linux_dsm_epyc7002/arch/sparc64/kernel/of_device.c
David S. Miller 8c2786cfa6 [SPARC64]: Handle PCI bridges without 'ranges' property.
This fixes the IDE controller not showing up on Netra-T1
systems.

Just like Simba bridges, some PCI bridges can lack the
'ranges' OBP property.  So we handle this similarly to
the existing Simba code:

1) In of_device register address resolving, we push the
   translation to the parent.

2) In PCI device scanning, we interrogate the PCI config
   space registers of the PCI bus device in order to resolve
   the resources, just like the generic Linux PCI probing
   code does.

With much help and testing from Fabio, who also reported
the initial problem.

Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Fabio Massimo Di Nitto <fabbione@ubuntu.com>
2007-06-07 21:59:44 -07:00

1113 lines
24 KiB
C

#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/slab.h>
#include <asm/errno.h>
#include <asm/of_device.h>
/**
* of_match_device - Tell if an of_device structure has a matching
* of_match structure
* @ids: array of of device match structures to search in
* @dev: the of device structure to match against
*
* Used by a driver to check whether an of_device present in the
* system is in its list of supported devices.
*/
const struct of_device_id *of_match_device(const struct of_device_id *matches,
const struct of_device *dev)
{
if (!dev->node)
return NULL;
while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
int match = 1;
if (matches->name[0])
match &= dev->node->name
&& !strcmp(matches->name, dev->node->name);
if (matches->type[0])
match &= dev->node->type
&& !strcmp(matches->type, dev->node->type);
if (matches->compatible[0])
match &= of_device_is_compatible(dev->node,
matches->compatible);
if (match)
return matches;
matches++;
}
return NULL;
}
static int of_platform_bus_match(struct device *dev, struct device_driver *drv)
{
struct of_device * of_dev = to_of_device(dev);
struct of_platform_driver * of_drv = to_of_platform_driver(drv);
const struct of_device_id * matches = of_drv->match_table;
if (!matches)
return 0;
return of_match_device(matches, of_dev) != NULL;
}
struct of_device *of_dev_get(struct of_device *dev)
{
struct device *tmp;
if (!dev)
return NULL;
tmp = get_device(&dev->dev);
if (tmp)
return to_of_device(tmp);
else
return NULL;
}
void of_dev_put(struct of_device *dev)
{
if (dev)
put_device(&dev->dev);
}
static int of_device_probe(struct device *dev)
{
int error = -ENODEV;
struct of_platform_driver *drv;
struct of_device *of_dev;
const struct of_device_id *match;
drv = to_of_platform_driver(dev->driver);
of_dev = to_of_device(dev);
if (!drv->probe)
return error;
of_dev_get(of_dev);
match = of_match_device(drv->match_table, of_dev);
if (match)
error = drv->probe(of_dev, match);
if (error)
of_dev_put(of_dev);
return error;
}
static int of_device_remove(struct device *dev)
{
struct of_device * of_dev = to_of_device(dev);
struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
if (dev->driver && drv->remove)
drv->remove(of_dev);
return 0;
}
static int of_device_suspend(struct device *dev, pm_message_t state)
{
struct of_device * of_dev = to_of_device(dev);
struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
int error = 0;
if (dev->driver && drv->suspend)
error = drv->suspend(of_dev, state);
return error;
}
static int of_device_resume(struct device * dev)
{
struct of_device * of_dev = to_of_device(dev);
struct of_platform_driver * drv = to_of_platform_driver(dev->driver);
int error = 0;
if (dev->driver && drv->resume)
error = drv->resume(of_dev);
return error;
}
void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
{
unsigned long ret = res->start + offset;
struct resource *r;
if (res->flags & IORESOURCE_MEM)
r = request_mem_region(ret, size, name);
else
r = request_region(ret, size, name);
if (!r)
ret = 0;
return (void __iomem *) ret;
}
EXPORT_SYMBOL(of_ioremap);
void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
{
if (res->flags & IORESOURCE_MEM)
release_mem_region((unsigned long) base, size);
else
release_region((unsigned long) base, size);
}
EXPORT_SYMBOL(of_iounmap);
static int node_match(struct device *dev, void *data)
{
struct of_device *op = to_of_device(dev);
struct device_node *dp = data;
return (op->node == dp);
}
struct of_device *of_find_device_by_node(struct device_node *dp)
{
struct device *dev = bus_find_device(&of_bus_type, NULL,
dp, node_match);
if (dev)
return to_of_device(dev);
return NULL;
}
EXPORT_SYMBOL(of_find_device_by_node);
#ifdef CONFIG_PCI
struct bus_type isa_bus_type = {
.name = "isa",
.match = of_platform_bus_match,
.probe = of_device_probe,
.remove = of_device_remove,
.suspend = of_device_suspend,
.resume = of_device_resume,
};
EXPORT_SYMBOL(isa_bus_type);
struct bus_type ebus_bus_type = {
.name = "ebus",
.match = of_platform_bus_match,
.probe = of_device_probe,
.remove = of_device_remove,
.suspend = of_device_suspend,
.resume = of_device_resume,
};
EXPORT_SYMBOL(ebus_bus_type);
#endif
#ifdef CONFIG_SBUS
struct bus_type sbus_bus_type = {
.name = "sbus",
.match = of_platform_bus_match,
.probe = of_device_probe,
.remove = of_device_remove,
.suspend = of_device_suspend,
.resume = of_device_resume,
};
EXPORT_SYMBOL(sbus_bus_type);
#endif
struct bus_type of_bus_type = {
.name = "of",
.match = of_platform_bus_match,
.probe = of_device_probe,
.remove = of_device_remove,
.suspend = of_device_suspend,
.resume = of_device_resume,
};
EXPORT_SYMBOL(of_bus_type);
static inline u64 of_read_addr(const u32 *cell, int size)
{
u64 r = 0;
while (size--)
r = (r << 32) | *(cell++);
return r;
}
static void __init get_cells(struct device_node *dp,
int *addrc, int *sizec)
{
if (addrc)
*addrc = of_n_addr_cells(dp);
if (sizec)
*sizec = of_n_size_cells(dp);
}
/* Max address size we deal with */
#define OF_MAX_ADDR_CELLS 4
struct of_bus {
const char *name;
const char *addr_prop_name;
int (*match)(struct device_node *parent);
void (*count_cells)(struct device_node *child,
int *addrc, int *sizec);
int (*map)(u32 *addr, const u32 *range,
int na, int ns, int pna);
unsigned int (*get_flags)(const u32 *addr);
};
/*
* Default translator (generic bus)
*/
static void of_bus_default_count_cells(struct device_node *dev,
int *addrc, int *sizec)
{
get_cells(dev, addrc, sizec);
}
/* Make sure the least significant 64-bits are in-range. Even
* for 3 or 4 cell values it is a good enough approximation.
*/
static int of_out_of_range(const u32 *addr, const u32 *base,
const u32 *size, int na, int ns)
{
u64 a = of_read_addr(addr, na);
u64 b = of_read_addr(base, na);
if (a < b)
return 1;
b += of_read_addr(size, ns);
if (a >= b)
return 1;
return 0;
}
static int of_bus_default_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
u32 result[OF_MAX_ADDR_CELLS];
int i;
if (ns > 2) {
printk("of_device: Cannot handle size cells (%d) > 2.", ns);
return -EINVAL;
}
if (of_out_of_range(addr, range, range + na + pna, na, ns))
return -EINVAL;
/* Start with the parent range base. */
memcpy(result, range + na, pna * 4);
/* Add in the child address offset. */
for (i = 0; i < na; i++)
result[pna - 1 - i] +=
(addr[na - 1 - i] -
range[na - 1 - i]);
memcpy(addr, result, pna * 4);
return 0;
}
static unsigned int of_bus_default_get_flags(const u32 *addr)
{
return IORESOURCE_MEM;
}
/*
* PCI bus specific translator
*/
static int of_bus_pci_match(struct device_node *np)
{
if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
const char *model = of_get_property(np, "model", NULL);
if (model && !strcmp(model, "SUNW,simba"))
return 0;
/* Do not do PCI specific frobbing if the
* PCI bridge lacks a ranges property. We
* want to pass it through up to the next
* parent as-is, not with the PCI translate
* method which chops off the top address cell.
*/
if (!of_find_property(np, "ranges", NULL))
return 0;
return 1;
}
return 0;
}
static int of_bus_simba_match(struct device_node *np)
{
const char *model = of_get_property(np, "model", NULL);
if (model && !strcmp(model, "SUNW,simba"))
return 1;
/* Treat PCI busses lacking ranges property just like
* simba.
*/
if (!strcmp(np->type, "pci") || !strcmp(np->type, "pciex")) {
if (!of_find_property(np, "ranges", NULL))
return 1;
}
return 0;
}
static int of_bus_simba_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
return 0;
}
static void of_bus_pci_count_cells(struct device_node *np,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 3;
if (sizec)
*sizec = 2;
}
static int of_bus_pci_map(u32 *addr, const u32 *range,
int na, int ns, int pna)
{
u32 result[OF_MAX_ADDR_CELLS];
int i;
/* Check address type match */
if ((addr[0] ^ range[0]) & 0x03000000)
return -EINVAL;
if (of_out_of_range(addr + 1, range + 1, range + na + pna,
na - 1, ns))
return -EINVAL;
/* Start with the parent range base. */
memcpy(result, range + na, pna * 4);
/* Add in the child address offset, skipping high cell. */
for (i = 0; i < na - 1; i++)
result[pna - 1 - i] +=
(addr[na - 1 - i] -
range[na - 1 - i]);
memcpy(addr, result, pna * 4);
return 0;
}
static unsigned int of_bus_pci_get_flags(const u32 *addr)
{
unsigned int flags = 0;
u32 w = addr[0];
switch((w >> 24) & 0x03) {
case 0x01:
flags |= IORESOURCE_IO;
case 0x02: /* 32 bits */
case 0x03: /* 64 bits */
flags |= IORESOURCE_MEM;
}
if (w & 0x40000000)
flags |= IORESOURCE_PREFETCH;
return flags;
}
/*
* SBUS bus specific translator
*/
static int of_bus_sbus_match(struct device_node *np)
{
return !strcmp(np->name, "sbus") ||
!strcmp(np->name, "sbi");
}
static void of_bus_sbus_count_cells(struct device_node *child,
int *addrc, int *sizec)
{
if (addrc)
*addrc = 2;
if (sizec)
*sizec = 1;
}
/*
* FHC/Central bus specific translator.
*
* This is just needed to hard-code the address and size cell
* counts. 'fhc' and 'central' nodes lack the #address-cells and
* #size-cells properties, and if you walk to the root on such
* Enterprise boxes all you'll get is a #size-cells of 2 which is
* not what we want to use.
*/
static int of_bus_fhc_match(struct device_node *np)
{
return !strcmp(np->name, "fhc") ||
!strcmp(np->name, "central");
}
#define of_bus_fhc_count_cells of_bus_sbus_count_cells
/*
* Array of bus specific translators
*/
static struct of_bus of_busses[] = {
/* PCI */
{
.name = "pci",
.addr_prop_name = "assigned-addresses",
.match = of_bus_pci_match,
.count_cells = of_bus_pci_count_cells,
.map = of_bus_pci_map,
.get_flags = of_bus_pci_get_flags,
},
/* SIMBA */
{
.name = "simba",
.addr_prop_name = "assigned-addresses",
.match = of_bus_simba_match,
.count_cells = of_bus_pci_count_cells,
.map = of_bus_simba_map,
.get_flags = of_bus_pci_get_flags,
},
/* SBUS */
{
.name = "sbus",
.addr_prop_name = "reg",
.match = of_bus_sbus_match,
.count_cells = of_bus_sbus_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
/* FHC */
{
.name = "fhc",
.addr_prop_name = "reg",
.match = of_bus_fhc_match,
.count_cells = of_bus_fhc_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
/* Default */
{
.name = "default",
.addr_prop_name = "reg",
.match = NULL,
.count_cells = of_bus_default_count_cells,
.map = of_bus_default_map,
.get_flags = of_bus_default_get_flags,
},
};
static struct of_bus *of_match_bus(struct device_node *np)
{
int i;
for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
if (!of_busses[i].match || of_busses[i].match(np))
return &of_busses[i];
BUG();
return NULL;
}
static int __init build_one_resource(struct device_node *parent,
struct of_bus *bus,
struct of_bus *pbus,
u32 *addr,
int na, int ns, int pna)
{
const u32 *ranges;
unsigned int rlen;
int rone;
ranges = of_get_property(parent, "ranges", &rlen);
if (ranges == NULL || rlen == 0) {
u32 result[OF_MAX_ADDR_CELLS];
int i;
memset(result, 0, pna * 4);
for (i = 0; i < na; i++)
result[pna - 1 - i] =
addr[na - 1 - i];
memcpy(addr, result, pna * 4);
return 0;
}
/* Now walk through the ranges */
rlen /= 4;
rone = na + pna + ns;
for (; rlen >= rone; rlen -= rone, ranges += rone) {
if (!bus->map(addr, ranges, na, ns, pna))
return 0;
}
/* When we miss an I/O space match on PCI, just pass it up
* to the next PCI bridge and/or controller.
*/
if (!strcmp(bus->name, "pci") &&
(addr[0] & 0x03000000) == 0x01000000)
return 0;
return 1;
}
static int __init use_1to1_mapping(struct device_node *pp)
{
/* If this is on the PMU bus, don't try to translate it even
* if a ranges property exists.
*/
if (!strcmp(pp->name, "pmu"))
return 1;
/* If we have a ranges property in the parent, use it. */
if (of_find_property(pp, "ranges", NULL) != NULL)
return 0;
/* If the parent is the dma node of an ISA bus, pass
* the translation up to the root.
*/
if (!strcmp(pp->name, "dma"))
return 0;
/* Similarly for all PCI bridges, if we get this far
* it lacks a ranges property, and this will include
* cases like Simba.
*/
if (!strcmp(pp->type, "pci") || !strcmp(pp->type, "pciex"))
return 0;
return 1;
}
static int of_resource_verbose;
static void __init build_device_resources(struct of_device *op,
struct device *parent)
{
struct of_device *p_op;
struct of_bus *bus;
int na, ns;
int index, num_reg;
const void *preg;
if (!parent)
return;
p_op = to_of_device(parent);
bus = of_match_bus(p_op->node);
bus->count_cells(op->node, &na, &ns);
preg = of_get_property(op->node, bus->addr_prop_name, &num_reg);
if (!preg || num_reg == 0)
return;
/* Convert to num-cells. */
num_reg /= 4;
/* Convert to num-entries. */
num_reg /= na + ns;
/* Prevent overrunning the op->resources[] array. */
if (num_reg > PROMREG_MAX) {
printk(KERN_WARNING "%s: Too many regs (%d), "
"limiting to %d.\n",
op->node->full_name, num_reg, PROMREG_MAX);
num_reg = PROMREG_MAX;
}
for (index = 0; index < num_reg; index++) {
struct resource *r = &op->resource[index];
u32 addr[OF_MAX_ADDR_CELLS];
const u32 *reg = (preg + (index * ((na + ns) * 4)));
struct device_node *dp = op->node;
struct device_node *pp = p_op->node;
struct of_bus *pbus, *dbus;
u64 size, result = OF_BAD_ADDR;
unsigned long flags;
int dna, dns;
int pna, pns;
size = of_read_addr(reg + na, ns);
flags = bus->get_flags(reg);
memcpy(addr, reg, na * 4);
if (use_1to1_mapping(pp)) {
result = of_read_addr(addr, na);
goto build_res;
}
dna = na;
dns = ns;
dbus = bus;
while (1) {
dp = pp;
pp = dp->parent;
if (!pp) {
result = of_read_addr(addr, dna);
break;
}
pbus = of_match_bus(pp);
pbus->count_cells(dp, &pna, &pns);
if (build_one_resource(dp, dbus, pbus, addr,
dna, dns, pna))
break;
dna = pna;
dns = pns;
dbus = pbus;
}
build_res:
memset(r, 0, sizeof(*r));
if (of_resource_verbose)
printk("%s reg[%d] -> %lx\n",
op->node->full_name, index,
result);
if (result != OF_BAD_ADDR) {
if (tlb_type == hypervisor)
result &= 0x0fffffffffffffffUL;
r->start = result;
r->end = result + size - 1;
r->flags = flags;
}
r->name = op->node->name;
}
}
static struct device_node * __init
apply_interrupt_map(struct device_node *dp, struct device_node *pp,
const u32 *imap, int imlen, const u32 *imask,
unsigned int *irq_p)
{
struct device_node *cp;
unsigned int irq = *irq_p;
struct of_bus *bus;
phandle handle;
const u32 *reg;
int na, num_reg, i;
bus = of_match_bus(pp);
bus->count_cells(dp, &na, NULL);
reg = of_get_property(dp, "reg", &num_reg);
if (!reg || !num_reg)
return NULL;
imlen /= ((na + 3) * 4);
handle = 0;
for (i = 0; i < imlen; i++) {
int j;
for (j = 0; j < na; j++) {
if ((reg[j] & imask[j]) != imap[j])
goto next;
}
if (imap[na] == irq) {
handle = imap[na + 1];
irq = imap[na + 2];
break;
}
next:
imap += (na + 3);
}
if (i == imlen) {
/* Psycho and Sabre PCI controllers can have 'interrupt-map'
* properties that do not include the on-board device
* interrupts. Instead, the device's 'interrupts' property
* is already a fully specified INO value.
*
* Handle this by deciding that, if we didn't get a
* match in the parent's 'interrupt-map', and the
* parent is an IRQ translater, then use the parent as
* our IRQ controller.
*/
if (pp->irq_trans)
return pp;
return NULL;
}
*irq_p = irq;
cp = of_find_node_by_phandle(handle);
return cp;
}
static unsigned int __init pci_irq_swizzle(struct device_node *dp,
struct device_node *pp,
unsigned int irq)
{
const struct linux_prom_pci_registers *regs;
unsigned int bus, devfn, slot, ret;
if (irq < 1 || irq > 4)
return irq;
regs = of_get_property(dp, "reg", NULL);
if (!regs)
return irq;
bus = (regs->phys_hi >> 16) & 0xff;
devfn = (regs->phys_hi >> 8) & 0xff;
slot = (devfn >> 3) & 0x1f;
if (pp->irq_trans) {
/* Derived from Table 8-3, U2P User's Manual. This branch
* is handling a PCI controller that lacks a proper set of
* interrupt-map and interrupt-map-mask properties. The
* Ultra-E450 is one example.
*
* The bit layout is BSSLL, where:
* B: 0 on bus A, 1 on bus B
* D: 2-bit slot number, derived from PCI device number as
* (dev - 1) for bus A, or (dev - 2) for bus B
* L: 2-bit line number
*/
if (bus & 0x80) {
/* PBM-A */
bus = 0x00;
slot = (slot - 1) << 2;
} else {
/* PBM-B */
bus = 0x10;
slot = (slot - 2) << 2;
}
irq -= 1;
ret = (bus | slot | irq);
} else {
/* Going through a PCI-PCI bridge that lacks a set of
* interrupt-map and interrupt-map-mask properties.
*/
ret = ((irq - 1 + (slot & 3)) & 3) + 1;
}
return ret;
}
static int of_irq_verbose;
static unsigned int __init build_one_device_irq(struct of_device *op,
struct device *parent,
unsigned int irq)
{
struct device_node *dp = op->node;
struct device_node *pp, *ip;
unsigned int orig_irq = irq;
if (irq == 0xffffffff)
return irq;
if (dp->irq_trans) {
irq = dp->irq_trans->irq_build(dp, irq,
dp->irq_trans->data);
if (of_irq_verbose)
printk("%s: direct translate %x --> %x\n",
dp->full_name, orig_irq, irq);
return irq;
}
/* Something more complicated. Walk up to the root, applying
* interrupt-map or bus specific translations, until we hit
* an IRQ translator.
*
* If we hit a bus type or situation we cannot handle, we
* stop and assume that the original IRQ number was in a
* format which has special meaning to it's immediate parent.
*/
pp = dp->parent;
ip = NULL;
while (pp) {
const void *imap, *imsk;
int imlen;
imap = of_get_property(pp, "interrupt-map", &imlen);
imsk = of_get_property(pp, "interrupt-map-mask", NULL);
if (imap && imsk) {
struct device_node *iret;
int this_orig_irq = irq;
iret = apply_interrupt_map(dp, pp,
imap, imlen, imsk,
&irq);
if (of_irq_verbose)
printk("%s: Apply [%s:%x] imap --> [%s:%x]\n",
op->node->full_name,
pp->full_name, this_orig_irq,
(iret ? iret->full_name : "NULL"), irq);
if (!iret)
break;
if (iret->irq_trans) {
ip = iret;
break;
}
} else {
if (!strcmp(pp->type, "pci") ||
!strcmp(pp->type, "pciex")) {
unsigned int this_orig_irq = irq;
irq = pci_irq_swizzle(dp, pp, irq);
if (of_irq_verbose)
printk("%s: PCI swizzle [%s] "
"%x --> %x\n",
op->node->full_name,
pp->full_name, this_orig_irq,
irq);
}
if (pp->irq_trans) {
ip = pp;
break;
}
}
dp = pp;
pp = pp->parent;
}
if (!ip)
return orig_irq;
irq = ip->irq_trans->irq_build(op->node, irq,
ip->irq_trans->data);
if (of_irq_verbose)
printk("%s: Apply IRQ trans [%s] %x --> %x\n",
op->node->full_name, ip->full_name, orig_irq, irq);
return irq;
}
static struct of_device * __init scan_one_device(struct device_node *dp,
struct device *parent)
{
struct of_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
const unsigned int *irq;
int len, i;
if (!op)
return NULL;
op->node = dp;
op->clock_freq = of_getintprop_default(dp, "clock-frequency",
(25*1000*1000));
op->portid = of_getintprop_default(dp, "upa-portid", -1);
if (op->portid == -1)
op->portid = of_getintprop_default(dp, "portid", -1);
irq = of_get_property(dp, "interrupts", &len);
if (irq) {
memcpy(op->irqs, irq, len);
op->num_irqs = len / 4;
} else {
op->num_irqs = 0;
}
/* Prevent overrunning the op->irqs[] array. */
if (op->num_irqs > PROMINTR_MAX) {
printk(KERN_WARNING "%s: Too many irqs (%d), "
"limiting to %d.\n",
dp->full_name, op->num_irqs, PROMINTR_MAX);
op->num_irqs = PROMINTR_MAX;
}
build_device_resources(op, parent);
for (i = 0; i < op->num_irqs; i++)
op->irqs[i] = build_one_device_irq(op, parent, op->irqs[i]);
op->dev.parent = parent;
op->dev.bus = &of_bus_type;
if (!parent)
strcpy(op->dev.bus_id, "root");
else
sprintf(op->dev.bus_id, "%08x", dp->node);
if (of_device_register(op)) {
printk("%s: Could not register of device.\n",
dp->full_name);
kfree(op);
op = NULL;
}
return op;
}
static void __init scan_tree(struct device_node *dp, struct device *parent)
{
while (dp) {
struct of_device *op = scan_one_device(dp, parent);
if (op)
scan_tree(dp->child, &op->dev);
dp = dp->sibling;
}
}
static void __init scan_of_devices(void)
{
struct device_node *root = of_find_node_by_path("/");
struct of_device *parent;
parent = scan_one_device(root, NULL);
if (!parent)
return;
scan_tree(root->child, &parent->dev);
}
static int __init of_bus_driver_init(void)
{
int err;
err = bus_register(&of_bus_type);
#ifdef CONFIG_PCI
if (!err)
err = bus_register(&isa_bus_type);
if (!err)
err = bus_register(&ebus_bus_type);
#endif
#ifdef CONFIG_SBUS
if (!err)
err = bus_register(&sbus_bus_type);
#endif
if (!err)
scan_of_devices();
return err;
}
postcore_initcall(of_bus_driver_init);
static int __init of_debug(char *str)
{
int val = 0;
get_option(&str, &val);
if (val & 1)
of_resource_verbose = 1;
if (val & 2)
of_irq_verbose = 1;
return 1;
}
__setup("of_debug=", of_debug);
int of_register_driver(struct of_platform_driver *drv, struct bus_type *bus)
{
/* initialize common driver fields */
drv->driver.name = drv->name;
drv->driver.bus = bus;
/* register with core */
return driver_register(&drv->driver);
}
void of_unregister_driver(struct of_platform_driver *drv)
{
driver_unregister(&drv->driver);
}
static ssize_t dev_show_devspec(struct device *dev, struct device_attribute *attr, char *buf)
{
struct of_device *ofdev;
ofdev = to_of_device(dev);
return sprintf(buf, "%s", ofdev->node->full_name);
}
static DEVICE_ATTR(devspec, S_IRUGO, dev_show_devspec, NULL);
/**
* of_release_dev - free an of device structure when all users of it are finished.
* @dev: device that's been disconnected
*
* Will be called only by the device core when all users of this of device are
* done.
*/
void of_release_dev(struct device *dev)
{
struct of_device *ofdev;
ofdev = to_of_device(dev);
kfree(ofdev);
}
int of_device_register(struct of_device *ofdev)
{
int rc;
BUG_ON(ofdev->node == NULL);
rc = device_register(&ofdev->dev);
if (rc)
return rc;
rc = device_create_file(&ofdev->dev, &dev_attr_devspec);
if (rc)
device_unregister(&ofdev->dev);
return rc;
}
void of_device_unregister(struct of_device *ofdev)
{
device_remove_file(&ofdev->dev, &dev_attr_devspec);
device_unregister(&ofdev->dev);
}
struct of_device* of_platform_device_create(struct device_node *np,
const char *bus_id,
struct device *parent,
struct bus_type *bus)
{
struct of_device *dev;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return NULL;
dev->dev.parent = parent;
dev->dev.bus = bus;
dev->dev.release = of_release_dev;
strlcpy(dev->dev.bus_id, bus_id, BUS_ID_SIZE);
if (of_device_register(dev) != 0) {
kfree(dev);
return NULL;
}
return dev;
}
EXPORT_SYMBOL(of_match_device);
EXPORT_SYMBOL(of_register_driver);
EXPORT_SYMBOL(of_unregister_driver);
EXPORT_SYMBOL(of_device_register);
EXPORT_SYMBOL(of_device_unregister);
EXPORT_SYMBOL(of_dev_get);
EXPORT_SYMBOL(of_dev_put);
EXPORT_SYMBOL(of_platform_device_create);
EXPORT_SYMBOL(of_release_dev);