mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 18:56:40 +07:00
750afb08ca
We already need to zero out memory for dma_alloc_coherent(), as such using dma_zalloc_coherent() is superflous. Phase it out. This change was generated with the following Coccinelle SmPL patch: @ replace_dma_zalloc_coherent @ expression dev, size, data, handle, flags; @@ -dma_zalloc_coherent(dev, size, handle, flags) +dma_alloc_coherent(dev, size, handle, flags) Suggested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Luis Chamberlain <mcgrof@kernel.org> [hch: re-ran the script on the latest tree] Signed-off-by: Christoph Hellwig <hch@lst.de>
1057 lines
28 KiB
C
1057 lines
28 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
// Copyright (c) 2017-2018 MediaTek Inc.
|
|
|
|
/*
|
|
* Driver for MediaTek High-Speed DMA Controller
|
|
*
|
|
* Author: Sean Wang <sean.wang@mediatek.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/err.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/list.h>
|
|
#include <linux/module.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/of_dma.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/refcount.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include "../virt-dma.h"
|
|
|
|
#define MTK_HSDMA_USEC_POLL 20
|
|
#define MTK_HSDMA_TIMEOUT_POLL 200000
|
|
#define MTK_HSDMA_DMA_BUSWIDTHS BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
|
|
|
|
/* The default number of virtual channel */
|
|
#define MTK_HSDMA_NR_VCHANS 3
|
|
|
|
/* Only one physical channel supported */
|
|
#define MTK_HSDMA_NR_MAX_PCHANS 1
|
|
|
|
/* Macro for physical descriptor (PD) manipulation */
|
|
/* The number of PD which must be 2 of power */
|
|
#define MTK_DMA_SIZE 64
|
|
#define MTK_HSDMA_NEXT_DESP_IDX(x, y) (((x) + 1) & ((y) - 1))
|
|
#define MTK_HSDMA_LAST_DESP_IDX(x, y) (((x) - 1) & ((y) - 1))
|
|
#define MTK_HSDMA_MAX_LEN 0x3f80
|
|
#define MTK_HSDMA_ALIGN_SIZE 4
|
|
#define MTK_HSDMA_PLEN_MASK 0x3fff
|
|
#define MTK_HSDMA_DESC_PLEN(x) (((x) & MTK_HSDMA_PLEN_MASK) << 16)
|
|
#define MTK_HSDMA_DESC_PLEN_GET(x) (((x) >> 16) & MTK_HSDMA_PLEN_MASK)
|
|
|
|
/* Registers for underlying ring manipulation */
|
|
#define MTK_HSDMA_TX_BASE 0x0
|
|
#define MTK_HSDMA_TX_CNT 0x4
|
|
#define MTK_HSDMA_TX_CPU 0x8
|
|
#define MTK_HSDMA_TX_DMA 0xc
|
|
#define MTK_HSDMA_RX_BASE 0x100
|
|
#define MTK_HSDMA_RX_CNT 0x104
|
|
#define MTK_HSDMA_RX_CPU 0x108
|
|
#define MTK_HSDMA_RX_DMA 0x10c
|
|
|
|
/* Registers for global setup */
|
|
#define MTK_HSDMA_GLO 0x204
|
|
#define MTK_HSDMA_GLO_MULTI_DMA BIT(10)
|
|
#define MTK_HSDMA_TX_WB_DDONE BIT(6)
|
|
#define MTK_HSDMA_BURST_64BYTES (0x2 << 4)
|
|
#define MTK_HSDMA_GLO_RX_BUSY BIT(3)
|
|
#define MTK_HSDMA_GLO_RX_DMA BIT(2)
|
|
#define MTK_HSDMA_GLO_TX_BUSY BIT(1)
|
|
#define MTK_HSDMA_GLO_TX_DMA BIT(0)
|
|
#define MTK_HSDMA_GLO_DMA (MTK_HSDMA_GLO_TX_DMA | \
|
|
MTK_HSDMA_GLO_RX_DMA)
|
|
#define MTK_HSDMA_GLO_BUSY (MTK_HSDMA_GLO_RX_BUSY | \
|
|
MTK_HSDMA_GLO_TX_BUSY)
|
|
#define MTK_HSDMA_GLO_DEFAULT (MTK_HSDMA_GLO_TX_DMA | \
|
|
MTK_HSDMA_GLO_RX_DMA | \
|
|
MTK_HSDMA_TX_WB_DDONE | \
|
|
MTK_HSDMA_BURST_64BYTES | \
|
|
MTK_HSDMA_GLO_MULTI_DMA)
|
|
|
|
/* Registers for reset */
|
|
#define MTK_HSDMA_RESET 0x208
|
|
#define MTK_HSDMA_RST_TX BIT(0)
|
|
#define MTK_HSDMA_RST_RX BIT(16)
|
|
|
|
/* Registers for interrupt control */
|
|
#define MTK_HSDMA_DLYINT 0x20c
|
|
#define MTK_HSDMA_RXDLY_INT_EN BIT(15)
|
|
|
|
/* Interrupt fires when the pending number's more than the specified */
|
|
#define MTK_HSDMA_RXMAX_PINT(x) (((x) & 0x7f) << 8)
|
|
|
|
/* Interrupt fires when the pending time's more than the specified in 20 us */
|
|
#define MTK_HSDMA_RXMAX_PTIME(x) ((x) & 0x7f)
|
|
#define MTK_HSDMA_DLYINT_DEFAULT (MTK_HSDMA_RXDLY_INT_EN | \
|
|
MTK_HSDMA_RXMAX_PINT(20) | \
|
|
MTK_HSDMA_RXMAX_PTIME(20))
|
|
#define MTK_HSDMA_INT_STATUS 0x220
|
|
#define MTK_HSDMA_INT_ENABLE 0x228
|
|
#define MTK_HSDMA_INT_RXDONE BIT(16)
|
|
|
|
enum mtk_hsdma_vdesc_flag {
|
|
MTK_HSDMA_VDESC_FINISHED = 0x01,
|
|
};
|
|
|
|
#define IS_MTK_HSDMA_VDESC_FINISHED(x) ((x) == MTK_HSDMA_VDESC_FINISHED)
|
|
|
|
/**
|
|
* struct mtk_hsdma_pdesc - This is the struct holding info describing physical
|
|
* descriptor (PD) and its placement must be kept at
|
|
* 4-bytes alignment in little endian order.
|
|
* @desc[1-4]: The control pad used to indicate hardware how to
|
|
* deal with the descriptor such as source and
|
|
* destination address and data length. The maximum
|
|
* data length each pdesc can handle is 0x3f80 bytes
|
|
*/
|
|
struct mtk_hsdma_pdesc {
|
|
__le32 desc1;
|
|
__le32 desc2;
|
|
__le32 desc3;
|
|
__le32 desc4;
|
|
} __packed __aligned(4);
|
|
|
|
/**
|
|
* struct mtk_hsdma_vdesc - This is the struct holding info describing virtual
|
|
* descriptor (VD)
|
|
* @vd: An instance for struct virt_dma_desc
|
|
* @len: The total data size device wants to move
|
|
* @residue: The remaining data size device will move
|
|
* @dest: The destination address device wants to move to
|
|
* @src: The source address device wants to move from
|
|
*/
|
|
struct mtk_hsdma_vdesc {
|
|
struct virt_dma_desc vd;
|
|
size_t len;
|
|
size_t residue;
|
|
dma_addr_t dest;
|
|
dma_addr_t src;
|
|
};
|
|
|
|
/**
|
|
* struct mtk_hsdma_cb - This is the struct holding extra info required for RX
|
|
* ring to know what relevant VD the the PD is being
|
|
* mapped to.
|
|
* @vd: Pointer to the relevant VD.
|
|
* @flag: Flag indicating what action should be taken when VD
|
|
* is completed.
|
|
*/
|
|
struct mtk_hsdma_cb {
|
|
struct virt_dma_desc *vd;
|
|
enum mtk_hsdma_vdesc_flag flag;
|
|
};
|
|
|
|
/**
|
|
* struct mtk_hsdma_ring - This struct holds info describing underlying ring
|
|
* space
|
|
* @txd: The descriptor TX ring which describes DMA source
|
|
* information
|
|
* @rxd: The descriptor RX ring which describes DMA
|
|
* destination information
|
|
* @cb: The extra information pointed at by RX ring
|
|
* @tphys: The physical addr of TX ring
|
|
* @rphys: The physical addr of RX ring
|
|
* @cur_tptr: Pointer to the next free descriptor used by the host
|
|
* @cur_rptr: Pointer to the last done descriptor by the device
|
|
*/
|
|
struct mtk_hsdma_ring {
|
|
struct mtk_hsdma_pdesc *txd;
|
|
struct mtk_hsdma_pdesc *rxd;
|
|
struct mtk_hsdma_cb *cb;
|
|
dma_addr_t tphys;
|
|
dma_addr_t rphys;
|
|
u16 cur_tptr;
|
|
u16 cur_rptr;
|
|
};
|
|
|
|
/**
|
|
* struct mtk_hsdma_pchan - This is the struct holding info describing physical
|
|
* channel (PC)
|
|
* @ring: An instance for the underlying ring
|
|
* @sz_ring: Total size allocated for the ring
|
|
* @nr_free: Total number of free rooms in the ring. It would
|
|
* be accessed and updated frequently between IRQ
|
|
* context and user context to reflect whether ring
|
|
* can accept requests from VD.
|
|
*/
|
|
struct mtk_hsdma_pchan {
|
|
struct mtk_hsdma_ring ring;
|
|
size_t sz_ring;
|
|
atomic_t nr_free;
|
|
};
|
|
|
|
/**
|
|
* struct mtk_hsdma_vchan - This is the struct holding info describing virtual
|
|
* channel (VC)
|
|
* @vc: An instance for struct virt_dma_chan
|
|
* @issue_completion: The wait for all issued descriptors completited
|
|
* @issue_synchronize: Bool indicating channel synchronization starts
|
|
* @desc_hw_processing: List those descriptors the hardware is processing,
|
|
* which is protected by vc.lock
|
|
*/
|
|
struct mtk_hsdma_vchan {
|
|
struct virt_dma_chan vc;
|
|
struct completion issue_completion;
|
|
bool issue_synchronize;
|
|
struct list_head desc_hw_processing;
|
|
};
|
|
|
|
/**
|
|
* struct mtk_hsdma_soc - This is the struct holding differences among SoCs
|
|
* @ddone: Bit mask for DDONE
|
|
* @ls0: Bit mask for LS0
|
|
*/
|
|
struct mtk_hsdma_soc {
|
|
__le32 ddone;
|
|
__le32 ls0;
|
|
};
|
|
|
|
/**
|
|
* struct mtk_hsdma_device - This is the struct holding info describing HSDMA
|
|
* device
|
|
* @ddev: An instance for struct dma_device
|
|
* @base: The mapped register I/O base
|
|
* @clk: The clock that device internal is using
|
|
* @irq: The IRQ that device are using
|
|
* @dma_requests: The number of VCs the device supports to
|
|
* @vc: The pointer to all available VCs
|
|
* @pc: The pointer to the underlying PC
|
|
* @pc_refcnt: Track how many VCs are using the PC
|
|
* @lock: Lock protect agaisting multiple VCs access PC
|
|
* @soc: The pointer to area holding differences among
|
|
* vaious platform
|
|
*/
|
|
struct mtk_hsdma_device {
|
|
struct dma_device ddev;
|
|
void __iomem *base;
|
|
struct clk *clk;
|
|
u32 irq;
|
|
|
|
u32 dma_requests;
|
|
struct mtk_hsdma_vchan *vc;
|
|
struct mtk_hsdma_pchan *pc;
|
|
refcount_t pc_refcnt;
|
|
|
|
/* Lock used to protect against multiple VCs access PC */
|
|
spinlock_t lock;
|
|
|
|
const struct mtk_hsdma_soc *soc;
|
|
};
|
|
|
|
static struct mtk_hsdma_device *to_hsdma_dev(struct dma_chan *chan)
|
|
{
|
|
return container_of(chan->device, struct mtk_hsdma_device, ddev);
|
|
}
|
|
|
|
static inline struct mtk_hsdma_vchan *to_hsdma_vchan(struct dma_chan *chan)
|
|
{
|
|
return container_of(chan, struct mtk_hsdma_vchan, vc.chan);
|
|
}
|
|
|
|
static struct mtk_hsdma_vdesc *to_hsdma_vdesc(struct virt_dma_desc *vd)
|
|
{
|
|
return container_of(vd, struct mtk_hsdma_vdesc, vd);
|
|
}
|
|
|
|
static struct device *hsdma2dev(struct mtk_hsdma_device *hsdma)
|
|
{
|
|
return hsdma->ddev.dev;
|
|
}
|
|
|
|
static u32 mtk_dma_read(struct mtk_hsdma_device *hsdma, u32 reg)
|
|
{
|
|
return readl(hsdma->base + reg);
|
|
}
|
|
|
|
static void mtk_dma_write(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
|
|
{
|
|
writel(val, hsdma->base + reg);
|
|
}
|
|
|
|
static void mtk_dma_rmw(struct mtk_hsdma_device *hsdma, u32 reg,
|
|
u32 mask, u32 set)
|
|
{
|
|
u32 val;
|
|
|
|
val = mtk_dma_read(hsdma, reg);
|
|
val &= ~mask;
|
|
val |= set;
|
|
mtk_dma_write(hsdma, reg, val);
|
|
}
|
|
|
|
static void mtk_dma_set(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
|
|
{
|
|
mtk_dma_rmw(hsdma, reg, 0, val);
|
|
}
|
|
|
|
static void mtk_dma_clr(struct mtk_hsdma_device *hsdma, u32 reg, u32 val)
|
|
{
|
|
mtk_dma_rmw(hsdma, reg, val, 0);
|
|
}
|
|
|
|
static void mtk_hsdma_vdesc_free(struct virt_dma_desc *vd)
|
|
{
|
|
kfree(container_of(vd, struct mtk_hsdma_vdesc, vd));
|
|
}
|
|
|
|
static int mtk_hsdma_busy_wait(struct mtk_hsdma_device *hsdma)
|
|
{
|
|
u32 status = 0;
|
|
|
|
return readl_poll_timeout(hsdma->base + MTK_HSDMA_GLO, status,
|
|
!(status & MTK_HSDMA_GLO_BUSY),
|
|
MTK_HSDMA_USEC_POLL,
|
|
MTK_HSDMA_TIMEOUT_POLL);
|
|
}
|
|
|
|
static int mtk_hsdma_alloc_pchan(struct mtk_hsdma_device *hsdma,
|
|
struct mtk_hsdma_pchan *pc)
|
|
{
|
|
struct mtk_hsdma_ring *ring = &pc->ring;
|
|
int err;
|
|
|
|
memset(pc, 0, sizeof(*pc));
|
|
|
|
/*
|
|
* Allocate ring space where [0 ... MTK_DMA_SIZE - 1] is for TX ring
|
|
* and [MTK_DMA_SIZE ... 2 * MTK_DMA_SIZE - 1] is for RX ring.
|
|
*/
|
|
pc->sz_ring = 2 * MTK_DMA_SIZE * sizeof(*ring->txd);
|
|
ring->txd = dma_alloc_coherent(hsdma2dev(hsdma), pc->sz_ring,
|
|
&ring->tphys, GFP_NOWAIT);
|
|
if (!ring->txd)
|
|
return -ENOMEM;
|
|
|
|
ring->rxd = &ring->txd[MTK_DMA_SIZE];
|
|
ring->rphys = ring->tphys + MTK_DMA_SIZE * sizeof(*ring->txd);
|
|
ring->cur_tptr = 0;
|
|
ring->cur_rptr = MTK_DMA_SIZE - 1;
|
|
|
|
ring->cb = kcalloc(MTK_DMA_SIZE, sizeof(*ring->cb), GFP_NOWAIT);
|
|
if (!ring->cb) {
|
|
err = -ENOMEM;
|
|
goto err_free_dma;
|
|
}
|
|
|
|
atomic_set(&pc->nr_free, MTK_DMA_SIZE - 1);
|
|
|
|
/* Disable HSDMA and wait for the completion */
|
|
mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
|
|
err = mtk_hsdma_busy_wait(hsdma);
|
|
if (err)
|
|
goto err_free_cb;
|
|
|
|
/* Reset */
|
|
mtk_dma_set(hsdma, MTK_HSDMA_RESET,
|
|
MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
|
|
mtk_dma_clr(hsdma, MTK_HSDMA_RESET,
|
|
MTK_HSDMA_RST_TX | MTK_HSDMA_RST_RX);
|
|
|
|
/* Setup HSDMA initial pointer in the ring */
|
|
mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, ring->tphys);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, MTK_DMA_SIZE);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_TX_DMA, 0);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, ring->rphys);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, MTK_DMA_SIZE);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, ring->cur_rptr);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_RX_DMA, 0);
|
|
|
|
/* Enable HSDMA */
|
|
mtk_dma_set(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
|
|
|
|
/* Setup delayed interrupt */
|
|
mtk_dma_write(hsdma, MTK_HSDMA_DLYINT, MTK_HSDMA_DLYINT_DEFAULT);
|
|
|
|
/* Enable interrupt */
|
|
mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
|
|
|
|
return 0;
|
|
|
|
err_free_cb:
|
|
kfree(ring->cb);
|
|
|
|
err_free_dma:
|
|
dma_free_coherent(hsdma2dev(hsdma),
|
|
pc->sz_ring, ring->txd, ring->tphys);
|
|
return err;
|
|
}
|
|
|
|
static void mtk_hsdma_free_pchan(struct mtk_hsdma_device *hsdma,
|
|
struct mtk_hsdma_pchan *pc)
|
|
{
|
|
struct mtk_hsdma_ring *ring = &pc->ring;
|
|
|
|
/* Disable HSDMA and then wait for the completion */
|
|
mtk_dma_clr(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DMA);
|
|
mtk_hsdma_busy_wait(hsdma);
|
|
|
|
/* Reset pointer in the ring */
|
|
mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_TX_BASE, 0);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_TX_CNT, 0);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, 0);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_RX_BASE, 0);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_RX_CNT, 0);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, MTK_DMA_SIZE - 1);
|
|
|
|
kfree(ring->cb);
|
|
|
|
dma_free_coherent(hsdma2dev(hsdma),
|
|
pc->sz_ring, ring->txd, ring->tphys);
|
|
}
|
|
|
|
static int mtk_hsdma_issue_pending_vdesc(struct mtk_hsdma_device *hsdma,
|
|
struct mtk_hsdma_pchan *pc,
|
|
struct mtk_hsdma_vdesc *hvd)
|
|
{
|
|
struct mtk_hsdma_ring *ring = &pc->ring;
|
|
struct mtk_hsdma_pdesc *txd, *rxd;
|
|
u16 reserved, prev, tlen, num_sgs;
|
|
unsigned long flags;
|
|
|
|
/* Protect against PC is accessed by multiple VCs simultaneously */
|
|
spin_lock_irqsave(&hsdma->lock, flags);
|
|
|
|
/*
|
|
* Reserve rooms, where pc->nr_free is used to track how many free
|
|
* rooms in the ring being updated in user and IRQ context.
|
|
*/
|
|
num_sgs = DIV_ROUND_UP(hvd->len, MTK_HSDMA_MAX_LEN);
|
|
reserved = min_t(u16, num_sgs, atomic_read(&pc->nr_free));
|
|
|
|
if (!reserved) {
|
|
spin_unlock_irqrestore(&hsdma->lock, flags);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
atomic_sub(reserved, &pc->nr_free);
|
|
|
|
while (reserved--) {
|
|
/* Limit size by PD capability for valid data moving */
|
|
tlen = (hvd->len > MTK_HSDMA_MAX_LEN) ?
|
|
MTK_HSDMA_MAX_LEN : hvd->len;
|
|
|
|
/*
|
|
* Setup PDs using the remaining VD info mapped on those
|
|
* reserved rooms. And since RXD is shared memory between the
|
|
* host and the device allocated by dma_alloc_coherent call,
|
|
* the helper macro WRITE_ONCE can ensure the data written to
|
|
* RAM would really happens.
|
|
*/
|
|
txd = &ring->txd[ring->cur_tptr];
|
|
WRITE_ONCE(txd->desc1, hvd->src);
|
|
WRITE_ONCE(txd->desc2,
|
|
hsdma->soc->ls0 | MTK_HSDMA_DESC_PLEN(tlen));
|
|
|
|
rxd = &ring->rxd[ring->cur_tptr];
|
|
WRITE_ONCE(rxd->desc1, hvd->dest);
|
|
WRITE_ONCE(rxd->desc2, MTK_HSDMA_DESC_PLEN(tlen));
|
|
|
|
/* Associate VD, the PD belonged to */
|
|
ring->cb[ring->cur_tptr].vd = &hvd->vd;
|
|
|
|
/* Move forward the pointer of TX ring */
|
|
ring->cur_tptr = MTK_HSDMA_NEXT_DESP_IDX(ring->cur_tptr,
|
|
MTK_DMA_SIZE);
|
|
|
|
/* Update VD with remaining data */
|
|
hvd->src += tlen;
|
|
hvd->dest += tlen;
|
|
hvd->len -= tlen;
|
|
}
|
|
|
|
/*
|
|
* Tagging flag for the last PD for VD will be responsible for
|
|
* completing VD.
|
|
*/
|
|
if (!hvd->len) {
|
|
prev = MTK_HSDMA_LAST_DESP_IDX(ring->cur_tptr, MTK_DMA_SIZE);
|
|
ring->cb[prev].flag = MTK_HSDMA_VDESC_FINISHED;
|
|
}
|
|
|
|
/* Ensure all changes indeed done before we're going on */
|
|
wmb();
|
|
|
|
/*
|
|
* Updating into hardware the pointer of TX ring lets HSDMA to take
|
|
* action for those pending PDs.
|
|
*/
|
|
mtk_dma_write(hsdma, MTK_HSDMA_TX_CPU, ring->cur_tptr);
|
|
|
|
spin_unlock_irqrestore(&hsdma->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mtk_hsdma_issue_vchan_pending(struct mtk_hsdma_device *hsdma,
|
|
struct mtk_hsdma_vchan *hvc)
|
|
{
|
|
struct virt_dma_desc *vd, *vd2;
|
|
int err;
|
|
|
|
lockdep_assert_held(&hvc->vc.lock);
|
|
|
|
list_for_each_entry_safe(vd, vd2, &hvc->vc.desc_issued, node) {
|
|
struct mtk_hsdma_vdesc *hvd;
|
|
|
|
hvd = to_hsdma_vdesc(vd);
|
|
|
|
/* Map VD into PC and all VCs shares a single PC */
|
|
err = mtk_hsdma_issue_pending_vdesc(hsdma, hsdma->pc, hvd);
|
|
|
|
/*
|
|
* Move VD from desc_issued to desc_hw_processing when entire
|
|
* VD is fit into available PDs. Otherwise, the uncompleted
|
|
* VDs would stay in list desc_issued and then restart the
|
|
* processing as soon as possible once underlying ring space
|
|
* got freed.
|
|
*/
|
|
if (err == -ENOSPC || hvd->len > 0)
|
|
break;
|
|
|
|
/*
|
|
* The extra list desc_hw_processing is used because
|
|
* hardware can't provide sufficient information allowing us
|
|
* to know what VDs are still working on the underlying ring.
|
|
* Through the additional list, it can help us to implement
|
|
* terminate_all, residue calculation and such thing needed
|
|
* to know detail descriptor status on the hardware.
|
|
*/
|
|
list_move_tail(&vd->node, &hvc->desc_hw_processing);
|
|
}
|
|
}
|
|
|
|
static void mtk_hsdma_free_rooms_in_ring(struct mtk_hsdma_device *hsdma)
|
|
{
|
|
struct mtk_hsdma_vchan *hvc;
|
|
struct mtk_hsdma_pdesc *rxd;
|
|
struct mtk_hsdma_vdesc *hvd;
|
|
struct mtk_hsdma_pchan *pc;
|
|
struct mtk_hsdma_cb *cb;
|
|
int i = MTK_DMA_SIZE;
|
|
__le32 desc2;
|
|
u32 status;
|
|
u16 next;
|
|
|
|
/* Read IRQ status */
|
|
status = mtk_dma_read(hsdma, MTK_HSDMA_INT_STATUS);
|
|
if (unlikely(!(status & MTK_HSDMA_INT_RXDONE)))
|
|
goto rx_done;
|
|
|
|
pc = hsdma->pc;
|
|
|
|
/*
|
|
* Using a fail-safe loop with iterations of up to MTK_DMA_SIZE to
|
|
* reclaim these finished descriptors: The most number of PDs the ISR
|
|
* can handle at one time shouldn't be more than MTK_DMA_SIZE so we
|
|
* take it as limited count instead of just using a dangerous infinite
|
|
* poll.
|
|
*/
|
|
while (i--) {
|
|
next = MTK_HSDMA_NEXT_DESP_IDX(pc->ring.cur_rptr,
|
|
MTK_DMA_SIZE);
|
|
rxd = &pc->ring.rxd[next];
|
|
|
|
/*
|
|
* If MTK_HSDMA_DESC_DDONE is no specified, that means data
|
|
* moving for the PD is still under going.
|
|
*/
|
|
desc2 = READ_ONCE(rxd->desc2);
|
|
if (!(desc2 & hsdma->soc->ddone))
|
|
break;
|
|
|
|
cb = &pc->ring.cb[next];
|
|
if (unlikely(!cb->vd)) {
|
|
dev_err(hsdma2dev(hsdma), "cb->vd cannot be null\n");
|
|
break;
|
|
}
|
|
|
|
/* Update residue of VD the associated PD belonged to */
|
|
hvd = to_hsdma_vdesc(cb->vd);
|
|
hvd->residue -= MTK_HSDMA_DESC_PLEN_GET(rxd->desc2);
|
|
|
|
/* Complete VD until the relevant last PD is finished */
|
|
if (IS_MTK_HSDMA_VDESC_FINISHED(cb->flag)) {
|
|
hvc = to_hsdma_vchan(cb->vd->tx.chan);
|
|
|
|
spin_lock(&hvc->vc.lock);
|
|
|
|
/* Remove VD from list desc_hw_processing */
|
|
list_del(&cb->vd->node);
|
|
|
|
/* Add VD into list desc_completed */
|
|
vchan_cookie_complete(cb->vd);
|
|
|
|
if (hvc->issue_synchronize &&
|
|
list_empty(&hvc->desc_hw_processing)) {
|
|
complete(&hvc->issue_completion);
|
|
hvc->issue_synchronize = false;
|
|
}
|
|
spin_unlock(&hvc->vc.lock);
|
|
|
|
cb->flag = 0;
|
|
}
|
|
|
|
cb->vd = 0;
|
|
|
|
/*
|
|
* Recycle the RXD with the helper WRITE_ONCE that can ensure
|
|
* data written into RAM would really happens.
|
|
*/
|
|
WRITE_ONCE(rxd->desc1, 0);
|
|
WRITE_ONCE(rxd->desc2, 0);
|
|
pc->ring.cur_rptr = next;
|
|
|
|
/* Release rooms */
|
|
atomic_inc(&pc->nr_free);
|
|
}
|
|
|
|
/* Ensure all changes indeed done before we're going on */
|
|
wmb();
|
|
|
|
/* Update CPU pointer for those completed PDs */
|
|
mtk_dma_write(hsdma, MTK_HSDMA_RX_CPU, pc->ring.cur_rptr);
|
|
|
|
/*
|
|
* Acking the pending IRQ allows hardware no longer to keep the used
|
|
* IRQ line in certain trigger state when software has completed all
|
|
* the finished physical descriptors.
|
|
*/
|
|
if (atomic_read(&pc->nr_free) >= MTK_DMA_SIZE - 1)
|
|
mtk_dma_write(hsdma, MTK_HSDMA_INT_STATUS, status);
|
|
|
|
/* ASAP handles pending VDs in all VCs after freeing some rooms */
|
|
for (i = 0; i < hsdma->dma_requests; i++) {
|
|
hvc = &hsdma->vc[i];
|
|
spin_lock(&hvc->vc.lock);
|
|
mtk_hsdma_issue_vchan_pending(hsdma, hvc);
|
|
spin_unlock(&hvc->vc.lock);
|
|
}
|
|
|
|
rx_done:
|
|
/* All completed PDs are cleaned up, so enable interrupt again */
|
|
mtk_dma_set(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
|
|
}
|
|
|
|
static irqreturn_t mtk_hsdma_irq(int irq, void *devid)
|
|
{
|
|
struct mtk_hsdma_device *hsdma = devid;
|
|
|
|
/*
|
|
* Disable interrupt until all completed PDs are cleaned up in
|
|
* mtk_hsdma_free_rooms call.
|
|
*/
|
|
mtk_dma_clr(hsdma, MTK_HSDMA_INT_ENABLE, MTK_HSDMA_INT_RXDONE);
|
|
|
|
mtk_hsdma_free_rooms_in_ring(hsdma);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static struct virt_dma_desc *mtk_hsdma_find_active_desc(struct dma_chan *c,
|
|
dma_cookie_t cookie)
|
|
{
|
|
struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
|
|
struct virt_dma_desc *vd;
|
|
|
|
list_for_each_entry(vd, &hvc->desc_hw_processing, node)
|
|
if (vd->tx.cookie == cookie)
|
|
return vd;
|
|
|
|
list_for_each_entry(vd, &hvc->vc.desc_issued, node)
|
|
if (vd->tx.cookie == cookie)
|
|
return vd;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static enum dma_status mtk_hsdma_tx_status(struct dma_chan *c,
|
|
dma_cookie_t cookie,
|
|
struct dma_tx_state *txstate)
|
|
{
|
|
struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
|
|
struct mtk_hsdma_vdesc *hvd;
|
|
struct virt_dma_desc *vd;
|
|
enum dma_status ret;
|
|
unsigned long flags;
|
|
size_t bytes = 0;
|
|
|
|
ret = dma_cookie_status(c, cookie, txstate);
|
|
if (ret == DMA_COMPLETE || !txstate)
|
|
return ret;
|
|
|
|
spin_lock_irqsave(&hvc->vc.lock, flags);
|
|
vd = mtk_hsdma_find_active_desc(c, cookie);
|
|
spin_unlock_irqrestore(&hvc->vc.lock, flags);
|
|
|
|
if (vd) {
|
|
hvd = to_hsdma_vdesc(vd);
|
|
bytes = hvd->residue;
|
|
}
|
|
|
|
dma_set_residue(txstate, bytes);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void mtk_hsdma_issue_pending(struct dma_chan *c)
|
|
{
|
|
struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
|
|
struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&hvc->vc.lock, flags);
|
|
|
|
if (vchan_issue_pending(&hvc->vc))
|
|
mtk_hsdma_issue_vchan_pending(hsdma, hvc);
|
|
|
|
spin_unlock_irqrestore(&hvc->vc.lock, flags);
|
|
}
|
|
|
|
static struct dma_async_tx_descriptor *
|
|
mtk_hsdma_prep_dma_memcpy(struct dma_chan *c, dma_addr_t dest,
|
|
dma_addr_t src, size_t len, unsigned long flags)
|
|
{
|
|
struct mtk_hsdma_vdesc *hvd;
|
|
|
|
hvd = kzalloc(sizeof(*hvd), GFP_NOWAIT);
|
|
if (!hvd)
|
|
return NULL;
|
|
|
|
hvd->len = len;
|
|
hvd->residue = len;
|
|
hvd->src = src;
|
|
hvd->dest = dest;
|
|
|
|
return vchan_tx_prep(to_virt_chan(c), &hvd->vd, flags);
|
|
}
|
|
|
|
static int mtk_hsdma_free_inactive_desc(struct dma_chan *c)
|
|
{
|
|
struct virt_dma_chan *vc = to_virt_chan(c);
|
|
unsigned long flags;
|
|
LIST_HEAD(head);
|
|
|
|
spin_lock_irqsave(&vc->lock, flags);
|
|
list_splice_tail_init(&vc->desc_allocated, &head);
|
|
list_splice_tail_init(&vc->desc_submitted, &head);
|
|
list_splice_tail_init(&vc->desc_issued, &head);
|
|
spin_unlock_irqrestore(&vc->lock, flags);
|
|
|
|
/* At the point, we don't expect users put descriptor into VC again */
|
|
vchan_dma_desc_free_list(vc, &head);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mtk_hsdma_free_active_desc(struct dma_chan *c)
|
|
{
|
|
struct mtk_hsdma_vchan *hvc = to_hsdma_vchan(c);
|
|
bool sync_needed = false;
|
|
|
|
/*
|
|
* Once issue_synchronize is being set, which means once the hardware
|
|
* consumes all descriptors for the channel in the ring, the
|
|
* synchronization must be be notified immediately it is completed.
|
|
*/
|
|
spin_lock(&hvc->vc.lock);
|
|
if (!list_empty(&hvc->desc_hw_processing)) {
|
|
hvc->issue_synchronize = true;
|
|
sync_needed = true;
|
|
}
|
|
spin_unlock(&hvc->vc.lock);
|
|
|
|
if (sync_needed)
|
|
wait_for_completion(&hvc->issue_completion);
|
|
/*
|
|
* At the point, we expect that all remaining descriptors in the ring
|
|
* for the channel should be all processing done.
|
|
*/
|
|
WARN_ONCE(!list_empty(&hvc->desc_hw_processing),
|
|
"Desc pending still in list desc_hw_processing\n");
|
|
|
|
/* Free all descriptors in list desc_completed */
|
|
vchan_synchronize(&hvc->vc);
|
|
|
|
WARN_ONCE(!list_empty(&hvc->vc.desc_completed),
|
|
"Desc pending still in list desc_completed\n");
|
|
}
|
|
|
|
static int mtk_hsdma_terminate_all(struct dma_chan *c)
|
|
{
|
|
/*
|
|
* Free pending descriptors not processed yet by hardware that have
|
|
* previously been submitted to the channel.
|
|
*/
|
|
mtk_hsdma_free_inactive_desc(c);
|
|
|
|
/*
|
|
* However, the DMA engine doesn't provide any way to stop these
|
|
* descriptors being processed currently by hardware. The only way is
|
|
* to just waiting until these descriptors are all processed completely
|
|
* through mtk_hsdma_free_active_desc call.
|
|
*/
|
|
mtk_hsdma_free_active_desc(c);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_hsdma_alloc_chan_resources(struct dma_chan *c)
|
|
{
|
|
struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
|
|
int err;
|
|
|
|
/*
|
|
* Since HSDMA has only one PC, the resource for PC is being allocated
|
|
* when the first VC is being created and the other VCs would run on
|
|
* the same PC.
|
|
*/
|
|
if (!refcount_read(&hsdma->pc_refcnt)) {
|
|
err = mtk_hsdma_alloc_pchan(hsdma, hsdma->pc);
|
|
if (err)
|
|
return err;
|
|
/*
|
|
* refcount_inc would complain increment on 0; use-after-free.
|
|
* Thus, we need to explicitly set it as 1 initially.
|
|
*/
|
|
refcount_set(&hsdma->pc_refcnt, 1);
|
|
} else {
|
|
refcount_inc(&hsdma->pc_refcnt);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void mtk_hsdma_free_chan_resources(struct dma_chan *c)
|
|
{
|
|
struct mtk_hsdma_device *hsdma = to_hsdma_dev(c);
|
|
|
|
/* Free all descriptors in all lists on the VC */
|
|
mtk_hsdma_terminate_all(c);
|
|
|
|
/* The resource for PC is not freed until all the VCs are destroyed */
|
|
if (!refcount_dec_and_test(&hsdma->pc_refcnt))
|
|
return;
|
|
|
|
mtk_hsdma_free_pchan(hsdma, hsdma->pc);
|
|
}
|
|
|
|
static int mtk_hsdma_hw_init(struct mtk_hsdma_device *hsdma)
|
|
{
|
|
int err;
|
|
|
|
pm_runtime_enable(hsdma2dev(hsdma));
|
|
pm_runtime_get_sync(hsdma2dev(hsdma));
|
|
|
|
err = clk_prepare_enable(hsdma->clk);
|
|
if (err)
|
|
return err;
|
|
|
|
mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
|
|
mtk_dma_write(hsdma, MTK_HSDMA_GLO, MTK_HSDMA_GLO_DEFAULT);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_hsdma_hw_deinit(struct mtk_hsdma_device *hsdma)
|
|
{
|
|
mtk_dma_write(hsdma, MTK_HSDMA_GLO, 0);
|
|
|
|
clk_disable_unprepare(hsdma->clk);
|
|
|
|
pm_runtime_put_sync(hsdma2dev(hsdma));
|
|
pm_runtime_disable(hsdma2dev(hsdma));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtk_hsdma_soc mt7623_soc = {
|
|
.ddone = BIT(31),
|
|
.ls0 = BIT(30),
|
|
};
|
|
|
|
static const struct mtk_hsdma_soc mt7622_soc = {
|
|
.ddone = BIT(15),
|
|
.ls0 = BIT(14),
|
|
};
|
|
|
|
static const struct of_device_id mtk_hsdma_match[] = {
|
|
{ .compatible = "mediatek,mt7623-hsdma", .data = &mt7623_soc},
|
|
{ .compatible = "mediatek,mt7622-hsdma", .data = &mt7622_soc},
|
|
{ /* sentinel */ }
|
|
};
|
|
MODULE_DEVICE_TABLE(of, mtk_hsdma_match);
|
|
|
|
static int mtk_hsdma_probe(struct platform_device *pdev)
|
|
{
|
|
struct mtk_hsdma_device *hsdma;
|
|
struct mtk_hsdma_vchan *vc;
|
|
struct dma_device *dd;
|
|
struct resource *res;
|
|
int i, err;
|
|
|
|
hsdma = devm_kzalloc(&pdev->dev, sizeof(*hsdma), GFP_KERNEL);
|
|
if (!hsdma)
|
|
return -ENOMEM;
|
|
|
|
dd = &hsdma->ddev;
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
|
hsdma->base = devm_ioremap_resource(&pdev->dev, res);
|
|
if (IS_ERR(hsdma->base))
|
|
return PTR_ERR(hsdma->base);
|
|
|
|
hsdma->soc = of_device_get_match_data(&pdev->dev);
|
|
if (!hsdma->soc) {
|
|
dev_err(&pdev->dev, "No device match found\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
hsdma->clk = devm_clk_get(&pdev->dev, "hsdma");
|
|
if (IS_ERR(hsdma->clk)) {
|
|
dev_err(&pdev->dev, "No clock for %s\n",
|
|
dev_name(&pdev->dev));
|
|
return PTR_ERR(hsdma->clk);
|
|
}
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
|
|
if (!res) {
|
|
dev_err(&pdev->dev, "No irq resource for %s\n",
|
|
dev_name(&pdev->dev));
|
|
return -EINVAL;
|
|
}
|
|
hsdma->irq = res->start;
|
|
|
|
refcount_set(&hsdma->pc_refcnt, 0);
|
|
spin_lock_init(&hsdma->lock);
|
|
|
|
dma_cap_set(DMA_MEMCPY, dd->cap_mask);
|
|
|
|
dd->copy_align = MTK_HSDMA_ALIGN_SIZE;
|
|
dd->device_alloc_chan_resources = mtk_hsdma_alloc_chan_resources;
|
|
dd->device_free_chan_resources = mtk_hsdma_free_chan_resources;
|
|
dd->device_tx_status = mtk_hsdma_tx_status;
|
|
dd->device_issue_pending = mtk_hsdma_issue_pending;
|
|
dd->device_prep_dma_memcpy = mtk_hsdma_prep_dma_memcpy;
|
|
dd->device_terminate_all = mtk_hsdma_terminate_all;
|
|
dd->src_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
|
|
dd->dst_addr_widths = MTK_HSDMA_DMA_BUSWIDTHS;
|
|
dd->directions = BIT(DMA_MEM_TO_MEM);
|
|
dd->residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
|
|
dd->dev = &pdev->dev;
|
|
INIT_LIST_HEAD(&dd->channels);
|
|
|
|
hsdma->dma_requests = MTK_HSDMA_NR_VCHANS;
|
|
if (pdev->dev.of_node && of_property_read_u32(pdev->dev.of_node,
|
|
"dma-requests",
|
|
&hsdma->dma_requests)) {
|
|
dev_info(&pdev->dev,
|
|
"Using %u as missing dma-requests property\n",
|
|
MTK_HSDMA_NR_VCHANS);
|
|
}
|
|
|
|
hsdma->pc = devm_kcalloc(&pdev->dev, MTK_HSDMA_NR_MAX_PCHANS,
|
|
sizeof(*hsdma->pc), GFP_KERNEL);
|
|
if (!hsdma->pc)
|
|
return -ENOMEM;
|
|
|
|
hsdma->vc = devm_kcalloc(&pdev->dev, hsdma->dma_requests,
|
|
sizeof(*hsdma->vc), GFP_KERNEL);
|
|
if (!hsdma->vc)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < hsdma->dma_requests; i++) {
|
|
vc = &hsdma->vc[i];
|
|
vc->vc.desc_free = mtk_hsdma_vdesc_free;
|
|
vchan_init(&vc->vc, dd);
|
|
init_completion(&vc->issue_completion);
|
|
INIT_LIST_HEAD(&vc->desc_hw_processing);
|
|
}
|
|
|
|
err = dma_async_device_register(dd);
|
|
if (err)
|
|
return err;
|
|
|
|
err = of_dma_controller_register(pdev->dev.of_node,
|
|
of_dma_xlate_by_chan_id, hsdma);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"MediaTek HSDMA OF registration failed %d\n", err);
|
|
goto err_unregister;
|
|
}
|
|
|
|
mtk_hsdma_hw_init(hsdma);
|
|
|
|
err = devm_request_irq(&pdev->dev, hsdma->irq,
|
|
mtk_hsdma_irq, 0,
|
|
dev_name(&pdev->dev), hsdma);
|
|
if (err) {
|
|
dev_err(&pdev->dev,
|
|
"request_irq failed with err %d\n", err);
|
|
goto err_unregister;
|
|
}
|
|
|
|
platform_set_drvdata(pdev, hsdma);
|
|
|
|
dev_info(&pdev->dev, "MediaTek HSDMA driver registered\n");
|
|
|
|
return 0;
|
|
|
|
err_unregister:
|
|
dma_async_device_unregister(dd);
|
|
|
|
return err;
|
|
}
|
|
|
|
static int mtk_hsdma_remove(struct platform_device *pdev)
|
|
{
|
|
struct mtk_hsdma_device *hsdma = platform_get_drvdata(pdev);
|
|
struct mtk_hsdma_vchan *vc;
|
|
int i;
|
|
|
|
/* Kill VC task */
|
|
for (i = 0; i < hsdma->dma_requests; i++) {
|
|
vc = &hsdma->vc[i];
|
|
|
|
list_del(&vc->vc.chan.device_node);
|
|
tasklet_kill(&vc->vc.task);
|
|
}
|
|
|
|
/* Disable DMA interrupt */
|
|
mtk_dma_write(hsdma, MTK_HSDMA_INT_ENABLE, 0);
|
|
|
|
/* Waits for any pending IRQ handlers to complete */
|
|
synchronize_irq(hsdma->irq);
|
|
|
|
/* Disable hardware */
|
|
mtk_hsdma_hw_deinit(hsdma);
|
|
|
|
dma_async_device_unregister(&hsdma->ddev);
|
|
of_dma_controller_free(pdev->dev.of_node);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct platform_driver mtk_hsdma_driver = {
|
|
.probe = mtk_hsdma_probe,
|
|
.remove = mtk_hsdma_remove,
|
|
.driver = {
|
|
.name = KBUILD_MODNAME,
|
|
.of_match_table = mtk_hsdma_match,
|
|
},
|
|
};
|
|
module_platform_driver(mtk_hsdma_driver);
|
|
|
|
MODULE_DESCRIPTION("MediaTek High-Speed DMA Controller Driver");
|
|
MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
|
|
MODULE_LICENSE("GPL v2");
|