mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-05 10:16:49 +07:00
4bace7344d
1. Rename __rcu_sync_is_idle() to rcu_sync_lockdep_assert() and change it to use rcu_lockdep_assert(). 2. Change rcu_sync_is_idle() to return rsp->gp_state == GP_IDLE unconditonally, this way we can remove the same check from rcu_sync_lockdep_assert() and clearly isolate the debugging code. Note: rcu_sync_enter()->wait_event(gp_state == GP_PASSED) needs another CONFIG_PROVE_RCU check, the same as is done in ->sync(); but this needs some simple preparations in the core RCU code to avoid the code duplication. Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org>
224 lines
6.7 KiB
C
224 lines
6.7 KiB
C
/*
|
|
* RCU-based infrastructure for lightweight reader-writer locking
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, you can access it online at
|
|
* http://www.gnu.org/licenses/gpl-2.0.html.
|
|
*
|
|
* Copyright (c) 2015, Red Hat, Inc.
|
|
*
|
|
* Author: Oleg Nesterov <oleg@redhat.com>
|
|
*/
|
|
|
|
#include <linux/rcu_sync.h>
|
|
#include <linux/sched.h>
|
|
|
|
#ifdef CONFIG_PROVE_RCU
|
|
#define __INIT_HELD(func) .held = func,
|
|
#else
|
|
#define __INIT_HELD(func)
|
|
#endif
|
|
|
|
static const struct {
|
|
void (*sync)(void);
|
|
void (*call)(struct rcu_head *, void (*)(struct rcu_head *));
|
|
void (*wait)(void);
|
|
#ifdef CONFIG_PROVE_RCU
|
|
int (*held)(void);
|
|
#endif
|
|
} gp_ops[] = {
|
|
[RCU_SYNC] = {
|
|
.sync = synchronize_rcu,
|
|
.call = call_rcu,
|
|
.wait = rcu_barrier,
|
|
__INIT_HELD(rcu_read_lock_held)
|
|
},
|
|
[RCU_SCHED_SYNC] = {
|
|
.sync = synchronize_sched,
|
|
.call = call_rcu_sched,
|
|
.wait = rcu_barrier_sched,
|
|
__INIT_HELD(rcu_read_lock_sched_held)
|
|
},
|
|
[RCU_BH_SYNC] = {
|
|
.sync = synchronize_rcu_bh,
|
|
.call = call_rcu_bh,
|
|
.wait = rcu_barrier_bh,
|
|
__INIT_HELD(rcu_read_lock_bh_held)
|
|
},
|
|
};
|
|
|
|
enum { GP_IDLE = 0, GP_PENDING, GP_PASSED };
|
|
enum { CB_IDLE = 0, CB_PENDING, CB_REPLAY };
|
|
|
|
#define rss_lock gp_wait.lock
|
|
|
|
#ifdef CONFIG_PROVE_RCU
|
|
void rcu_sync_lockdep_assert(struct rcu_sync *rsp)
|
|
{
|
|
RCU_LOCKDEP_WARN(!gp_ops[rsp->gp_type].held(),
|
|
"suspicious rcu_sync_is_idle() usage");
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* rcu_sync_init() - Initialize an rcu_sync structure
|
|
* @rsp: Pointer to rcu_sync structure to be initialized
|
|
* @type: Flavor of RCU with which to synchronize rcu_sync structure
|
|
*/
|
|
void rcu_sync_init(struct rcu_sync *rsp, enum rcu_sync_type type)
|
|
{
|
|
memset(rsp, 0, sizeof(*rsp));
|
|
init_waitqueue_head(&rsp->gp_wait);
|
|
rsp->gp_type = type;
|
|
}
|
|
|
|
/**
|
|
* rcu_sync_enter() - Force readers onto slowpath
|
|
* @rsp: Pointer to rcu_sync structure to use for synchronization
|
|
*
|
|
* This function is used by updaters who need readers to make use of
|
|
* a slowpath during the update. After this function returns, all
|
|
* subsequent calls to rcu_sync_is_idle() will return false, which
|
|
* tells readers to stay off their fastpaths. A later call to
|
|
* rcu_sync_exit() re-enables reader slowpaths.
|
|
*
|
|
* When called in isolation, rcu_sync_enter() must wait for a grace
|
|
* period, however, closely spaced calls to rcu_sync_enter() can
|
|
* optimize away the grace-period wait via a state machine implemented
|
|
* by rcu_sync_enter(), rcu_sync_exit(), and rcu_sync_func().
|
|
*/
|
|
void rcu_sync_enter(struct rcu_sync *rsp)
|
|
{
|
|
bool need_wait, need_sync;
|
|
|
|
spin_lock_irq(&rsp->rss_lock);
|
|
need_wait = rsp->gp_count++;
|
|
need_sync = rsp->gp_state == GP_IDLE;
|
|
if (need_sync)
|
|
rsp->gp_state = GP_PENDING;
|
|
spin_unlock_irq(&rsp->rss_lock);
|
|
|
|
BUG_ON(need_wait && need_sync);
|
|
|
|
if (need_sync) {
|
|
gp_ops[rsp->gp_type].sync();
|
|
rsp->gp_state = GP_PASSED;
|
|
wake_up_all(&rsp->gp_wait);
|
|
} else if (need_wait) {
|
|
wait_event(rsp->gp_wait, rsp->gp_state == GP_PASSED);
|
|
} else {
|
|
/*
|
|
* Possible when there's a pending CB from a rcu_sync_exit().
|
|
* Nobody has yet been allowed the 'fast' path and thus we can
|
|
* avoid doing any sync(). The callback will get 'dropped'.
|
|
*/
|
|
BUG_ON(rsp->gp_state != GP_PASSED);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* rcu_sync_func() - Callback function managing reader access to fastpath
|
|
* @rsp: Pointer to rcu_sync structure to use for synchronization
|
|
*
|
|
* This function is passed to one of the call_rcu() functions by
|
|
* rcu_sync_exit(), so that it is invoked after a grace period following the
|
|
* that invocation of rcu_sync_exit(). It takes action based on events that
|
|
* have taken place in the meantime, so that closely spaced rcu_sync_enter()
|
|
* and rcu_sync_exit() pairs need not wait for a grace period.
|
|
*
|
|
* If another rcu_sync_enter() is invoked before the grace period
|
|
* ended, reset state to allow the next rcu_sync_exit() to let the
|
|
* readers back onto their fastpaths (after a grace period). If both
|
|
* another rcu_sync_enter() and its matching rcu_sync_exit() are invoked
|
|
* before the grace period ended, re-invoke call_rcu() on behalf of that
|
|
* rcu_sync_exit(). Otherwise, set all state back to idle so that readers
|
|
* can again use their fastpaths.
|
|
*/
|
|
static void rcu_sync_func(struct rcu_head *rcu)
|
|
{
|
|
struct rcu_sync *rsp = container_of(rcu, struct rcu_sync, cb_head);
|
|
unsigned long flags;
|
|
|
|
BUG_ON(rsp->gp_state != GP_PASSED);
|
|
BUG_ON(rsp->cb_state == CB_IDLE);
|
|
|
|
spin_lock_irqsave(&rsp->rss_lock, flags);
|
|
if (rsp->gp_count) {
|
|
/*
|
|
* A new rcu_sync_begin() has happened; drop the callback.
|
|
*/
|
|
rsp->cb_state = CB_IDLE;
|
|
} else if (rsp->cb_state == CB_REPLAY) {
|
|
/*
|
|
* A new rcu_sync_exit() has happened; requeue the callback
|
|
* to catch a later GP.
|
|
*/
|
|
rsp->cb_state = CB_PENDING;
|
|
gp_ops[rsp->gp_type].call(&rsp->cb_head, rcu_sync_func);
|
|
} else {
|
|
/*
|
|
* We're at least a GP after rcu_sync_exit(); eveybody will now
|
|
* have observed the write side critical section. Let 'em rip!.
|
|
*/
|
|
rsp->cb_state = CB_IDLE;
|
|
rsp->gp_state = GP_IDLE;
|
|
}
|
|
spin_unlock_irqrestore(&rsp->rss_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* rcu_sync_exit() - Allow readers back onto fast patch after grace period
|
|
* @rsp: Pointer to rcu_sync structure to use for synchronization
|
|
*
|
|
* This function is used by updaters who have completed, and can therefore
|
|
* now allow readers to make use of their fastpaths after a grace period
|
|
* has elapsed. After this grace period has completed, all subsequent
|
|
* calls to rcu_sync_is_idle() will return true, which tells readers that
|
|
* they can once again use their fastpaths.
|
|
*/
|
|
void rcu_sync_exit(struct rcu_sync *rsp)
|
|
{
|
|
spin_lock_irq(&rsp->rss_lock);
|
|
if (!--rsp->gp_count) {
|
|
if (rsp->cb_state == CB_IDLE) {
|
|
rsp->cb_state = CB_PENDING;
|
|
gp_ops[rsp->gp_type].call(&rsp->cb_head, rcu_sync_func);
|
|
} else if (rsp->cb_state == CB_PENDING) {
|
|
rsp->cb_state = CB_REPLAY;
|
|
}
|
|
}
|
|
spin_unlock_irq(&rsp->rss_lock);
|
|
}
|
|
|
|
/**
|
|
* rcu_sync_dtor() - Clean up an rcu_sync structure
|
|
* @rsp: Pointer to rcu_sync structure to be cleaned up
|
|
*/
|
|
void rcu_sync_dtor(struct rcu_sync *rsp)
|
|
{
|
|
int cb_state;
|
|
|
|
BUG_ON(rsp->gp_count);
|
|
|
|
spin_lock_irq(&rsp->rss_lock);
|
|
if (rsp->cb_state == CB_REPLAY)
|
|
rsp->cb_state = CB_PENDING;
|
|
cb_state = rsp->cb_state;
|
|
spin_unlock_irq(&rsp->rss_lock);
|
|
|
|
if (cb_state != CB_IDLE) {
|
|
gp_ops[rsp->gp_type].wait();
|
|
BUG_ON(rsp->cb_state != CB_IDLE);
|
|
}
|
|
}
|