr4_guest_host_mask(). */
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
vmx_set_cr4(vcpu, vmcs12->host_cr4);
nested_ept_uninit_mmu_context(vcpu);
/*
* Only PDPTE load can fail as the value of cr3 was checked on entry and
* couldn't have changed.
*/
if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &ignored))
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
if (!enable_ept)
vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
vmcs_write64(GUEST_BNDCFGS, 0);
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
vcpu->arch.pat = vmcs12->host_ia32_pat;
}
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
vmcs12->host_ia32_perf_global_ctrl));
/* Set L1 segment info according to Intel SDM
27.5.2 Loading Host Segment and Descriptor-Table Registers */
seg = (struct kvm_segment) {
.base = 0,
.limit = 0xFFFFFFFF,
.selector = vmcs12->host_cs_selector,
.type = 11,
.present = 1,
.s = 1,
.g = 1
};
if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
seg.l = 1;
else
seg.db = 1;
vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
seg = (struct kvm_segment) {
.base = 0,
.limit = 0xFFFFFFFF,
.type = 3,
.present = 1,
.s = 1,
.db = 1,
.g = 1
};
seg.selector = vmcs12->host_ds_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
seg.selector = vmcs12->host_es_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
seg.selector = vmcs12->host_ss_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
seg.selector = vmcs12->host_fs_selector;
seg.base = vmcs12->host_fs_base;
vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
seg.selector = vmcs12->host_gs_selector;
seg.base = vmcs12->host_gs_base;
vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
seg = (struct kvm_segment) {
.base = vmcs12->host_tr_base,
.limit = 0x67,
.selector = vmcs12->host_tr_selector,
.type = 11,
.present = 1
};
vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
kvm_set_dr(vcpu, 7, 0x400);
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
if (cpu_has_vmx_msr_bitmap())
vmx_update_msr_bitmap(vcpu);
if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
vmcs12->vm_exit_msr_load_count))
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
}
static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
{
struct shared_msr_entry *efer_msr;
unsigned int i;
if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
return vmcs_read64(GUEST_IA32_EFER);
if (cpu_has_load_ia32_efer())
return host_efer;
for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
return vmx->msr_autoload.guest.val[i].value;
}
efer_msr = find_msr_entry(vmx, MSR_EFER);
if (efer_msr)
return efer_msr->data;
return host_efer;
}
static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmx_msr_entry g, h;
gpa_t gpa;
u32 i, j;
vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
/*
* L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
* as vmcs01.GUEST_DR7 contains a userspace defined value
* and vcpu->arch.dr7 is not squirreled away before the
* nested VMENTER (not worth adding a variable in nested_vmx).
*/
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
kvm_set_dr(vcpu, 7, DR7_FIXED_1);
else
WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
}
/*
* Note that calling vmx_set_{efer,cr0,cr4} is important as they
* handle a variety of side effects to KVM's software model.
*/
vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
nested_ept_uninit_mmu_context(vcpu);
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
/*
* Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
* from vmcs01 (if necessary). The PDPTRs are not loaded on
* VMFail, like everything else we just need to ensure our
* software model is up-to-date.
*/
if (enable_ept && is_pae_paging(vcpu))
ept_save_pdptrs(vcpu);
kvm_mmu_reset_context(vcpu);
if (cpu_has_vmx_msr_bitmap())
vmx_update_msr_bitmap(vcpu);
/*
* This nasty bit of open coding is a compromise between blindly
* loading L1's MSRs using the exit load lists (incorrect emulation
* of VMFail), leaving the nested VM's MSRs in the software model
* (incorrect behavior) and snapshotting the modified MSRs (too
* expensive since the lists are unbound by hardware). For each
* MSR that was (prematurely) loaded from the nested VMEntry load
* list, reload it from the exit load list if it exists and differs
* from the guest value. The intent is to stuff host state as
* silently as possible, not to fully process the exit load list.
*/
for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
pr_debug_ratelimited(
"%s read MSR index failed (%u, 0x%08llx)\n",
__func__, i, gpa);
goto vmabort;
}
for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
pr_debug_ratelimited(
"%s read MSR failed (%u, 0x%08llx)\n",
__func__, j, gpa);
goto vmabort;
}
if (h.index != g.index)
continue;
if (h.value == g.value)
break;
if (nested_vmx_load_msr_check(vcpu, &h)) {
pr_debug_ratelimited(
"%s check failed (%u, 0x%x, 0x%x)\n",
__func__, j, h.index, h.reserved);
goto vmabort;
}
if (kvm_set_msr(vcpu, h.index, h.value)) {
pr_debug_ratelimited(
"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
__func__, j, h.index, h.value);
goto vmabort;
}
}
}
return;
vmabort:
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
}
/*
* Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
* and modify vmcs12 to make it see what it would expect to see there if
* L2 was its real guest. Must only be called when in L2 (is_guest_mode())
*/
void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
u32 exit_intr_info, unsigned long exit_qualification)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
/* trying to cancel vmlaunch/vmresume is a bug */
WARN_ON_ONCE(vmx->nested.nested_run_pending);
/* Service the TLB flush request for L2 before switching to L1. */
if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
kvm_vcpu_flush_tlb_current(vcpu);
leave_guest_mode(vcpu);
if (nested_cpu_has_preemption_timer(vmcs12))
hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
if (likely(!vmx->fail)) {
sync_vmcs02_to_vmcs12(vcpu, vmcs12);
if (vm_exit_reason != -1)
prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
exit_intr_info, exit_qualification);
/*
* Must happen outside of sync_vmcs02_to_vmcs12() as it will
* also be used to capture vmcs12 cache as part of
* capturing nVMX state for snapshot (migration).
*
* Otherwise, this flush will dirty guest memory at a
* point it is already assumed by user-space to be
* immutable.
*/
nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
} else {
/*
* The only expected VM-instruction error is "VM entry with
* invalid control field(s)." Anything else indicates a
* problem with L0. And we should never get here with a
* VMFail of any type if early consistency checks are enabled.
*/
WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
VMXERR_ENTRY_INVALID_CONTROL_FIELD);
WARN_ON_ONCE(nested_early_check);
}
vmx_switch_vmcs(vcpu, &vmx->vmcs01);
/* Update any VMCS fields that might have changed while L2 ran */
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
if (vmx->nested.l1_tpr_threshold != -1)
vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
if (kvm_has_tsc_control)
decache_tsc_multiplier(vmx);
if (vmx->nested.change_vmcs01_virtual_apic_mode) {
vmx->nested.change_vmcs01_virtual_apic_mode = false;
vmx_set_virtual_apic_mode(vcpu);
}
/* Unpin physical memory we referred to in vmcs02 */
if (vmx->nested.apic_access_page) {
kvm_release_page_clean(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = NULL;
}
kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
vmx->nested.pi_desc = NULL;
if (vmx->nested.reload_vmcs01_apic_access_page) {
vmx->nested.reload_vmcs01_apic_access_page = false;
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
}
if ((vm_exit_reason != -1) &&
(enable_shadow_vmcs || vmx->nested.hv_evmcs))
vmx->nested.need_vmcs12_to_shadow_sync = true;
/* in case we halted in L2 */
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
if (likely(!vmx->fail)) {
if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
nested_exit_intr_ack_set(vcpu)) {
int irq = kvm_cpu_get_interrupt(vcpu);
WARN_ON(irq < 0);
vmcs12->vm_exit_intr_info = irq |
INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
}
if (vm_exit_reason != -1)
trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
vmcs12->exit_qualification,
vmcs12->idt_vectoring_info_field,
vmcs12->vm_exit_intr_info,
vmcs12->vm_exit_intr_error_code,
KVM_ISA_VMX);
load_vmcs12_host_state(vcpu, vmcs12);
return;
}
/*
* After an early L2 VM-entry failure, we're now back
* in L1 which thinks it just finished a VMLAUNCH or
* VMRESUME instruction, so we need to set the failure
* flag and the VM-instruction error field of the VMCS
* accordingly, and skip the emulated instruction.
*/
(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
/*
* Restore L1's host state to KVM's software model. We're here
* because a consistency check was caught by hardware, which
* means some amount of guest state has been propagated to KVM's
* model and needs to be unwound to the host's state.
*/
nested_vmx_restore_host_state(vcpu);
vmx->fail = 0;
}
/*
* Decode the memory-address operand of a vmx instruction, as recorded on an
* exit caused by such an instruction (run by a guest hypervisor).
* On success, returns 0. When the operand is invalid, returns 1 and throws
* #UD, #GP, or #SS.
*/
int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
{
gva_t off;
bool exn;
struct kvm_segment s;
/*
* According to Vol. 3B, "Information for VM Exits Due to Instruction
* Execution", on an exit, vmx_instruction_info holds most of the
* addressing components of the operand. Only the displacement part
* is put in exit_qualification (see 3B, "Basic VM-Exit Information").
* For how an actual address is calculated from all these components,
* refer to Vol. 1, "Operand Addressing".
*/
int scaling = vmx_instruction_info & 3;
int addr_size = (vmx_instruction_info >> 7) & 7;
bool is_reg = vmx_instruction_info & (1u << 10);
int seg_reg = (vmx_instruction_info >> 15) & 7;
int index_reg = (vmx_instruction_info >> 18) & 0xf;
bool index_is_valid = !(vmx_instruction_info & (1u << 22));
int base_reg = (vmx_instruction_info >> 23) & 0xf;
bool base_is_valid = !(vmx_instruction_info & (1u << 27));
if (is_reg) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
/* Addr = segment_base + offset */
/* offset = base + [index * scale] + displacement */
off = exit_qualification; /* holds the displacement */
if (addr_size == 1)
off = (gva_t)sign_extend64(off, 31);
else if (addr_size == 0)
off = (gva_t)sign_extend64(off, 15);
if (base_is_valid)
off += kvm_register_read(vcpu, base_reg);
if (index_is_valid)
off += kvm_register_read(vcpu, index_reg) << scaling;
vmx_get_segment(vcpu, &s, seg_reg);
/*
* The effective address, i.e. @off, of a memory operand is truncated
* based on the address size of the instruction. Note that this is
* the *effective address*, i.e. the address prior to accounting for
* the segment's base.
*/
if (addr_size == 1) /* 32 bit */
off &= 0xffffffff;
else if (addr_size == 0) /* 16 bit */
off &= 0xffff;
/* Checks for #GP/#SS exceptions. */
exn = false;
if (is_long_mode(vcpu)) {
/*
* The virtual/linear address is never truncated in 64-bit
* mode, e.g. a 32-bit address size can yield a 64-bit virtual
* address when using FS/GS with a non-zero base.
*/
if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
*ret = s.base + off;
else
*ret = off;
/* Long mode: #GP(0)/#SS(0) if the memory address is in a
* non-canonical form. This is the only check on the memory
* destination for long mode!
*/
exn = is_noncanonical_address(*ret, vcpu);
} else {
/*
* When not in long mode, the virtual/linear address is
* unconditionally truncated to 32 bits regardless of the
* address size.
*/
*ret = (s.base + off) & 0xffffffff;
/* Protected mode: apply checks for segment validity in the
* following order:
* - segment type check (#GP(0) may be thrown)
* - usability check (#GP(0)/#SS(0))
* - limit check (#GP(0)/#SS(0))
*/
if (wr)
/* #GP(0) if the destination operand is located in a
* read-only data segment or any code segment.
*/
exn = ((s.type & 0xa) == 0 || (s.type & 8));
else
/* #GP(0) if the source operand is located in an
* execute-only code segment
*/
exn = ((s.type & 0xa) == 8);
if (exn) {
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return 1;
}
/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
*/
exn = (s.unusable != 0);
/*
* Protected mode: #GP(0)/#SS(0) if the memory operand is
* outside the segment limit. All CPUs that support VMX ignore
* limit checks for flat segments, i.e. segments with base==0,
* limit==0xffffffff and of type expand-up data or code.
*/
if (!(s.base == 0 && s.limit == 0xffffffff &&
((s.type & 8) || !(s.type & 4))))
exn = exn || ((u64)off + len - 1 > s.limit);
}
if (exn) {
kvm_queue_exception_e(vcpu,
seg_reg == VCPU_SREG_SS ?
SS_VECTOR : GP_VECTOR,
0);
return 1;
}
return 0;
}
void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx;
if (!nested_vmx_allowed(vcpu))
return;
vmx = to_vmx(vcpu);
if (kvm_x86_ops.pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
vmx->nested.msrs.entry_ctls_high |=
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
vmx->nested.msrs.exit_ctls_high |=
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
} else {
vmx->nested.msrs.entry_ctls_high &=
~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
vmx->nested.msrs.exit_ctls_high &=
~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
}
}
static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
{
gva_t gva;
struct x86_exception e;
if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
vmcs_read32(VMX_INSTRUCTION_INFO), false,
sizeof(*vmpointer), &gva))
return 1;
if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
kvm_inject_emulated_page_fault(vcpu, &e);
return 1;
}
return 0;
}
/*
* Allocate a shadow VMCS and associate it with the currently loaded
* VMCS, unless such a shadow VMCS already exists. The newly allocated
* VMCS is also VMCLEARed, so that it is ready for use.
*/
static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
/*
* We should allocate a shadow vmcs for vmcs01 only when L1
* executes VMXON and free it when L1 executes VMXOFF.
* As it is invalid to execute VMXON twice, we shouldn't reach
* here when vmcs01 already have an allocated shadow vmcs.
*/
WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
if (!loaded_vmcs->shadow_vmcs) {
loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
if (loaded_vmcs->shadow_vmcs)
vmcs_clear(loaded_vmcs->shadow_vmcs);
}
return loaded_vmcs->shadow_vmcs;
}
static int enter_vmx_operation(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int r;
r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
if (r < 0)
goto out_vmcs02;
vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
if (!vmx->nested.cached_vmcs12)
goto out_cached_vmcs12;
vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
if (!vmx->nested.cached_shadow_vmcs12)
goto out_cached_shadow_vmcs12;
if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
goto out_shadow_vmcs;
hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_PINNED);
vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
vmx->nested.vpid02 = allocate_vpid();
vmx->nested.vmcs02_initialized = false;
vmx->nested.vmxon = true;
if (vmx_pt_mode_is_host_guest()) {
vmx->pt_desc.guest.ctl = 0;
pt_update_intercept_for_msr(vmx);
}
return 0;
out_shadow_vmcs:
kfree(vmx->nested.cached_shadow_vmcs12);
out_cached_shadow_vmcs12:
kfree(vmx->nested.cached_vmcs12);
out_cached_vmcs12:
free_loaded_vmcs(&vmx->nested.vmcs02);
out_vmcs02:
return -ENOMEM;
}
/*
* Emulate the VMXON instruction.
* Currently, we just remember that VMX is active, and do not save or even
* inspect the argument to VMXON (the so-called "VMXON pointer") because we
* do not currently need to store anything in that guest-allocated memory
* region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
* argument is different from the VMXON pointer (which the spec says they do).
*/
static int handle_vmon(struct kvm_vcpu *vcpu)
{
int ret;
gpa_t vmptr;
uint32_t revision;
struct vcpu_vmx *vmx = to_vmx(vcpu);
const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
/*
* The Intel VMX Instruction Reference lists a bunch of bits that are
* prerequisite to running VMXON, most notably cr4.VMXE must be set to
* 1 (see vmx_set_cr4() for when we allow the guest to set this).
* Otherwise, we should fail with #UD. But most faulting conditions
* have already been checked by hardware, prior to the VM-exit for
* VMXON. We do test guest cr4.VMXE because processor CR4 always has
* that bit set to 1 in non-root mode.
*/
if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
/* CPL=0 must be checked manually. */
if (vmx_get_cpl(vcpu)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
if (vmx->nested.vmxon)
return nested_vmx_failValid(vcpu,
VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
!= VMXON_NEEDED_FEATURES) {
kvm_inject_gp(vcpu, 0);
return 1;
}
if (nested_vmx_get_vmptr(vcpu, &vmptr))
return 1;
/*
* SDM 3: 24.11.5
* The first 4 bytes of VMXON region contain the supported
* VMCS revision identifier
*
* Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
* which replaces physical address width with 32
*/
if (!page_address_valid(vcpu, vmptr))
return nested_vmx_failInvalid(vcpu);
if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
revision != VMCS12_REVISION)
return nested_vmx_failInvalid(vcpu);
vmx->nested.vmxon_ptr = vmptr;
ret = enter_vmx_operation(vcpu);
if (ret)
return ret;
return nested_vmx_succeed(vcpu);
}
static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->nested.current_vmptr == -1ull)
return;
copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
if (enable_shadow_vmcs) {
/* copy to memory all shadowed fields in case
they were modified */
copy_shadow_to_vmcs12(vmx);
vmx_disable_shadow_vmcs(vmx);
}
vmx->nested.posted_intr_nv = -1;
/* Flush VMCS12 to guest memory */
kvm_vcpu_write_guest_page(vcpu,
vmx->nested.current_vmptr >> PAGE_SHIFT,
vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
vmx->nested.current_vmptr = -1ull;
}
/* Emulate the VMXOFF instruction */
static int handle_vmoff(struct kvm_vcpu *vcpu)
{
if (!nested_vmx_check_permission(vcpu))
return 1;
free_nested(vcpu);
/* Process a latched INIT during time CPU was in VMX operation */
kvm_make_request(KVM_REQ_EVENT, vcpu);
return nested_vmx_succeed(vcpu);
}
/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 zero = 0;
gpa_t vmptr;
u64 evmcs_gpa;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (nested_vmx_get_vmptr(vcpu, &vmptr))
return 1;
if (!page_address_valid(vcpu, vmptr))
return nested_vmx_failValid(vcpu,
VMXERR_VMCLEAR_INVALID_ADDRESS);
if (vmptr == vmx->nested.vmxon_ptr)
return nested_vmx_failValid(vcpu,
VMXERR_VMCLEAR_VMXON_POINTER);
/*
* When Enlightened VMEntry is enabled on the calling CPU we treat
* memory area pointer by vmptr as Enlightened VMCS (as there's no good
* way to distinguish it from VMCS12) and we must not corrupt it by
* writing to the non-existent 'launch_state' field. The area doesn't
* have to be the currently active EVMCS on the calling CPU and there's
* nothing KVM has to do to transition it from 'active' to 'non-active'
* state. It is possible that the area will stay mapped as
* vmx->nested.hv_evmcs but this shouldn't be a problem.
*/
if (likely(!vmx->nested.enlightened_vmcs_enabled ||
!nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
if (vmptr == vmx->nested.current_vmptr)
nested_release_vmcs12(vcpu);
kvm_vcpu_write_guest(vcpu,
vmptr + offsetof(struct vmcs12,
launch_state),
&zero, sizeof(zero));
}
return nested_vmx_succeed(vcpu);
}
/* Emulate the VMLAUNCH instruction */
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
{
return nested_vmx_run(vcpu, true);
}
/* Emulate the VMRESUME instruction */
static int handle_vmresume(struct kvm_vcpu *vcpu)
{
return nested_vmx_run(vcpu, false);
}
static int handle_vmread(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
: get_vmcs12(vcpu);
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct x86_exception e;
unsigned long field;
u64 value;
gva_t gva = 0;
short offset;
int len;
if (!nested_vmx_check_permission(vcpu))
return 1;
/*
* In VMX non-root operation, when the VMCS-link pointer is -1ull,
* any VMREAD sets the ALU flags for VMfailInvalid.
*/
if (vmx->nested.current_vmptr == -1ull ||
(is_guest_mode(vcpu) &&
get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
return nested_vmx_failInvalid(vcpu);
/* Decode instruction info and find the field to read */
field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
offset = vmcs_field_to_offset(field);
if (offset < 0)
return nested_vmx_failValid(vcpu,
VMXERR_UNSUPPORTED_VMCS_COMPONENT);
if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
/* Read the field, zero-extended to a u64 value */
value = vmcs12_read_any(vmcs12, field, offset);
/*
* Now copy part of this value to register or memory, as requested.
* Note that the number of bits actually copied is 32 or 64 depending
* on the guest's mode (32 or 64 bit), not on the given field's length.
*/
if (instr_info & BIT(10)) {
kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
} else {
len = is_64_bit_mode(vcpu) ? 8 : 4;
if (get_vmx_mem_address(vcpu, exit_qualification,
instr_info, true, len, &gva))
return 1;
/* _system ok, nested_vmx_check_permission has verified cpl=0 */
if (kvm_write_guest_virt_system(vcpu, gva, &value, len, &e)) {
kvm_inject_emulated_page_fault(vcpu, &e);
return 1;
}
}
return nested_vmx_succeed(vcpu);
}
static bool is_shadow_field_rw(unsigned long field)
{
switch (field) {
#define SHADOW_FIELD_RW(x, y) case x:
#include "vmcs_shadow_fields.h"
return true;
default:
break;
}
return false;
}
static bool is_shadow_field_ro(unsigned long field)
{
switch (field) {
#define SHADOW_FIELD_RO(x, y) case x:
#include "vmcs_shadow_fields.h"
return true;
default:
break;
}
return false;
}
static int handle_vmwrite(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
: get_vmcs12(vcpu);
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct x86_exception e;
unsigned long field;
short offset;
gva_t gva;
int len;
/*
* The value to write might be 32 or 64 bits, depending on L1's long
* mode, and eventually we need to write that into a field of several
* possible lengths. The code below first zero-extends the value to 64
* bit (value), and then copies only the appropriate number of
* bits into the vmcs12 field.
*/
u64 value = 0;
if (!nested_vmx_check_permission(vcpu))
return 1;
/*
* In VMX non-root operation, when the VMCS-link pointer is -1ull,
* any VMWRITE sets the ALU flags for VMfailInvalid.
*/
if (vmx->nested.current_vmptr == -1ull ||
(is_guest_mode(vcpu) &&
get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
return nested_vmx_failInvalid(vcpu);
if (instr_info & BIT(10))
value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
else {
len = is_64_bit_mode(vcpu) ? 8 : 4;
if (get_vmx_mem_address(vcpu, exit_qualification,
instr_info, false, len, &gva))
return 1;
if (kvm_read_guest_virt(vcpu, gva, &value, len, &e)) {
kvm_inject_emulated_page_fault(vcpu, &e);
return 1;
}
}
field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
offset = vmcs_field_to_offset(field);
if (offset < 0)
return nested_vmx_failValid(vcpu,
VMXERR_UNSUPPORTED_VMCS_COMPONENT);
/*
* If the vCPU supports "VMWRITE to any supported field in the
* VMCS," then the "read-only" fields are actually read/write.
*/
if (vmcs_field_readonly(field) &&
!nested_cpu_has_vmwrite_any_field(vcpu))
return nested_vmx_failValid(vcpu,
VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
/*
* Ensure vmcs12 is up-to-date before any VMWRITE that dirties
* vmcs12, else we may crush a field or consume a stale value.
*/
if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
/*
* Some Intel CPUs intentionally drop the reserved bits of the AR byte
* fields on VMWRITE. Emulate this behavior to ensure consistent KVM
* behavior regardless of the underlying hardware, e.g. if an AR_BYTE
* field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
* from L1 will return a different value than VMREAD from L2 (L1 sees
* the stripped down value, L2 sees the full value as stored by KVM).
*/
if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
value &= 0x1f0ff;
vmcs12_write_any(vmcs12, field, offset, value);
/*
* Do not track vmcs12 dirty-state if in guest-mode as we actually
* dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
* by L1 without a vmexit are always updated in the vmcs02, i.e. don't
* "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
*/
if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
/*
* L1 can read these fields without exiting, ensure the
* shadow VMCS is up-to-date.
*/
if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
preempt_disable();
vmcs_load(vmx->vmcs01.shadow_vmcs);
__vmcs_writel(field, value);
vmcs_clear(vmx->vmcs01.shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
preempt_enable();
}
vmx->nested.dirty_vmcs12 = true;
}
return nested_vmx_succeed(vcpu);
}
static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
{
vmx->nested.current_vmptr = vmptr;
if (enable_shadow_vmcs) {
secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
vmcs_write64(VMCS_LINK_POINTER,
__pa(vmx->vmcs01.shadow_vmcs));
vmx->nested.need_vmcs12_to_shadow_sync = true;
}
vmx->nested.dirty_vmcs12 = true;
}
/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
gpa_t vmptr;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (nested_vmx_get_vmptr(vcpu, &vmptr))
return 1;
if (!page_address_valid(vcpu, vmptr))
return nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_INVALID_ADDRESS);
if (vmptr == vmx->nested.vmxon_ptr)
return nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_VMXON_POINTER);
/* Forbid normal VMPTRLD if Enlightened version was used */
if (vmx->nested.hv_evmcs)
return 1;
if (vmx->nested.current_vmptr != vmptr) {
struct kvm_host_map map;
struct vmcs12 *new_vmcs12;
if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
/*
* Reads from an unbacked page return all 1s,
* which means that the 32 bits located at the
* given physical address won't match the required
* VMCS12_REVISION identifier.
*/
return nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
}
new_vmcs12 = map.hva;
if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
(new_vmcs12->hdr.shadow_vmcs &&
!nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
kvm_vcpu_unmap(vcpu, &map, false);
return nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
}
nested_release_vmcs12(vcpu);
/*
* Load VMCS12 from guest memory since it is not already
* cached.
*/
memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
kvm_vcpu_unmap(vcpu, &map, false);
set_current_vmptr(vmx, vmptr);
}
return nested_vmx_succeed(vcpu);
}
/* Emulate the VMPTRST instruction */
static int handle_vmptrst(struct kvm_vcpu *vcpu)
{
unsigned long exit_qual = vmx_get_exit_qual(vcpu);
u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
struct x86_exception e;
gva_t gva;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
return 1;
if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
true, sizeof(gpa_t), &gva))
return 1;
/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
sizeof(gpa_t), &e)) {
kvm_inject_emulated_page_fault(vcpu, &e);
return 1;
}
return nested_vmx_succeed(vcpu);
}
#define EPTP_PA_MASK GENMASK_ULL(51, 12)
static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
{
return VALID_PAGE(root_hpa) &&
((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
}
/* Emulate the INVEPT instruction */
static int handle_invept(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vmx_instruction_info, types;
unsigned long type, roots_to_free;
struct kvm_mmu *mmu;
gva_t gva;
struct x86_exception e;
struct {
u64 eptp, gpa;
} operand;
int i;
if (!(vmx->nested.msrs.secondary_ctls_high &
SECONDARY_EXEC_ENABLE_EPT) ||
!(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (!nested_vmx_check_permission(vcpu))
return 1;
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
if (type >= 32 || !(types & (1 << type)))
return nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
/* According to the Intel VMX instruction reference, the memory
* operand is read even if it isn't needed (e.g., for type==global)
*/
if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
vmx_instruction_info, false, sizeof(operand), &gva))
return 1;
if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
kvm_inject_emulated_page_fault(vcpu, &e);
return 1;
}
/*
* Nested EPT roots are always held through guest_mmu,
* not root_mmu.
*/
mmu = &vcpu->arch.guest_mmu;
switch (type) {
case VMX_EPT_EXTENT_CONTEXT:
if (!nested_vmx_check_eptp(vcpu, operand.eptp))
return nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
roots_to_free = 0;
if (nested_ept_root_matches(mmu->root_hpa, mmu->root_pgd,
operand.eptp))
roots_to_free |= KVM_MMU_ROOT_CURRENT;
for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
mmu->prev_roots[i].pgd,
operand.eptp))
roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
}
break;
case VMX_EPT_EXTENT_GLOBAL:
roots_to_free = KVM_MMU_ROOTS_ALL;
break;
default:
BUG();
break;
}
if (roots_to_free)
kvm_mmu_free_roots(vcpu, mmu, roots_to_free);
return nested_vmx_succeed(vcpu);
}
static int handle_invvpid(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vmx_instruction_info;
unsigned long type, types;
gva_t gva;
struct x86_exception e;
struct {
u64 vpid;
u64 gla;
} operand;
u16 vpid02;
if (!(vmx->nested.msrs.secondary_ctls_high &
SECONDARY_EXEC_ENABLE_VPID) ||
!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (!nested_vmx_check_permission(vcpu))
return 1;
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
types = (vmx->nested.msrs.vpid_caps &
VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
if (type >= 32 || !(types & (1 << type)))
return nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
/* according to the intel vmx instruction reference, the memory
* operand is read even if it isn't needed (e.g., for type==global)
*/
if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
vmx_instruction_info, false, sizeof(operand), &gva))
return 1;
if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
kvm_inject_emulated_page_fault(vcpu, &e);
return 1;
}
if (operand.vpid >> 16)
return nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
vpid02 = nested_get_vpid02(vcpu);
switch (type) {
case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
if (!operand.vpid ||
is_noncanonical_address(operand.gla, vcpu))
return nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
vpid_sync_vcpu_addr(vpid02, operand.gla);
break;
case VMX_VPID_EXTENT_SINGLE_CONTEXT:
case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
if (!operand.vpid)
return nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
vpid_sync_context(vpid02);
break;
case VMX_VPID_EXTENT_ALL_CONTEXT:
vpid_sync_context(vpid02);
break;
default:
WARN_ON_ONCE(1);
return kvm_skip_emulated_instruction(vcpu);
}
/*
* Sync the shadow page tables if EPT is disabled, L1 is invalidating
* linear mappings for L2 (tagged with L2's VPID). Free all roots as
* VPIDs are not tracked in the MMU role.
*
* Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
* an MMU when EPT is disabled.
*
* TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
*/
if (!enable_ept)
kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu,
KVM_MMU_ROOTS_ALL);
return nested_vmx_succeed(vcpu);
}
static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
u32 index = kvm_rcx_read(vcpu);
u64 new_eptp;
bool accessed_dirty;
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
if (!nested_cpu_has_eptp_switching(vmcs12) ||
!nested_cpu_has_ept(vmcs12))
return 1;
if (index >= VMFUNC_EPTP_ENTRIES)
return 1;
if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
&new_eptp, index * 8, 8))
return 1;
accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
/*
* If the (L2) guest does a vmfunc to the currently
* active ept pointer, we don't have to do anything else
*/
if (vmcs12->ept_pointer != new_eptp) {
if (!nested_vmx_check_eptp(vcpu, new_eptp))
return 1;
kvm_mmu_unload(vcpu);
mmu->ept_ad = accessed_dirty;
mmu->mmu_role.base.ad_disabled = !accessed_dirty;
vmcs12->ept_pointer = new_eptp;
/*
* TODO: Check what's the correct approach in case
* mmu reload fails. Currently, we just let the next
* reload potentially fail
*/
kvm_mmu_reload(vcpu);
}
return 0;
}
static int handle_vmfunc(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12;
u32 function = kvm_rax_read(vcpu);
/*
* VMFUNC is only supported for nested guests, but we always enable the
* secondary control for simplicity; for non-nested mode, fake that we
* didn't by injecting #UD.
*/
if (!is_guest_mode(vcpu)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
vmcs12 = get_vmcs12(vcpu);
if ((vmcs12->vm_function_control & (1 << function)) == 0)
goto fail;
switch (function) {
case 0:
if (nested_vmx_eptp_switching(vcpu, vmcs12))
goto fail;
break;
default:
goto fail;
}
return kvm_skip_emulated_instruction(vcpu);
fail:
nested_vmx_vmexit(vcpu, vmx->exit_reason,
vmx_get_intr_info(vcpu),
vmx_get_exit_qual(vcpu));
return 1;
}
/*
* Return true if an IO instruction with the specified port and size should cause
* a VM-exit into L1.
*/
bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
int size)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
gpa_t bitmap, last_bitmap;
u8 b;
last_bitmap = (gpa_t)-1;
b = -1;
while (size > 0) {
if (port < 0x8000)
bitmap = vmcs12->io_bitmap_a;
else if (port < 0x10000)
bitmap = vmcs12->io_bitmap_b;
else
return true;
bitmap += (port & 0x7fff) / 8;
if (last_bitmap != bitmap)
if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
return true;
if (b & (1 << (port & 7)))
return true;
port++;
size--;
last_bitmap = bitmap;
}
return false;
}
static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
unsigned long exit_qualification;
unsigned short port;
int size;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
exit_qualification = vmx_get_exit_qual(vcpu);
port = exit_qualification >> 16;
size = (exit_qualification & 7) + 1;
return nested_vmx_check_io_bitmaps(vcpu, port, size);
}
/*
* Return 1 if we should exit from L2 to L1 to handle an MSR access,
* rather than handle it ourselves in L0. I.e., check whether L1 expressed
* disinterest in the current event (read or write a specific MSR) by using an
* MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
*/
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12, u32 exit_reason)
{
u32 msr_index = kvm_rcx_read(vcpu);
gpa_t bitmap;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return true;
/*
* The MSR_BITMAP page is divided into four 1024-byte bitmaps,
* for the four combinations of read/write and low/high MSR numbers.
* First we need to figure out which of the four to use:
*/
bitmap = vmcs12->msr_bitmap;
if (exit_reason == EXIT_REASON_MSR_WRITE)
bitmap += 2048;
if (msr_index >= 0xc0000000) {
msr_index -= 0xc0000000;
bitmap += 1024;
}
/* Then read the msr_index'th bit from this bitmap: */
if (msr_index < 1024*8) {
unsigned char b;
if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
return true;
return 1 & (b >> (msr_index & 7));
} else
return true; /* let L1 handle the wrong parameter */
}
/*
* Return 1 if we should exit from L2 to L1 to handle a CR access exit,
* rather than handle it ourselves in L0. I.e., check if L1 wanted to
* intercept (via guest_host_mask etc.) the current event.
*/
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
int cr = exit_qualification & 15;
int reg;
unsigned long val;
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
reg = (exit_qualification >> 8) & 15;
val = kvm_register_readl(vcpu, reg);
switch (cr) {
case 0:
if (vmcs12->cr0_guest_host_mask &
(val ^ vmcs12->cr0_read_shadow))
return true;
break;
case 3:
if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
return true;
break;
case 4:
if (vmcs12->cr4_guest_host_mask &
(vmcs12->cr4_read_shadow ^ val))
return true;
break;
case 8:
if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
return true;
break;
}
break;
case 2: /* clts */
if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
(vmcs12->cr0_read_shadow & X86_CR0_TS))
return true;
break;
case 1: /* mov from cr */
switch (cr) {
case 3:
if (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_CR3_STORE_EXITING)
return true;
break;
case 8:
if (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_CR8_STORE_EXITING)
return true;
break;
}
break;
case 3: /* lmsw */
/*
* lmsw can change bits 1..3 of cr0, and only set bit 0 of
* cr0. Other attempted changes are ignored, with no exit.
*/
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
if (vmcs12->cr0_guest_host_mask & 0xe &
(val ^ vmcs12->cr0_read_shadow))
return true;
if ((vmcs12->cr0_guest_host_mask & 0x1) &&
!(vmcs12->cr0_read_shadow & 0x1) &&
(val & 0x1))
return true;
break;
}
return false;
}
static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12, gpa_t bitmap)
{
u32 vmx_instruction_info;
unsigned long field;
u8 b;
if (!nested_cpu_has_shadow_vmcs(vmcs12))
return true;
/* Decode instruction info and find the field to access */
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
/* Out-of-range fields always cause a VM exit from L2 to L1 */
if (field >> 15)
return true;
if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
return true;
return 1 & (b >> (field & 7));
}
static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
{
u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
if (nested_cpu_has_mtf(vmcs12))
return true;
/*
* An MTF VM-exit may be injected into the guest by setting the
* interruption-type to 7 (other event) and the vector field to 0. Such
* is the case regardless of the 'monitor trap flag' VM-execution
* control.
*/
return entry_intr_info == (INTR_INFO_VALID_MASK
| INTR_TYPE_OTHER_EVENT);
}
/*
* Return true if L0 wants to handle an exit from L2 regardless of whether or not
* L1 wants the exit. Only call this when in is_guest_mode (L2).
*/
static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
{
u32 intr_info;
switch (exit_reason) {
case EXIT_REASON_EXCEPTION_NMI:
intr_info = vmx_get_intr_info(vcpu);
if (is_nmi(intr_info))
return true;
else if (is_page_fault(intr_info))
return vcpu->arch.apf.host_apf_reason || !enable_ept;
else if (is_debug(intr_info) &&
vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
return true;
else if (is_breakpoint(intr_info) &&
vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
return true;
return false;
case EXIT_REASON_EXTERNAL_INTERRUPT:
return true;
case EXIT_REASON_MCE_DURING_VMENTRY:
return true;
case EXIT_REASON_EPT_VIOLATION:
/*
* L0 always deals with the EPT violation. If nested EPT is
* used, and the nested mmu code discovers that the address is
* missing in the guest EPT table (EPT12), the EPT violation
* will be injected with nested_ept_inject_page_fault()
*/
return true;
case EXIT_REASON_EPT_MISCONFIG:
/*
* L2 never uses directly L1's EPT, but rather L0's own EPT
* table (shadow on EPT) or a merged EPT table that L0 built
* (EPT on EPT). So any problems with the structure of the
* table is L0's fault.
*/
return true;
case EXIT_REASON_PREEMPTION_TIMER:
return true;
case EXIT_REASON_PML_FULL:
/* We emulate PML support to L1. */
return true;
case EXIT_REASON_VMFUNC:
/* VM functions are emulated through L2->L0 vmexits. */
return true;
case EXIT_REASON_ENCLS:
/* SGX is never exposed to L1 */
return true;
default:
break;
}
return false;
}
/*
* Return 1 if L1 wants to intercept an exit from L2. Only call this when in
* is_guest_mode (L2).
*/
static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu, u32 exit_reason)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
u32 intr_info;
switch (exit_reason) {
case EXIT_REASON_EXCEPTION_NMI:
intr_info = vmx_get_intr_info(vcpu);
if (is_nmi(intr_info))
return true;
else if (is_page_fault(intr_info))
return true;
return vmcs12->exception_bitmap &
(1u << (intr_info & INTR_INFO_VECTOR_MASK));
case EXIT_REASON_EXTERNAL_INTERRUPT:
return nested_exit_on_intr(vcpu);
case EXIT_REASON_TRIPLE_FAULT:
return true;
case EXIT_REASON_INTERRUPT_WINDOW:
return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
case EXIT_REASON_NMI_WINDOW:
return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
case EXIT_REASON_TASK_SWITCH:
return true;
case EXIT_REASON_CPUID:
return true;
case EXIT_REASON_HLT:
return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
case EXIT_REASON_INVD:
return true;
case EXIT_REASON_INVLPG:
return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
case EXIT_REASON_RDPMC:
return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
case EXIT_REASON_RDRAND:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
case EXIT_REASON_RDSEED:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
case EXIT_REASON_VMREAD:
return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
vmcs12->vmread_bitmap);
case EXIT_REASON_VMWRITE:
return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
vmcs12->vmwrite_bitmap);
case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
/*
* VMX instructions trap unconditionally. This allows L1 to
* emulate them for its L2 guest, i.e., allows 3-level nesting!
*/
return true;
case EXIT_REASON_CR_ACCESS:
return nested_vmx_exit_handled_cr(vcpu, vmcs12);
case EXIT_REASON_DR_ACCESS:
return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
case EXIT_REASON_IO_INSTRUCTION:
return nested_vmx_exit_handled_io(vcpu, vmcs12);
case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
case EXIT_REASON_MSR_READ:
case EXIT_REASON_MSR_WRITE:
return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
case EXIT_REASON_INVALID_STATE:
return true;
case EXIT_REASON_MWAIT_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
case EXIT_REASON_MONITOR_TRAP_FLAG:
return nested_vmx_exit_handled_mtf(vmcs12);
case EXIT_REASON_MONITOR_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
case EXIT_REASON_PAUSE_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
nested_cpu_has2(vmcs12,
SECONDARY_EXEC_PAUSE_LOOP_EXITING);
case EXIT_REASON_MCE_DURING_VMENTRY:
return true;
case EXIT_REASON_TPR_BELOW_THRESHOLD:
return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
case EXIT_REASON_APIC_ACCESS:
case EXIT_REASON_APIC_WRITE:
case EXIT_REASON_EOI_INDUCED:
/*
* The controls for "virtualize APIC accesses," "APIC-
* register virtualization," and "virtual-interrupt
* delivery" only come from vmcs12.
*/
return true;
case EXIT_REASON_INVPCID:
return
nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
case EXIT_REASON_WBINVD:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
case EXIT_REASON_XSETBV:
return true;
case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
/*
* This should never happen, since it is not possible to
* set XSS to a non-zero value---neither in L1 nor in L2.
* If if it were, XSS would have to be checked against
* the XSS exit bitmap in vmcs12.
*/
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
case EXIT_REASON_UMWAIT:
case EXIT_REASON_TPAUSE:
return nested_cpu_has2(vmcs12,
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
default:
return true;
}
}
/*
* Conditionally reflect a VM-Exit into L1. Returns %true if the VM-Exit was
* reflected into L1.
*/
bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exit_reason = vmx->exit_reason;
unsigned long exit_qual;
u32 exit_intr_info;
WARN_ON_ONCE(vmx->nested.nested_run_pending);
/*
* Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
* has already loaded L2's state.
*/
if (unlikely(vmx->fail)) {
trace_kvm_nested_vmenter_failed(
"hardware VM-instruction error: ",
vmcs_read32(VM_INSTRUCTION_ERROR));
exit_intr_info = 0;
exit_qual = 0;
goto reflect_vmexit;
}
exit_intr_info = vmx_get_intr_info(vcpu);
exit_qual = vmx_get_exit_qual(vcpu);
trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason, exit_qual,
vmx->idt_vectoring_info, exit_intr_info,
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
KVM_ISA_VMX);
/* If L0 (KVM) wants the exit, it trumps L1's desires. */
if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
return false;
/* If L1 doesn't want the exit, handle it in L0. */
if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
return false;
/*
* vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits. For
* EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
* need to be synthesized by querying the in-kernel LAPIC, but external
* interrupts are never reflected to L1 so it's a non-issue.
*/
if ((exit_intr_info &
(INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
(INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
vmcs12->vm_exit_intr_error_code =
vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
}
reflect_vmexit:
nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info, exit_qual);
return true;
}
static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
struct kvm_nested_state __user *user_kvm_nested_state,
u32 user_data_size)
{
struct vcpu_vmx *vmx;
struct vmcs12 *vmcs12;
struct kvm_nested_state kvm_state = {
.flags = 0,
.format = KVM_STATE_NESTED_FORMAT_VMX,
.size = sizeof(kvm_state),
.hdr.vmx.vmxon_pa = -1ull,
.hdr.vmx.vmcs12_pa = -1ull,
};
struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
&user_kvm_nested_state->data.vmx[0];
if (!vcpu)
return kvm_state.size + sizeof(*user_vmx_nested_state);
vmx = to_vmx(vcpu);
vmcs12 = get_vmcs12(vcpu);
if (nested_vmx_allowed(vcpu) &&
(vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
if (vmx_has_valid_vmcs12(vcpu)) {
kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
if (vmx->nested.hv_evmcs)
kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
if (is_guest_mode(vcpu) &&
nested_cpu_has_shadow_vmcs(vmcs12) &&
vmcs12->vmcs_link_pointer != -1ull)
kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
}
if (vmx->nested.smm.vmxon)
kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
if (vmx->nested.smm.guest_mode)
kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
if (is_guest_mode(vcpu)) {
kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
if (vmx->nested.nested_run_pending)
kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
if (vmx->nested.mtf_pending)
kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
}
}
if (user_data_size < kvm_state.size)
goto out;
if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
return -EFAULT;
if (!vmx_has_valid_vmcs12(vcpu))
goto out;
/*
* When running L2, the authoritative vmcs12 state is in the
* vmcs02. When running L1, the authoritative vmcs12 state is
* in the shadow or enlightened vmcs linked to vmcs01, unless
* need_vmcs12_to_shadow_sync is set, in which case, the authoritative
* vmcs12 state is in the vmcs12 already.
*/
if (is_guest_mode(vcpu)) {
sync_vmcs02_to_vmcs12(vcpu, vmcs12);
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
} else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
if (vmx->nested.hv_evmcs)
copy_enlightened_to_vmcs12(vmx);
else if (enable_shadow_vmcs)
copy_shadow_to_vmcs12(vmx);
}
BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
/*
* Copy over the full allocated size of vmcs12 rather than just the size
* of the struct.
*/
if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
return -EFAULT;
if (nested_cpu_has_shadow_vmcs(vmcs12) &&
vmcs12->vmcs_link_pointer != -1ull) {
if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
get_shadow_vmcs12(vcpu), VMCS12_SIZE))
return -EFAULT;
}
out:
return kvm_state.size;
}
/*
* Forcibly leave nested mode in order to be able to reset the VCPU later on.
*/
void vmx_leave_nested(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu)) {
to_vmx(vcpu)->nested.nested_run_pending = 0;
nested_vmx_vmexit(vcpu, -1, 0, 0);
}
free_nested(vcpu);
}
static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
struct kvm_nested_state __user *user_kvm_nested_state,
struct kvm_nested_state *kvm_state)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12;
enum vm_entry_failure_code ignored;
struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
&user_kvm_nested_state->data.vmx[0];
int ret;
if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
return -EINVAL;
if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
if (kvm_state->hdr.vmx.smm.flags)
return -EINVAL;
if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
return -EINVAL;
/*
* KVM_STATE_NESTED_EVMCS used to signal that KVM should
* enable eVMCS capability on vCPU. However, since then
* code was changed such that flag signals vmcs12 should
* be copied into eVMCS in guest memory.
*
* To preserve backwards compatability, allow user
* to set this flag even when there is no VMXON region.
*/
if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
return -EINVAL;
} else {
if (!nested_vmx_allowed(vcpu))
return -EINVAL;
if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
return -EINVAL;
}
if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
return -EINVAL;
if (kvm_state->hdr.vmx.smm.flags &
~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
return -EINVAL;
/*
* SMM temporarily disables VMX, so we cannot be in guest mode,
* nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
* must be zero.
*/
if (is_smm(vcpu) ?
(kvm_state->flags &
(KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
: kvm_state->hdr.vmx.smm.flags)
return -EINVAL;
if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
!(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
return -EINVAL;
if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
return -EINVAL;
vmx_leave_nested(vcpu);
if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
return 0;
vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
ret = enter_vmx_operation(vcpu);
if (ret)
return ret;
/* Empty 'VMXON' state is permitted */
if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
return 0;
if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
!page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
return -EINVAL;
set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
/*
* nested_vmx_handle_enlightened_vmptrld() cannot be called
* directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
* restored yet. EVMCS will be mapped from
* nested_get_vmcs12_pages().
*/
kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
} else {
return -EINVAL;
}
if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
vmx->nested.smm.vmxon = true;
vmx->nested.vmxon = false;
if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
vmx->nested.smm.guest_mode = true;
}
vmcs12 = get_vmcs12(vcpu);
if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
return -EFAULT;
if (vmcs12->hdr.revision_id != VMCS12_REVISION)
return -EINVAL;
if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
return 0;
vmx->nested.nested_run_pending =
!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
vmx->nested.mtf_pending =
!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
ret = -EINVAL;
if (nested_cpu_has_shadow_vmcs(vmcs12) &&
vmcs12->vmcs_link_pointer != -1ull) {
struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
if (kvm_state->size <
sizeof(*kvm_state) +
sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
goto error_guest_mode;
if (copy_from_user(shadow_vmcs12,
user_vmx_nested_state->shadow_vmcs12,
sizeof(*shadow_vmcs12))) {
ret = -EFAULT;
goto error_guest_mode;
}
if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
!shadow_vmcs12->hdr.shadow_vmcs)
goto error_guest_mode;
}
if (nested_vmx_check_controls(vcpu, vmcs12) ||
nested_vmx_check_host_state(vcpu, vmcs12) ||
nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
goto error_guest_mode;
vmx->nested.dirty_vmcs12 = true;
ret = nested_vmx_enter_non_root_mode(vcpu, false);
if (ret)
goto error_guest_mode;
return 0;
error_guest_mode:
vmx->nested.nested_run_pending = 0;
return ret;
}
void nested_vmx_set_vmcs_shadowing_bitmap(void)
{
if (enable_shadow_vmcs) {
vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
}
}
/*
* nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
* returned for the various VMX controls MSRs when nested VMX is enabled.
* The same values should also be used to verify that vmcs12 control fields are
* valid during nested entry from L1 to L2.
* Each of these control msrs has a low and high 32-bit half: A low bit is on
* if the corresponding bit in the (32-bit) control field *must* be on, and a
* bit in the high half is on if the corresponding bit in the control field
* may be on. See also vmx_control_verify().
*/
void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
{
/*
* Note that as a general rule, the high half of the MSRs (bits in
* the control fields which may be 1) should be initialized by the
* intersection of the underlying hardware's MSR (i.e., features which
* can be supported) and the list of features we want to expose -
* because they are known to be properly supported in our code.
* Also, usually, the low half of the MSRs (bits which must be 1) can
* be set to 0, meaning that L1 may turn off any of these bits. The
* reason is that if one of these bits is necessary, it will appear
* in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
* fields of vmcs01 and vmcs02, will turn these bits off - and
* nested_vmx_l1_wants_exit() will not pass related exits to L1.
* These rules have exceptions below.
*/
/* pin-based controls */
rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
msrs->pinbased_ctls_low,
msrs->pinbased_ctls_high);
msrs->pinbased_ctls_low |=
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
msrs->pinbased_ctls_high &=
PIN_BASED_EXT_INTR_MASK |
PIN_BASED_NMI_EXITING |
PIN_BASED_VIRTUAL_NMIS |
(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
msrs->pinbased_ctls_high |=
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
PIN_BASED_VMX_PREEMPTION_TIMER;
/* exit controls */
rdmsr(MSR_IA32_VMX_EXIT_CTLS,
msrs->exit_ctls_low,
msrs->exit_ctls_high);
msrs->exit_ctls_low =
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
msrs->exit_ctls_high &=
#ifdef CONFIG_X86_64
VM_EXIT_HOST_ADDR_SPACE_SIZE |
#endif
VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
msrs->exit_ctls_high |=
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
/* We support free control of debug control saving. */
msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
/* entry controls */
rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
msrs->entry_ctls_low,
msrs->entry_ctls_high);
msrs->entry_ctls_low =
VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
msrs->entry_ctls_high &=
#ifdef CONFIG_X86_64
VM_ENTRY_IA32E_MODE |
#endif
VM_ENTRY_LOAD_IA32_PAT;
msrs->entry_ctls_high |=
(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
/* We support free control of debug control loading. */
msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
/* cpu-based controls */
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
msrs->procbased_ctls_low,
msrs->procbased_ctls_high);
msrs->procbased_ctls_low =
CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
msrs->procbased_ctls_high &=
CPU_BASED_INTR_WINDOW_EXITING |
CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
/*
* We can allow some features even when not supported by the
* hardware. For example, L1 can specify an MSR bitmap - and we
* can use it to avoid exits to L1 - even when L0 runs L2
* without MSR bitmaps.
*/
msrs->procbased_ctls_high |=
CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
CPU_BASED_USE_MSR_BITMAPS;
/* We support free control of CR3 access interception. */
msrs->procbased_ctls_low &=
~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
/*
* secondary cpu-based controls. Do not include those that
* depend on CPUID bits, they are added later by vmx_cpuid_update.
*/
if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
msrs->secondary_ctls_low,
msrs->secondary_ctls_high);
msrs->secondary_ctls_low = 0;
msrs->secondary_ctls_high &=
SECONDARY_EXEC_DESC |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_WBINVD_EXITING |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_RDRAND_EXITING |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_RDSEED_EXITING |
SECONDARY_EXEC_XSAVES;
/*
* We can emulate "VMCS shadowing," even if the hardware
* doesn't support it.
*/
msrs->secondary_ctls_high |=
SECONDARY_EXEC_SHADOW_VMCS;
if (enable_ept) {
/* nested EPT: emulate EPT also to L1 */
msrs->secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_EPT;
msrs->ept_caps =
VMX_EPT_PAGE_WALK_4_BIT |
VMX_EPT_PAGE_WALK_5_BIT |
VMX_EPTP_WB_BIT |
VMX_EPT_INVEPT_BIT |
VMX_EPT_EXECUTE_ONLY_BIT;
msrs->ept_caps &= ept_caps;
msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
VMX_EPT_1GB_PAGE_BIT;
if (enable_ept_ad_bits) {
msrs->secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_PML;
msrs->ept_caps |= VMX_EPT_AD_BIT;
}
}
if (cpu_has_vmx_vmfunc()) {
msrs->secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_VMFUNC;
/*
* Advertise EPTP switching unconditionally
* since we emulate it
*/
if (enable_ept)
msrs->vmfunc_controls =
VMX_VMFUNC_EPTP_SWITCHING;
}
/*
* Old versions of KVM use the single-context version without
* checking for support, so declare that it is supported even
* though it is treated as global context. The alternative is
* not failing the single-context invvpid, and it is worse.
*/
if (enable_vpid) {
msrs->secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_VPID;
msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
VMX_VPID_EXTENT_SUPPORTED_MASK;
}
if (enable_unrestricted_guest)
msrs->secondary_ctls_high |=
SECONDARY_EXEC_UNRESTRICTED_GUEST;
if (flexpriority_enabled)
msrs->secondary_ctls_high |=
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
/* miscellaneous data */
rdmsr(MSR_IA32_VMX_MISC,
msrs->misc_low,
msrs->misc_high);
msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
msrs->misc_low |=
MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
VMX_MISC_ACTIVITY_HLT;
msrs->misc_high = 0;
/*
* This MSR reports some information about VMX support. We
* should return information about the VMX we emulate for the
* guest, and the VMCS structure we give it - not about the
* VMX support of the underlying hardware.
*/
msrs->basic =
VMCS12_REVISION |
VMX_BASIC_TRUE_CTLS |
((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
if (cpu_has_vmx_basic_inout())
msrs->basic |= VMX_BASIC_INOUT;
/*
* These MSRs specify bits which the guest must keep fixed on
* while L1 is in VMXON mode (in L1's root mode, or running an L2).
* We picked the standard core2 setting.
*/
#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
/* These MSRs specify bits which the guest must keep fixed off. */
rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
/* highest index: VMX_PREEMPTION_TIMER_VALUE */
msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
}
void nested_vmx_hardware_unsetup(void)
{
int i;
if (enable_shadow_vmcs) {
for (i = 0; i < VMX_BITMAP_NR; i++)
free_page((unsigned long)vmx_bitmap[i]);
}
}
__init int nested_vmx_hardware_setup(struct kvm_x86_ops *ops,
int (*exit_handlers[])(struct kvm_vcpu *))
{
int i;
if (!cpu_has_vmx_shadow_vmcs())
enable_shadow_vmcs = 0;
if (enable_shadow_vmcs) {
for (i = 0; i < VMX_BITMAP_NR; i++) {
/*
* The vmx_bitmap is not tied to a VM and so should
* not be charged to a memcg.
*/
vmx_bitmap[i] = (unsigned long *)
__get_free_page(GFP_KERNEL);
if (!vmx_bitmap[i]) {
nested_vmx_hardware_unsetup();
return -ENOMEM;
}
}
init_vmcs_shadow_fields();
}
exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff;
exit_handlers[EXIT_REASON_VMON] = handle_vmon;
exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
return 0;
}
struct kvm_x86_nested_ops vmx_nested_ops = {
.check_events = vmx_check_nested_events,
.hv_timer_pending = nested_vmx_preemption_timer_pending,
.get_state = vmx_get_nested_state,
.set_state = vmx_set_nested_state,
.get_vmcs12_pages = nested_get_vmcs12_pages,
.enable_evmcs = nested_enable_evmcs,
.get_evmcs_version = nested_get_evmcs_version,
};