mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 11:58:21 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
357 lines
11 KiB
C
357 lines
11 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_SOCKET_H
|
|
#define _LINUX_SOCKET_H
|
|
|
|
|
|
#include <asm/socket.h> /* arch-dependent defines */
|
|
#include <linux/sockios.h> /* the SIOCxxx I/O controls */
|
|
#include <linux/uio.h> /* iovec support */
|
|
#include <linux/types.h> /* pid_t */
|
|
#include <linux/compiler.h> /* __user */
|
|
#include <uapi/linux/socket.h>
|
|
|
|
struct pid;
|
|
struct cred;
|
|
|
|
#define __sockaddr_check_size(size) \
|
|
BUILD_BUG_ON(((size) > sizeof(struct __kernel_sockaddr_storage)))
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
struct seq_file;
|
|
extern void socket_seq_show(struct seq_file *seq);
|
|
#endif
|
|
|
|
typedef __kernel_sa_family_t sa_family_t;
|
|
|
|
/*
|
|
* 1003.1g requires sa_family_t and that sa_data is char.
|
|
*/
|
|
|
|
struct sockaddr {
|
|
sa_family_t sa_family; /* address family, AF_xxx */
|
|
char sa_data[14]; /* 14 bytes of protocol address */
|
|
};
|
|
|
|
struct linger {
|
|
int l_onoff; /* Linger active */
|
|
int l_linger; /* How long to linger for */
|
|
};
|
|
|
|
#define sockaddr_storage __kernel_sockaddr_storage
|
|
|
|
/*
|
|
* As we do 4.4BSD message passing we use a 4.4BSD message passing
|
|
* system, not 4.3. Thus msg_accrights(len) are now missing. They
|
|
* belong in an obscure libc emulation or the bin.
|
|
*/
|
|
|
|
struct msghdr {
|
|
void *msg_name; /* ptr to socket address structure */
|
|
int msg_namelen; /* size of socket address structure */
|
|
struct iov_iter msg_iter; /* data */
|
|
void *msg_control; /* ancillary data */
|
|
__kernel_size_t msg_controllen; /* ancillary data buffer length */
|
|
unsigned int msg_flags; /* flags on received message */
|
|
struct kiocb *msg_iocb; /* ptr to iocb for async requests */
|
|
};
|
|
|
|
struct user_msghdr {
|
|
void __user *msg_name; /* ptr to socket address structure */
|
|
int msg_namelen; /* size of socket address structure */
|
|
struct iovec __user *msg_iov; /* scatter/gather array */
|
|
__kernel_size_t msg_iovlen; /* # elements in msg_iov */
|
|
void __user *msg_control; /* ancillary data */
|
|
__kernel_size_t msg_controllen; /* ancillary data buffer length */
|
|
unsigned int msg_flags; /* flags on received message */
|
|
};
|
|
|
|
/* For recvmmsg/sendmmsg */
|
|
struct mmsghdr {
|
|
struct user_msghdr msg_hdr;
|
|
unsigned int msg_len;
|
|
};
|
|
|
|
/*
|
|
* POSIX 1003.1g - ancillary data object information
|
|
* Ancillary data consits of a sequence of pairs of
|
|
* (cmsghdr, cmsg_data[])
|
|
*/
|
|
|
|
struct cmsghdr {
|
|
__kernel_size_t cmsg_len; /* data byte count, including hdr */
|
|
int cmsg_level; /* originating protocol */
|
|
int cmsg_type; /* protocol-specific type */
|
|
};
|
|
|
|
/*
|
|
* Ancillary data object information MACROS
|
|
* Table 5-14 of POSIX 1003.1g
|
|
*/
|
|
|
|
#define __CMSG_NXTHDR(ctl, len, cmsg) __cmsg_nxthdr((ctl),(len),(cmsg))
|
|
#define CMSG_NXTHDR(mhdr, cmsg) cmsg_nxthdr((mhdr), (cmsg))
|
|
|
|
#define CMSG_ALIGN(len) ( ((len)+sizeof(long)-1) & ~(sizeof(long)-1) )
|
|
|
|
#define CMSG_DATA(cmsg) ((void *)((char *)(cmsg) + sizeof(struct cmsghdr)))
|
|
#define CMSG_SPACE(len) (sizeof(struct cmsghdr) + CMSG_ALIGN(len))
|
|
#define CMSG_LEN(len) (sizeof(struct cmsghdr) + (len))
|
|
|
|
#define __CMSG_FIRSTHDR(ctl,len) ((len) >= sizeof(struct cmsghdr) ? \
|
|
(struct cmsghdr *)(ctl) : \
|
|
(struct cmsghdr *)NULL)
|
|
#define CMSG_FIRSTHDR(msg) __CMSG_FIRSTHDR((msg)->msg_control, (msg)->msg_controllen)
|
|
#define CMSG_OK(mhdr, cmsg) ((cmsg)->cmsg_len >= sizeof(struct cmsghdr) && \
|
|
(cmsg)->cmsg_len <= (unsigned long) \
|
|
((mhdr)->msg_controllen - \
|
|
((char *)(cmsg) - (char *)(mhdr)->msg_control)))
|
|
#define for_each_cmsghdr(cmsg, msg) \
|
|
for (cmsg = CMSG_FIRSTHDR(msg); \
|
|
cmsg; \
|
|
cmsg = CMSG_NXTHDR(msg, cmsg))
|
|
|
|
/*
|
|
* Get the next cmsg header
|
|
*
|
|
* PLEASE, do not touch this function. If you think, that it is
|
|
* incorrect, grep kernel sources and think about consequences
|
|
* before trying to improve it.
|
|
*
|
|
* Now it always returns valid, not truncated ancillary object
|
|
* HEADER. But caller still MUST check, that cmsg->cmsg_len is
|
|
* inside range, given by msg->msg_controllen before using
|
|
* ancillary object DATA. --ANK (980731)
|
|
*/
|
|
|
|
static inline struct cmsghdr * __cmsg_nxthdr(void *__ctl, __kernel_size_t __size,
|
|
struct cmsghdr *__cmsg)
|
|
{
|
|
struct cmsghdr * __ptr;
|
|
|
|
__ptr = (struct cmsghdr*)(((unsigned char *) __cmsg) + CMSG_ALIGN(__cmsg->cmsg_len));
|
|
if ((unsigned long)((char*)(__ptr+1) - (char *) __ctl) > __size)
|
|
return (struct cmsghdr *)0;
|
|
|
|
return __ptr;
|
|
}
|
|
|
|
static inline struct cmsghdr * cmsg_nxthdr (struct msghdr *__msg, struct cmsghdr *__cmsg)
|
|
{
|
|
return __cmsg_nxthdr(__msg->msg_control, __msg->msg_controllen, __cmsg);
|
|
}
|
|
|
|
static inline size_t msg_data_left(struct msghdr *msg)
|
|
{
|
|
return iov_iter_count(&msg->msg_iter);
|
|
}
|
|
|
|
/* "Socket"-level control message types: */
|
|
|
|
#define SCM_RIGHTS 0x01 /* rw: access rights (array of int) */
|
|
#define SCM_CREDENTIALS 0x02 /* rw: struct ucred */
|
|
#define SCM_SECURITY 0x03 /* rw: security label */
|
|
|
|
struct ucred {
|
|
__u32 pid;
|
|
__u32 uid;
|
|
__u32 gid;
|
|
};
|
|
|
|
/* Supported address families. */
|
|
#define AF_UNSPEC 0
|
|
#define AF_UNIX 1 /* Unix domain sockets */
|
|
#define AF_LOCAL 1 /* POSIX name for AF_UNIX */
|
|
#define AF_INET 2 /* Internet IP Protocol */
|
|
#define AF_AX25 3 /* Amateur Radio AX.25 */
|
|
#define AF_IPX 4 /* Novell IPX */
|
|
#define AF_APPLETALK 5 /* AppleTalk DDP */
|
|
#define AF_NETROM 6 /* Amateur Radio NET/ROM */
|
|
#define AF_BRIDGE 7 /* Multiprotocol bridge */
|
|
#define AF_ATMPVC 8 /* ATM PVCs */
|
|
#define AF_X25 9 /* Reserved for X.25 project */
|
|
#define AF_INET6 10 /* IP version 6 */
|
|
#define AF_ROSE 11 /* Amateur Radio X.25 PLP */
|
|
#define AF_DECnet 12 /* Reserved for DECnet project */
|
|
#define AF_NETBEUI 13 /* Reserved for 802.2LLC project*/
|
|
#define AF_SECURITY 14 /* Security callback pseudo AF */
|
|
#define AF_KEY 15 /* PF_KEY key management API */
|
|
#define AF_NETLINK 16
|
|
#define AF_ROUTE AF_NETLINK /* Alias to emulate 4.4BSD */
|
|
#define AF_PACKET 17 /* Packet family */
|
|
#define AF_ASH 18 /* Ash */
|
|
#define AF_ECONET 19 /* Acorn Econet */
|
|
#define AF_ATMSVC 20 /* ATM SVCs */
|
|
#define AF_RDS 21 /* RDS sockets */
|
|
#define AF_SNA 22 /* Linux SNA Project (nutters!) */
|
|
#define AF_IRDA 23 /* IRDA sockets */
|
|
#define AF_PPPOX 24 /* PPPoX sockets */
|
|
#define AF_WANPIPE 25 /* Wanpipe API Sockets */
|
|
#define AF_LLC 26 /* Linux LLC */
|
|
#define AF_IB 27 /* Native InfiniBand address */
|
|
#define AF_MPLS 28 /* MPLS */
|
|
#define AF_CAN 29 /* Controller Area Network */
|
|
#define AF_TIPC 30 /* TIPC sockets */
|
|
#define AF_BLUETOOTH 31 /* Bluetooth sockets */
|
|
#define AF_IUCV 32 /* IUCV sockets */
|
|
#define AF_RXRPC 33 /* RxRPC sockets */
|
|
#define AF_ISDN 34 /* mISDN sockets */
|
|
#define AF_PHONET 35 /* Phonet sockets */
|
|
#define AF_IEEE802154 36 /* IEEE802154 sockets */
|
|
#define AF_CAIF 37 /* CAIF sockets */
|
|
#define AF_ALG 38 /* Algorithm sockets */
|
|
#define AF_NFC 39 /* NFC sockets */
|
|
#define AF_VSOCK 40 /* vSockets */
|
|
#define AF_KCM 41 /* Kernel Connection Multiplexor*/
|
|
#define AF_QIPCRTR 42 /* Qualcomm IPC Router */
|
|
#define AF_SMC 43 /* smc sockets: reserve number for
|
|
* PF_SMC protocol family that
|
|
* reuses AF_INET address family
|
|
*/
|
|
|
|
#define AF_MAX 44 /* For now.. */
|
|
|
|
/* Protocol families, same as address families. */
|
|
#define PF_UNSPEC AF_UNSPEC
|
|
#define PF_UNIX AF_UNIX
|
|
#define PF_LOCAL AF_LOCAL
|
|
#define PF_INET AF_INET
|
|
#define PF_AX25 AF_AX25
|
|
#define PF_IPX AF_IPX
|
|
#define PF_APPLETALK AF_APPLETALK
|
|
#define PF_NETROM AF_NETROM
|
|
#define PF_BRIDGE AF_BRIDGE
|
|
#define PF_ATMPVC AF_ATMPVC
|
|
#define PF_X25 AF_X25
|
|
#define PF_INET6 AF_INET6
|
|
#define PF_ROSE AF_ROSE
|
|
#define PF_DECnet AF_DECnet
|
|
#define PF_NETBEUI AF_NETBEUI
|
|
#define PF_SECURITY AF_SECURITY
|
|
#define PF_KEY AF_KEY
|
|
#define PF_NETLINK AF_NETLINK
|
|
#define PF_ROUTE AF_ROUTE
|
|
#define PF_PACKET AF_PACKET
|
|
#define PF_ASH AF_ASH
|
|
#define PF_ECONET AF_ECONET
|
|
#define PF_ATMSVC AF_ATMSVC
|
|
#define PF_RDS AF_RDS
|
|
#define PF_SNA AF_SNA
|
|
#define PF_IRDA AF_IRDA
|
|
#define PF_PPPOX AF_PPPOX
|
|
#define PF_WANPIPE AF_WANPIPE
|
|
#define PF_LLC AF_LLC
|
|
#define PF_IB AF_IB
|
|
#define PF_MPLS AF_MPLS
|
|
#define PF_CAN AF_CAN
|
|
#define PF_TIPC AF_TIPC
|
|
#define PF_BLUETOOTH AF_BLUETOOTH
|
|
#define PF_IUCV AF_IUCV
|
|
#define PF_RXRPC AF_RXRPC
|
|
#define PF_ISDN AF_ISDN
|
|
#define PF_PHONET AF_PHONET
|
|
#define PF_IEEE802154 AF_IEEE802154
|
|
#define PF_CAIF AF_CAIF
|
|
#define PF_ALG AF_ALG
|
|
#define PF_NFC AF_NFC
|
|
#define PF_VSOCK AF_VSOCK
|
|
#define PF_KCM AF_KCM
|
|
#define PF_QIPCRTR AF_QIPCRTR
|
|
#define PF_SMC AF_SMC
|
|
#define PF_MAX AF_MAX
|
|
|
|
/* Maximum queue length specifiable by listen. */
|
|
#define SOMAXCONN 128
|
|
|
|
/* Flags we can use with send/ and recv.
|
|
Added those for 1003.1g not all are supported yet
|
|
*/
|
|
|
|
#define MSG_OOB 1
|
|
#define MSG_PEEK 2
|
|
#define MSG_DONTROUTE 4
|
|
#define MSG_TRYHARD 4 /* Synonym for MSG_DONTROUTE for DECnet */
|
|
#define MSG_CTRUNC 8
|
|
#define MSG_PROBE 0x10 /* Do not send. Only probe path f.e. for MTU */
|
|
#define MSG_TRUNC 0x20
|
|
#define MSG_DONTWAIT 0x40 /* Nonblocking io */
|
|
#define MSG_EOR 0x80 /* End of record */
|
|
#define MSG_WAITALL 0x100 /* Wait for a full request */
|
|
#define MSG_FIN 0x200
|
|
#define MSG_SYN 0x400
|
|
#define MSG_CONFIRM 0x800 /* Confirm path validity */
|
|
#define MSG_RST 0x1000
|
|
#define MSG_ERRQUEUE 0x2000 /* Fetch message from error queue */
|
|
#define MSG_NOSIGNAL 0x4000 /* Do not generate SIGPIPE */
|
|
#define MSG_MORE 0x8000 /* Sender will send more */
|
|
#define MSG_WAITFORONE 0x10000 /* recvmmsg(): block until 1+ packets avail */
|
|
#define MSG_SENDPAGE_NOTLAST 0x20000 /* sendpage() internal : not the last page */
|
|
#define MSG_BATCH 0x40000 /* sendmmsg(): more messages coming */
|
|
#define MSG_EOF MSG_FIN
|
|
|
|
#define MSG_ZEROCOPY 0x4000000 /* Use user data in kernel path */
|
|
#define MSG_FASTOPEN 0x20000000 /* Send data in TCP SYN */
|
|
#define MSG_CMSG_CLOEXEC 0x40000000 /* Set close_on_exec for file
|
|
descriptor received through
|
|
SCM_RIGHTS */
|
|
#if defined(CONFIG_COMPAT)
|
|
#define MSG_CMSG_COMPAT 0x80000000 /* This message needs 32 bit fixups */
|
|
#else
|
|
#define MSG_CMSG_COMPAT 0 /* We never have 32 bit fixups */
|
|
#endif
|
|
|
|
|
|
/* Setsockoptions(2) level. Thanks to BSD these must match IPPROTO_xxx */
|
|
#define SOL_IP 0
|
|
/* #define SOL_ICMP 1 No-no-no! Due to Linux :-) we cannot use SOL_ICMP=1 */
|
|
#define SOL_TCP 6
|
|
#define SOL_UDP 17
|
|
#define SOL_IPV6 41
|
|
#define SOL_ICMPV6 58
|
|
#define SOL_SCTP 132
|
|
#define SOL_UDPLITE 136 /* UDP-Lite (RFC 3828) */
|
|
#define SOL_RAW 255
|
|
#define SOL_IPX 256
|
|
#define SOL_AX25 257
|
|
#define SOL_ATALK 258
|
|
#define SOL_NETROM 259
|
|
#define SOL_ROSE 260
|
|
#define SOL_DECNET 261
|
|
#define SOL_X25 262
|
|
#define SOL_PACKET 263
|
|
#define SOL_ATM 264 /* ATM layer (cell level) */
|
|
#define SOL_AAL 265 /* ATM Adaption Layer (packet level) */
|
|
#define SOL_IRDA 266
|
|
#define SOL_NETBEUI 267
|
|
#define SOL_LLC 268
|
|
#define SOL_DCCP 269
|
|
#define SOL_NETLINK 270
|
|
#define SOL_TIPC 271
|
|
#define SOL_RXRPC 272
|
|
#define SOL_PPPOL2TP 273
|
|
#define SOL_BLUETOOTH 274
|
|
#define SOL_PNPIPE 275
|
|
#define SOL_RDS 276
|
|
#define SOL_IUCV 277
|
|
#define SOL_CAIF 278
|
|
#define SOL_ALG 279
|
|
#define SOL_NFC 280
|
|
#define SOL_KCM 281
|
|
#define SOL_TLS 282
|
|
|
|
/* IPX options */
|
|
#define IPX_TYPE 1
|
|
|
|
extern int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr);
|
|
extern int put_cmsg(struct msghdr*, int level, int type, int len, void *data);
|
|
|
|
struct timespec;
|
|
|
|
/* The __sys_...msg variants allow MSG_CMSG_COMPAT */
|
|
extern long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags);
|
|
extern long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags);
|
|
extern int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
|
|
unsigned int flags, struct timespec *timeout);
|
|
extern int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg,
|
|
unsigned int vlen, unsigned int flags);
|
|
#endif /* _LINUX_SOCKET_H */
|