linux_dsm_epyc7002/drivers/usb/dwc2/hcd.h
Nishad Kamdar bdefa3ba92 USB: dwc2: Use the correct style for SPDX License Identifier
This patch corrects the SPDX License Identifier style in
header files related to DesignWare USB2 DRD Core Support.
For C header files Documentation/process/license-rules.rst
mandates C-like comments (opposed to C source files where
C++ style should be used).

Changes made by using a script provided by Joe Perches here:
https://lkml.org/lkml/2019/2/7/46.

Suggested-by: Joe Perches <joe@perches.com>
Signed-off-by: Nishad Kamdar <nishadkamdar@gmail.com>
Signed-off-by: Felipe Balbi <balbi@kernel.org>
2020-05-05 10:58:50 +03:00

817 lines
28 KiB
C

/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
/*
* hcd.h - DesignWare HS OTG Controller host-mode declarations
*
* Copyright (C) 2004-2013 Synopsys, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The names of the above-listed copyright holders may not be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation; either version 2 of the License, or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
* IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __DWC2_HCD_H__
#define __DWC2_HCD_H__
/*
* This file contains the structures, constants, and interfaces for the
* Host Contoller Driver (HCD)
*
* The Host Controller Driver (HCD) is responsible for translating requests
* from the USB Driver into the appropriate actions on the DWC_otg controller.
* It isolates the USBD from the specifics of the controller by providing an
* API to the USBD.
*/
struct dwc2_qh;
/**
* struct dwc2_host_chan - Software host channel descriptor
*
* @hc_num: Host channel number, used for register address lookup
* @dev_addr: Address of the device
* @ep_num: Endpoint of the device
* @ep_is_in: Endpoint direction
* @speed: Device speed. One of the following values:
* - USB_SPEED_LOW
* - USB_SPEED_FULL
* - USB_SPEED_HIGH
* @ep_type: Endpoint type. One of the following values:
* - USB_ENDPOINT_XFER_CONTROL: 0
* - USB_ENDPOINT_XFER_ISOC: 1
* - USB_ENDPOINT_XFER_BULK: 2
* - USB_ENDPOINT_XFER_INTR: 3
* @max_packet: Max packet size in bytes
* @data_pid_start: PID for initial transaction.
* 0: DATA0
* 1: DATA2
* 2: DATA1
* 3: MDATA (non-Control EP),
* SETUP (Control EP)
* @multi_count: Number of additional periodic transactions per
* (micro)frame
* @xfer_buf: Pointer to current transfer buffer position
* @xfer_dma: DMA address of xfer_buf
* @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
* DWORD aligned
* @xfer_len: Total number of bytes to transfer
* @xfer_count: Number of bytes transferred so far
* @start_pkt_count: Packet count at start of transfer
* @xfer_started: True if the transfer has been started
* @do_ping: True if a PING request should be issued on this channel
* @error_state: True if the error count for this transaction is non-zero
* @halt_on_queue: True if this channel should be halted the next time a
* request is queued for the channel. This is necessary in
* slave mode if no request queue space is available when
* an attempt is made to halt the channel.
* @halt_pending: True if the host channel has been halted, but the core
* is not finished flushing queued requests
* @do_split: Enable split for the channel
* @complete_split: Enable complete split
* @hub_addr: Address of high speed hub for the split
* @hub_port: Port of the low/full speed device for the split
* @xact_pos: Split transaction position. One of the following values:
* - DWC2_HCSPLT_XACTPOS_MID
* - DWC2_HCSPLT_XACTPOS_BEGIN
* - DWC2_HCSPLT_XACTPOS_END
* - DWC2_HCSPLT_XACTPOS_ALL
* @requests: Number of requests issued for this channel since it was
* assigned to the current transfer (not counting PINGs)
* @schinfo: Scheduling micro-frame bitmap
* @ntd: Number of transfer descriptors for the transfer
* @halt_status: Reason for halting the host channel
* @hcint: Contents of the HCINT register when the interrupt came
* @qh: QH for the transfer being processed by this channel
* @hc_list_entry: For linking to list of host channels
* @desc_list_addr: Current QH's descriptor list DMA address
* @desc_list_sz: Current QH's descriptor list size
* @split_order_list_entry: List entry for keeping track of the order of splits
*
* This structure represents the state of a single host channel when acting in
* host mode. It contains the data items needed to transfer packets to an
* endpoint via a host channel.
*/
struct dwc2_host_chan {
u8 hc_num;
unsigned dev_addr:7;
unsigned ep_num:4;
unsigned ep_is_in:1;
unsigned speed:4;
unsigned ep_type:2;
unsigned max_packet:11;
unsigned data_pid_start:2;
#define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
#define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
#define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
#define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
#define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
unsigned multi_count:2;
u8 *xfer_buf;
dma_addr_t xfer_dma;
dma_addr_t align_buf;
u32 xfer_len;
u32 xfer_count;
u16 start_pkt_count;
u8 xfer_started;
u8 do_ping;
u8 error_state;
u8 halt_on_queue;
u8 halt_pending;
u8 do_split;
u8 complete_split;
u8 hub_addr;
u8 hub_port;
u8 xact_pos;
#define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
#define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
#define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
#define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
u8 requests;
u8 schinfo;
u16 ntd;
enum dwc2_halt_status halt_status;
u32 hcint;
struct dwc2_qh *qh;
struct list_head hc_list_entry;
dma_addr_t desc_list_addr;
u32 desc_list_sz;
struct list_head split_order_list_entry;
};
struct dwc2_hcd_pipe_info {
u8 dev_addr;
u8 ep_num;
u8 pipe_type;
u8 pipe_dir;
u16 maxp;
u16 maxp_mult;
};
struct dwc2_hcd_iso_packet_desc {
u32 offset;
u32 length;
u32 actual_length;
u32 status;
};
struct dwc2_qtd;
struct dwc2_hcd_urb {
void *priv;
struct dwc2_qtd *qtd;
void *buf;
dma_addr_t dma;
void *setup_packet;
dma_addr_t setup_dma;
u32 length;
u32 actual_length;
u32 status;
u32 error_count;
u32 packet_count;
u32 flags;
u16 interval;
struct dwc2_hcd_pipe_info pipe_info;
struct dwc2_hcd_iso_packet_desc iso_descs[];
};
/* Phases for control transfers */
enum dwc2_control_phase {
DWC2_CONTROL_SETUP,
DWC2_CONTROL_DATA,
DWC2_CONTROL_STATUS,
};
/* Transaction types */
enum dwc2_transaction_type {
DWC2_TRANSACTION_NONE,
DWC2_TRANSACTION_PERIODIC,
DWC2_TRANSACTION_NON_PERIODIC,
DWC2_TRANSACTION_ALL,
};
/* The number of elements per LS bitmap (per port on multi_tt) */
#define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
BITS_PER_LONG)
/**
* struct dwc2_tt - dwc2 data associated with a usb_tt
*
* @refcount: Number of Queue Heads (QHs) holding a reference.
* @usb_tt: Pointer back to the official usb_tt.
* @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted
* for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP
* elements (so sizeof(long) times that in bytes).
*
* This structure is stored in the hcpriv of the official usb_tt.
*/
struct dwc2_tt {
int refcount;
struct usb_tt *usb_tt;
unsigned long periodic_bitmaps[];
};
/**
* struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
*
* @start_schedule_us: The start time on the main bus schedule. Note that
* the main bus schedule is tightly packed and this
* time should be interpreted as tightly packed (so
* uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
* instead of 125 us).
* @duration_us: How long this transfer goes.
*/
struct dwc2_hs_transfer_time {
u32 start_schedule_us;
u16 duration_us;
};
/**
* struct dwc2_qh - Software queue head structure
*
* @hsotg: The HCD state structure for the DWC OTG controller
* @ep_type: Endpoint type. One of the following values:
* - USB_ENDPOINT_XFER_CONTROL
* - USB_ENDPOINT_XFER_BULK
* - USB_ENDPOINT_XFER_INT
* - USB_ENDPOINT_XFER_ISOC
* @ep_is_in: Endpoint direction
* @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
* @maxp_mult: Multiplier for maxp
* @dev_speed: Device speed. One of the following values:
* - USB_SPEED_LOW
* - USB_SPEED_FULL
* - USB_SPEED_HIGH
* @data_toggle: Determines the PID of the next data packet for
* non-controltransfers. Ignored for control transfers.
* One of the following values:
* - DWC2_HC_PID_DATA0
* - DWC2_HC_PID_DATA1
* @ping_state: Ping state
* @do_split: Full/low speed endpoint on high-speed hub requires split
* @td_first: Index of first activated isochronous transfer descriptor
* @td_last: Index of last activated isochronous transfer descriptor
* @host_us: Bandwidth in microseconds per transfer as seen by host
* @device_us: Bandwidth in microseconds per transfer as seen by device
* @host_interval: Interval between transfers as seen by the host. If
* the host is high speed and the device is low speed this
* will be 8 times device interval.
* @device_interval: Interval between transfers as seen by the device.
* interval.
* @next_active_frame: (Micro)frame _before_ we next need to put something on
* the bus. We'll move the qh to active here. If the
* host is in high speed mode this will be a uframe. If
* the host is in low speed mode this will be a full frame.
* @start_active_frame: If we are partway through a split transfer, this will be
* what next_active_frame was when we started. Otherwise
* it should always be the same as next_active_frame.
* @num_hs_transfers: Number of transfers in hs_transfers.
* Normally this is 1 but can be more than one for splits.
* Always >= 1 unless the host is in low/full speed mode.
* @hs_transfers: Transfers that are scheduled as seen by the high speed
* bus. Not used if host is in low or full speed mode (but
* note that it IS USED if the device is low or full speed
* as long as the HOST is in high speed mode).
* @ls_start_schedule_slice: Start time (in slices) on the low speed bus
* schedule that's being used by this device. This
* will be on the periodic_bitmap in a
* "struct dwc2_tt". Not used if this device is high
* speed. Note that this is in "schedule slice" which
* is tightly packed.
* @ntd: Actual number of transfer descriptors in a list
* @dw_align_buf: Used instead of original buffer if its physical address
* is not dword-aligned
* @dw_align_buf_dma: DMA address for dw_align_buf
* @qtd_list: List of QTDs for this QH
* @channel: Host channel currently processing transfers for this QH
* @qh_list_entry: Entry for QH in either the periodic or non-periodic
* schedule
* @desc_list: List of transfer descriptors
* @desc_list_dma: Physical address of desc_list
* @desc_list_sz: Size of descriptors list
* @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
* descriptor and indicates original XferSize value for the
* descriptor
* @unreserve_timer: Timer for releasing periodic reservation.
* @wait_timer: Timer used to wait before re-queuing.
* @dwc_tt: Pointer to our tt info (or NULL if no tt).
* @ttport: Port number within our tt.
* @tt_buffer_dirty True if clear_tt_buffer_complete is pending
* @unreserve_pending: True if we planned to unreserve but haven't yet.
* @schedule_low_speed: True if we have a low/full speed component (either the
* host is in low/full speed mode or do_split).
* @want_wait: We should wait before re-queuing; only matters for non-
* periodic transfers and is ignored for periodic ones.
* @wait_timer_cancel: Set to true to cancel the wait_timer.
*
* @tt_buffer_dirty: True if EP's TT buffer is not clean.
* A Queue Head (QH) holds the static characteristics of an endpoint and
* maintains a list of transfers (QTDs) for that endpoint. A QH structure may
* be entered in either the non-periodic or periodic schedule.
*/
struct dwc2_qh {
struct dwc2_hsotg *hsotg;
u8 ep_type;
u8 ep_is_in;
u16 maxp;
u16 maxp_mult;
u8 dev_speed;
u8 data_toggle;
u8 ping_state;
u8 do_split;
u8 td_first;
u8 td_last;
u16 host_us;
u16 device_us;
u16 host_interval;
u16 device_interval;
u16 next_active_frame;
u16 start_active_frame;
s16 num_hs_transfers;
struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
u32 ls_start_schedule_slice;
u16 ntd;
u8 *dw_align_buf;
dma_addr_t dw_align_buf_dma;
struct list_head qtd_list;
struct dwc2_host_chan *channel;
struct list_head qh_list_entry;
struct dwc2_dma_desc *desc_list;
dma_addr_t desc_list_dma;
u32 desc_list_sz;
u32 *n_bytes;
struct timer_list unreserve_timer;
struct hrtimer wait_timer;
struct dwc2_tt *dwc_tt;
int ttport;
unsigned tt_buffer_dirty:1;
unsigned unreserve_pending:1;
unsigned schedule_low_speed:1;
unsigned want_wait:1;
unsigned wait_timer_cancel:1;
};
/**
* struct dwc2_qtd - Software queue transfer descriptor (QTD)
*
* @control_phase: Current phase for control transfers (Setup, Data, or
* Status)
* @in_process: Indicates if this QTD is currently processed by HW
* @data_toggle: Determines the PID of the next data packet for the
* data phase of control transfers. Ignored for other
* transfer types. One of the following values:
* - DWC2_HC_PID_DATA0
* - DWC2_HC_PID_DATA1
* @complete_split: Keeps track of the current split type for FS/LS
* endpoints on a HS Hub
* @isoc_split_pos: Position of the ISOC split in full/low speed
* @isoc_frame_index: Index of the next frame descriptor for an isochronous
* transfer. A frame descriptor describes the buffer
* position and length of the data to be transferred in the
* next scheduled (micro)frame of an isochronous transfer.
* It also holds status for that transaction. The frame
* index starts at 0.
* @isoc_split_offset: Position of the ISOC split in the buffer for the
* current frame
* @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
* @error_count: Holds the number of bus errors that have occurred for
* a transaction within this transfer
* @n_desc: Number of DMA descriptors for this QTD
* @isoc_frame_index_last: Last activated frame (packet) index, used in
* descriptor DMA mode only
* @num_naks: Number of NAKs received on this QTD.
* @urb: URB for this transfer
* @qh: Queue head for this QTD
* @qtd_list_entry: For linking to the QH's list of QTDs
* @isoc_td_first: Index of first activated isochronous transfer
* descriptor in Descriptor DMA mode
* @isoc_td_last: Index of last activated isochronous transfer
* descriptor in Descriptor DMA mode
*
* A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
* interrupt, or isochronous transfer. A single QTD is created for each URB
* (of one of these types) submitted to the HCD. The transfer associated with
* a QTD may require one or multiple transactions.
*
* A QTD is linked to a Queue Head, which is entered in either the
* non-periodic or periodic schedule for execution. When a QTD is chosen for
* execution, some or all of its transactions may be executed. After
* execution, the state of the QTD is updated. The QTD may be retired if all
* its transactions are complete or if an error occurred. Otherwise, it
* remains in the schedule so more transactions can be executed later.
*/
struct dwc2_qtd {
enum dwc2_control_phase control_phase;
u8 in_process;
u8 data_toggle;
u8 complete_split;
u8 isoc_split_pos;
u16 isoc_frame_index;
u16 isoc_split_offset;
u16 isoc_td_last;
u16 isoc_td_first;
u32 ssplit_out_xfer_count;
u8 error_count;
u8 n_desc;
u16 isoc_frame_index_last;
u16 num_naks;
struct dwc2_hcd_urb *urb;
struct dwc2_qh *qh;
struct list_head qtd_list_entry;
};
#ifdef DEBUG
struct hc_xfer_info {
struct dwc2_hsotg *hsotg;
struct dwc2_host_chan *chan;
};
#endif
u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
/* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
{
return (struct usb_hcd *)hsotg->priv;
}
/*
* Inline used to disable one channel interrupt. Channel interrupts are
* disabled when the channel is halted or released by the interrupt handler.
* There is no need to handle further interrupts of that type until the
* channel is re-assigned. In fact, subsequent handling may cause crashes
* because the channel structures are cleaned up when the channel is released.
*/
static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
{
u32 mask = dwc2_readl(hsotg, HCINTMSK(chnum));
mask &= ~intr;
dwc2_writel(hsotg, mask, HCINTMSK(chnum));
}
void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
enum dwc2_halt_status halt_status);
void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan);
/*
* Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
* are read as 1, they won't clear when written back.
*/
static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
{
u32 hprt0 = dwc2_readl(hsotg, HPRT0);
hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
return hprt0;
}
static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
{
return pipe->ep_num;
}
static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
{
return pipe->pipe_type;
}
static inline u16 dwc2_hcd_get_maxp(struct dwc2_hcd_pipe_info *pipe)
{
return pipe->maxp;
}
static inline u16 dwc2_hcd_get_maxp_mult(struct dwc2_hcd_pipe_info *pipe)
{
return pipe->maxp_mult;
}
static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
{
return pipe->dev_addr;
}
static inline u8 dwc2_hcd_is_pipe_isoc(struct dwc2_hcd_pipe_info *pipe)
{
return pipe->pipe_type == USB_ENDPOINT_XFER_ISOC;
}
static inline u8 dwc2_hcd_is_pipe_int(struct dwc2_hcd_pipe_info *pipe)
{
return pipe->pipe_type == USB_ENDPOINT_XFER_INT;
}
static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
{
return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
}
static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
{
return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
}
static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
{
return pipe->pipe_dir == USB_DIR_IN;
}
static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
{
return !dwc2_hcd_is_pipe_in(pipe);
}
int dwc2_hcd_init(struct dwc2_hsotg *hsotg);
void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
/* Transaction Execution Functions */
enum dwc2_transaction_type dwc2_hcd_select_transactions(
struct dwc2_hsotg *hsotg);
void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
enum dwc2_transaction_type tr_type);
/* Schedule Queue Functions */
/* Implemented in hcd_queue.c */
struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
struct dwc2_hcd_urb *urb,
gfp_t mem_flags);
void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
int sched_csplit);
void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
struct dwc2_qh *qh);
/* Unlinks and frees a QTD */
static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
struct dwc2_qtd *qtd,
struct dwc2_qh *qh)
{
list_del(&qtd->qtd_list_entry);
kfree(qtd);
}
/* Descriptor DMA support functions */
void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_qh *qh);
void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan, int chnum,
enum dwc2_halt_status halt_status);
int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
gfp_t mem_flags);
void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
/* Check if QH is non-periodic */
#define dwc2_qh_is_non_per(_qh_ptr_) \
((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
(_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
#ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
static inline bool dbg_urb(struct urb *urb) { return true; }
static inline bool dbg_perio(void) { return true; }
#else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
static inline bool dbg_hc(struct dwc2_host_chan *hc)
{
return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
}
static inline bool dbg_qh(struct dwc2_qh *qh)
{
return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
}
static inline bool dbg_urb(struct urb *urb)
{
return usb_pipetype(urb->pipe) == PIPE_BULK ||
usb_pipetype(urb->pipe) == PIPE_CONTROL;
}
static inline bool dbg_perio(void) { return false; }
#endif
/*
* Returns true if frame1 index is greater than frame2 index. The comparison
* is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
* frame number when the max index frame number is reached.
*/
static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
{
u16 diff = fr_idx1 - fr_idx2;
u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
return diff && !sign;
}
/*
* Returns true if frame1 is less than or equal to frame2. The comparison is
* done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
* frame number when the max frame number is reached.
*/
static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
{
return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
}
/*
* Returns true if frame1 is greater than frame2. The comparison is done
* modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
* number when the max frame number is reached.
*/
static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
{
return (frame1 != frame2) &&
((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
}
/*
* Increments frame by the amount specified by inc. The addition is done
* modulo HFNUM_MAX_FRNUM. Returns the incremented value.
*/
static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
{
return (frame + inc) & HFNUM_MAX_FRNUM;
}
static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
{
return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
}
static inline u16 dwc2_full_frame_num(u16 frame)
{
return (frame & HFNUM_MAX_FRNUM) >> 3;
}
static inline u16 dwc2_micro_frame_num(u16 frame)
{
return frame & 0x7;
}
/*
* Returns the Core Interrupt Status register contents, ANDed with the Core
* Interrupt Mask register contents
*/
static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
{
return dwc2_readl(hsotg, GINTSTS) &
dwc2_readl(hsotg, GINTMSK);
}
static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
{
return dwc2_urb->status;
}
static inline u32 dwc2_hcd_urb_get_actual_length(
struct dwc2_hcd_urb *dwc2_urb)
{
return dwc2_urb->actual_length;
}
static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
{
return dwc2_urb->error_count;
}
static inline void dwc2_hcd_urb_set_iso_desc_params(
struct dwc2_hcd_urb *dwc2_urb, int desc_num, u32 offset,
u32 length)
{
dwc2_urb->iso_descs[desc_num].offset = offset;
dwc2_urb->iso_descs[desc_num].length = length;
}
static inline u32 dwc2_hcd_urb_get_iso_desc_status(
struct dwc2_hcd_urb *dwc2_urb, int desc_num)
{
return dwc2_urb->iso_descs[desc_num].status;
}
static inline u32 dwc2_hcd_urb_get_iso_desc_actual_length(
struct dwc2_hcd_urb *dwc2_urb, int desc_num)
{
return dwc2_urb->iso_descs[desc_num].actual_length;
}
static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
struct usb_host_endpoint *ep)
{
struct dwc2_qh *qh = ep->hcpriv;
if (qh && !list_empty(&qh->qh_list_entry))
return 1;
return 0;
}
static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
struct usb_host_endpoint *ep)
{
struct dwc2_qh *qh = ep->hcpriv;
if (!qh) {
WARN_ON(1);
return 0;
}
return qh->host_us;
}
void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
struct dwc2_host_chan *chan, int chnum,
struct dwc2_qtd *qtd);
/* HCD Core API */
/**
* dwc2_handle_hcd_intr() - Called on every hardware interrupt
*
* @hsotg: The DWC2 HCD
*
* Returns IRQ_HANDLED if interrupt is handled
* Return IRQ_NONE if interrupt is not handled
*/
irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
/**
* dwc2_hcd_stop() - Halts the DWC_otg host mode operation
*
* @hsotg: The DWC2 HCD
*/
void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
/**
* dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
* and 0 otherwise
*
* @hsotg: The DWC2 HCD
*/
int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
/**
* dwc2_hcd_dump_state() - Dumps hsotg state
*
* @hsotg: The DWC2 HCD
*
* NOTE: This function will be removed once the peripheral controller code
* is integrated and the driver is stable
*/
void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg);
/* URB interface */
/* Transfer flags */
#define URB_GIVEBACK_ASAP 0x1
#define URB_SEND_ZERO_PACKET 0x2
/* Host driver callbacks */
struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
void *context, gfp_t mem_flags,
int *ttport);
void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
struct dwc2_tt *dwc_tt);
int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
int status);
#endif /* __DWC2_HCD_H__ */