linux_dsm_epyc7002/drivers/infiniband/hw/qib/qib_sdma.c
Michael J. Ruhl db421a5499 IB/{hfi1, qib, rvt} Cleanup open coded sge usage
Several locations for manipulating sges use an open coded sequence
that is covered by helper functions.

Use the appropriate helper functions.

Signed-off-by: Michael J. Ruhl <michael.j.ruhl@intel.com>
Signed-off-by: Dennis Dalessandro <dennis.dalessandro@intel.com>
Signed-off-by: Doug Ledford <dledford@redhat.com>
2019-01-30 14:22:32 -05:00

1000 lines
26 KiB
C

/*
* Copyright (c) 2012 Intel Corporation. All rights reserved.
* Copyright (c) 2007 - 2012 QLogic Corporation. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/spinlock.h>
#include <linux/netdevice.h>
#include <linux/moduleparam.h>
#include "qib.h"
#include "qib_common.h"
/* default pio off, sdma on */
static ushort sdma_descq_cnt = 256;
module_param_named(sdma_descq_cnt, sdma_descq_cnt, ushort, S_IRUGO);
MODULE_PARM_DESC(sdma_descq_cnt, "Number of SDMA descq entries");
/*
* Bits defined in the send DMA descriptor.
*/
#define SDMA_DESC_LAST (1ULL << 11)
#define SDMA_DESC_FIRST (1ULL << 12)
#define SDMA_DESC_DMA_HEAD (1ULL << 13)
#define SDMA_DESC_USE_LARGE_BUF (1ULL << 14)
#define SDMA_DESC_INTR (1ULL << 15)
#define SDMA_DESC_COUNT_LSB 16
#define SDMA_DESC_GEN_LSB 30
/* declare all statics here rather than keep sorting */
static int alloc_sdma(struct qib_pportdata *);
static void sdma_complete(struct kref *);
static void sdma_finalput(struct qib_sdma_state *);
static void sdma_get(struct qib_sdma_state *);
static void sdma_put(struct qib_sdma_state *);
static void sdma_set_state(struct qib_pportdata *, enum qib_sdma_states);
static void sdma_start_sw_clean_up(struct qib_pportdata *);
static void sdma_sw_clean_up_task(unsigned long);
static void unmap_desc(struct qib_pportdata *, unsigned);
static void sdma_get(struct qib_sdma_state *ss)
{
kref_get(&ss->kref);
}
static void sdma_complete(struct kref *kref)
{
struct qib_sdma_state *ss =
container_of(kref, struct qib_sdma_state, kref);
complete(&ss->comp);
}
static void sdma_put(struct qib_sdma_state *ss)
{
kref_put(&ss->kref, sdma_complete);
}
static void sdma_finalput(struct qib_sdma_state *ss)
{
sdma_put(ss);
wait_for_completion(&ss->comp);
}
/*
* Complete all the sdma requests on the active list, in the correct
* order, and with appropriate processing. Called when cleaning up
* after sdma shutdown, and when new sdma requests are submitted for
* a link that is down. This matches what is done for requests
* that complete normally, it's just the full list.
*
* Must be called with sdma_lock held
*/
static void clear_sdma_activelist(struct qib_pportdata *ppd)
{
struct qib_sdma_txreq *txp, *txp_next;
list_for_each_entry_safe(txp, txp_next, &ppd->sdma_activelist, list) {
list_del_init(&txp->list);
if (txp->flags & QIB_SDMA_TXREQ_F_FREEDESC) {
unsigned idx;
idx = txp->start_idx;
while (idx != txp->next_descq_idx) {
unmap_desc(ppd, idx);
if (++idx == ppd->sdma_descq_cnt)
idx = 0;
}
}
if (txp->callback)
(*txp->callback)(txp, QIB_SDMA_TXREQ_S_ABORTED);
}
}
static void sdma_sw_clean_up_task(unsigned long opaque)
{
struct qib_pportdata *ppd = (struct qib_pportdata *) opaque;
unsigned long flags;
spin_lock_irqsave(&ppd->sdma_lock, flags);
/*
* At this point, the following should always be true:
* - We are halted, so no more descriptors are getting retired.
* - We are not running, so no one is submitting new work.
* - Only we can send the e40_sw_cleaned, so we can't start
* running again until we say so. So, the active list and
* descq are ours to play with.
*/
/* Process all retired requests. */
qib_sdma_make_progress(ppd);
clear_sdma_activelist(ppd);
/*
* Resync count of added and removed. It is VERY important that
* sdma_descq_removed NEVER decrement - user_sdma depends on it.
*/
ppd->sdma_descq_removed = ppd->sdma_descq_added;
/*
* Reset our notion of head and tail.
* Note that the HW registers will be reset when switching states
* due to calling __qib_sdma_process_event() below.
*/
ppd->sdma_descq_tail = 0;
ppd->sdma_descq_head = 0;
ppd->sdma_head_dma[0] = 0;
ppd->sdma_generation = 0;
__qib_sdma_process_event(ppd, qib_sdma_event_e40_sw_cleaned);
spin_unlock_irqrestore(&ppd->sdma_lock, flags);
}
/*
* This is called when changing to state qib_sdma_state_s10_hw_start_up_wait
* as a result of send buffer errors or send DMA descriptor errors.
* We want to disarm the buffers in these cases.
*/
static void sdma_hw_start_up(struct qib_pportdata *ppd)
{
struct qib_sdma_state *ss = &ppd->sdma_state;
unsigned bufno;
for (bufno = ss->first_sendbuf; bufno < ss->last_sendbuf; ++bufno)
ppd->dd->f_sendctrl(ppd, QIB_SENDCTRL_DISARM_BUF(bufno));
ppd->dd->f_sdma_hw_start_up(ppd);
}
static void sdma_sw_tear_down(struct qib_pportdata *ppd)
{
struct qib_sdma_state *ss = &ppd->sdma_state;
/* Releasing this reference means the state machine has stopped. */
sdma_put(ss);
}
static void sdma_start_sw_clean_up(struct qib_pportdata *ppd)
{
tasklet_hi_schedule(&ppd->sdma_sw_clean_up_task);
}
static void sdma_set_state(struct qib_pportdata *ppd,
enum qib_sdma_states next_state)
{
struct qib_sdma_state *ss = &ppd->sdma_state;
struct sdma_set_state_action *action = ss->set_state_action;
unsigned op = 0;
/* debugging bookkeeping */
ss->previous_state = ss->current_state;
ss->previous_op = ss->current_op;
ss->current_state = next_state;
if (action[next_state].op_enable)
op |= QIB_SDMA_SENDCTRL_OP_ENABLE;
if (action[next_state].op_intenable)
op |= QIB_SDMA_SENDCTRL_OP_INTENABLE;
if (action[next_state].op_halt)
op |= QIB_SDMA_SENDCTRL_OP_HALT;
if (action[next_state].op_drain)
op |= QIB_SDMA_SENDCTRL_OP_DRAIN;
if (action[next_state].go_s99_running_tofalse)
ss->go_s99_running = 0;
if (action[next_state].go_s99_running_totrue)
ss->go_s99_running = 1;
ss->current_op = op;
ppd->dd->f_sdma_sendctrl(ppd, ss->current_op);
}
static void unmap_desc(struct qib_pportdata *ppd, unsigned head)
{
__le64 *descqp = &ppd->sdma_descq[head].qw[0];
u64 desc[2];
dma_addr_t addr;
size_t len;
desc[0] = le64_to_cpu(descqp[0]);
desc[1] = le64_to_cpu(descqp[1]);
addr = (desc[1] << 32) | (desc[0] >> 32);
len = (desc[0] >> 14) & (0x7ffULL << 2);
dma_unmap_single(&ppd->dd->pcidev->dev, addr, len, DMA_TO_DEVICE);
}
static int alloc_sdma(struct qib_pportdata *ppd)
{
ppd->sdma_descq_cnt = sdma_descq_cnt;
if (!ppd->sdma_descq_cnt)
ppd->sdma_descq_cnt = 256;
/* Allocate memory for SendDMA descriptor FIFO */
ppd->sdma_descq = dma_alloc_coherent(&ppd->dd->pcidev->dev,
ppd->sdma_descq_cnt * sizeof(u64[2]), &ppd->sdma_descq_phys,
GFP_KERNEL);
if (!ppd->sdma_descq) {
qib_dev_err(ppd->dd,
"failed to allocate SendDMA descriptor FIFO memory\n");
goto bail;
}
/* Allocate memory for DMA of head register to memory */
ppd->sdma_head_dma = dma_alloc_coherent(&ppd->dd->pcidev->dev,
PAGE_SIZE, &ppd->sdma_head_phys, GFP_KERNEL);
if (!ppd->sdma_head_dma) {
qib_dev_err(ppd->dd,
"failed to allocate SendDMA head memory\n");
goto cleanup_descq;
}
ppd->sdma_head_dma[0] = 0;
return 0;
cleanup_descq:
dma_free_coherent(&ppd->dd->pcidev->dev,
ppd->sdma_descq_cnt * sizeof(u64[2]), (void *)ppd->sdma_descq,
ppd->sdma_descq_phys);
ppd->sdma_descq = NULL;
ppd->sdma_descq_phys = 0;
bail:
ppd->sdma_descq_cnt = 0;
return -ENOMEM;
}
static void free_sdma(struct qib_pportdata *ppd)
{
struct qib_devdata *dd = ppd->dd;
if (ppd->sdma_head_dma) {
dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE,
(void *)ppd->sdma_head_dma,
ppd->sdma_head_phys);
ppd->sdma_head_dma = NULL;
ppd->sdma_head_phys = 0;
}
if (ppd->sdma_descq) {
dma_free_coherent(&dd->pcidev->dev,
ppd->sdma_descq_cnt * sizeof(u64[2]),
ppd->sdma_descq, ppd->sdma_descq_phys);
ppd->sdma_descq = NULL;
ppd->sdma_descq_phys = 0;
}
}
static inline void make_sdma_desc(struct qib_pportdata *ppd,
u64 *sdmadesc, u64 addr, u64 dwlen,
u64 dwoffset)
{
WARN_ON(addr & 3);
/* SDmaPhyAddr[47:32] */
sdmadesc[1] = addr >> 32;
/* SDmaPhyAddr[31:0] */
sdmadesc[0] = (addr & 0xfffffffcULL) << 32;
/* SDmaGeneration[1:0] */
sdmadesc[0] |= (ppd->sdma_generation & 3ULL) <<
SDMA_DESC_GEN_LSB;
/* SDmaDwordCount[10:0] */
sdmadesc[0] |= (dwlen & 0x7ffULL) << SDMA_DESC_COUNT_LSB;
/* SDmaBufOffset[12:2] */
sdmadesc[0] |= dwoffset & 0x7ffULL;
}
/* sdma_lock must be held */
int qib_sdma_make_progress(struct qib_pportdata *ppd)
{
struct list_head *lp = NULL;
struct qib_sdma_txreq *txp = NULL;
struct qib_devdata *dd = ppd->dd;
int progress = 0;
u16 hwhead;
u16 idx = 0;
hwhead = dd->f_sdma_gethead(ppd);
/* The reason for some of the complexity of this code is that
* not all descriptors have corresponding txps. So, we have to
* be able to skip over descs until we wander into the range of
* the next txp on the list.
*/
if (!list_empty(&ppd->sdma_activelist)) {
lp = ppd->sdma_activelist.next;
txp = list_entry(lp, struct qib_sdma_txreq, list);
idx = txp->start_idx;
}
while (ppd->sdma_descq_head != hwhead) {
/* if desc is part of this txp, unmap if needed */
if (txp && (txp->flags & QIB_SDMA_TXREQ_F_FREEDESC) &&
(idx == ppd->sdma_descq_head)) {
unmap_desc(ppd, ppd->sdma_descq_head);
if (++idx == ppd->sdma_descq_cnt)
idx = 0;
}
/* increment dequed desc count */
ppd->sdma_descq_removed++;
/* advance head, wrap if needed */
if (++ppd->sdma_descq_head == ppd->sdma_descq_cnt)
ppd->sdma_descq_head = 0;
/* if now past this txp's descs, do the callback */
if (txp && txp->next_descq_idx == ppd->sdma_descq_head) {
/* remove from active list */
list_del_init(&txp->list);
if (txp->callback)
(*txp->callback)(txp, QIB_SDMA_TXREQ_S_OK);
/* see if there is another txp */
if (list_empty(&ppd->sdma_activelist))
txp = NULL;
else {
lp = ppd->sdma_activelist.next;
txp = list_entry(lp, struct qib_sdma_txreq,
list);
idx = txp->start_idx;
}
}
progress = 1;
}
if (progress)
qib_verbs_sdma_desc_avail(ppd, qib_sdma_descq_freecnt(ppd));
return progress;
}
/*
* This is called from interrupt context.
*/
void qib_sdma_intr(struct qib_pportdata *ppd)
{
unsigned long flags;
spin_lock_irqsave(&ppd->sdma_lock, flags);
__qib_sdma_intr(ppd);
spin_unlock_irqrestore(&ppd->sdma_lock, flags);
}
void __qib_sdma_intr(struct qib_pportdata *ppd)
{
if (__qib_sdma_running(ppd)) {
qib_sdma_make_progress(ppd);
if (!list_empty(&ppd->sdma_userpending))
qib_user_sdma_send_desc(ppd, &ppd->sdma_userpending);
}
}
int qib_setup_sdma(struct qib_pportdata *ppd)
{
struct qib_devdata *dd = ppd->dd;
unsigned long flags;
int ret = 0;
ret = alloc_sdma(ppd);
if (ret)
goto bail;
/* set consistent sdma state */
ppd->dd->f_sdma_init_early(ppd);
spin_lock_irqsave(&ppd->sdma_lock, flags);
sdma_set_state(ppd, qib_sdma_state_s00_hw_down);
spin_unlock_irqrestore(&ppd->sdma_lock, flags);
/* set up reference counting */
kref_init(&ppd->sdma_state.kref);
init_completion(&ppd->sdma_state.comp);
ppd->sdma_generation = 0;
ppd->sdma_descq_head = 0;
ppd->sdma_descq_removed = 0;
ppd->sdma_descq_added = 0;
ppd->sdma_intrequest = 0;
INIT_LIST_HEAD(&ppd->sdma_userpending);
INIT_LIST_HEAD(&ppd->sdma_activelist);
tasklet_init(&ppd->sdma_sw_clean_up_task, sdma_sw_clean_up_task,
(unsigned long)ppd);
ret = dd->f_init_sdma_regs(ppd);
if (ret)
goto bail_alloc;
qib_sdma_process_event(ppd, qib_sdma_event_e10_go_hw_start);
return 0;
bail_alloc:
qib_teardown_sdma(ppd);
bail:
return ret;
}
void qib_teardown_sdma(struct qib_pportdata *ppd)
{
qib_sdma_process_event(ppd, qib_sdma_event_e00_go_hw_down);
/*
* This waits for the state machine to exit so it is not
* necessary to kill the sdma_sw_clean_up_task to make sure
* it is not running.
*/
sdma_finalput(&ppd->sdma_state);
free_sdma(ppd);
}
int qib_sdma_running(struct qib_pportdata *ppd)
{
unsigned long flags;
int ret;
spin_lock_irqsave(&ppd->sdma_lock, flags);
ret = __qib_sdma_running(ppd);
spin_unlock_irqrestore(&ppd->sdma_lock, flags);
return ret;
}
/*
* Complete a request when sdma not running; likely only request
* but to simplify the code, always queue it, then process the full
* activelist. We process the entire list to ensure that this particular
* request does get it's callback, but in the correct order.
* Must be called with sdma_lock held
*/
static void complete_sdma_err_req(struct qib_pportdata *ppd,
struct qib_verbs_txreq *tx)
{
struct qib_qp_priv *priv = tx->qp->priv;
atomic_inc(&priv->s_dma_busy);
/* no sdma descriptors, so no unmap_desc */
tx->txreq.start_idx = 0;
tx->txreq.next_descq_idx = 0;
list_add_tail(&tx->txreq.list, &ppd->sdma_activelist);
clear_sdma_activelist(ppd);
}
/*
* This function queues one IB packet onto the send DMA queue per call.
* The caller is responsible for checking:
* 1) The number of send DMA descriptor entries is less than the size of
* the descriptor queue.
* 2) The IB SGE addresses and lengths are 32-bit aligned
* (except possibly the last SGE's length)
* 3) The SGE addresses are suitable for passing to dma_map_single().
*/
int qib_sdma_verbs_send(struct qib_pportdata *ppd,
struct rvt_sge_state *ss, u32 dwords,
struct qib_verbs_txreq *tx)
{
unsigned long flags;
struct rvt_sge *sge;
struct rvt_qp *qp;
int ret = 0;
u16 tail;
__le64 *descqp;
u64 sdmadesc[2];
u32 dwoffset;
dma_addr_t addr;
struct qib_qp_priv *priv;
spin_lock_irqsave(&ppd->sdma_lock, flags);
retry:
if (unlikely(!__qib_sdma_running(ppd))) {
complete_sdma_err_req(ppd, tx);
goto unlock;
}
if (tx->txreq.sg_count > qib_sdma_descq_freecnt(ppd)) {
if (qib_sdma_make_progress(ppd))
goto retry;
if (ppd->dd->flags & QIB_HAS_SDMA_TIMEOUT)
ppd->dd->f_sdma_set_desc_cnt(ppd,
ppd->sdma_descq_cnt / 2);
goto busy;
}
dwoffset = tx->hdr_dwords;
make_sdma_desc(ppd, sdmadesc, (u64) tx->txreq.addr, dwoffset, 0);
sdmadesc[0] |= SDMA_DESC_FIRST;
if (tx->txreq.flags & QIB_SDMA_TXREQ_F_USELARGEBUF)
sdmadesc[0] |= SDMA_DESC_USE_LARGE_BUF;
/* write to the descq */
tail = ppd->sdma_descq_tail;
descqp = &ppd->sdma_descq[tail].qw[0];
*descqp++ = cpu_to_le64(sdmadesc[0]);
*descqp++ = cpu_to_le64(sdmadesc[1]);
/* increment the tail */
if (++tail == ppd->sdma_descq_cnt) {
tail = 0;
descqp = &ppd->sdma_descq[0].qw[0];
++ppd->sdma_generation;
}
tx->txreq.start_idx = tail;
sge = &ss->sge;
while (dwords) {
u32 dw;
u32 len = rvt_get_sge_length(sge, dwords << 2);
dw = (len + 3) >> 2;
addr = dma_map_single(&ppd->dd->pcidev->dev, sge->vaddr,
dw << 2, DMA_TO_DEVICE);
if (dma_mapping_error(&ppd->dd->pcidev->dev, addr)) {
ret = -ENOMEM;
goto unmap;
}
sdmadesc[0] = 0;
make_sdma_desc(ppd, sdmadesc, (u64) addr, dw, dwoffset);
/* SDmaUseLargeBuf has to be set in every descriptor */
if (tx->txreq.flags & QIB_SDMA_TXREQ_F_USELARGEBUF)
sdmadesc[0] |= SDMA_DESC_USE_LARGE_BUF;
/* write to the descq */
*descqp++ = cpu_to_le64(sdmadesc[0]);
*descqp++ = cpu_to_le64(sdmadesc[1]);
/* increment the tail */
if (++tail == ppd->sdma_descq_cnt) {
tail = 0;
descqp = &ppd->sdma_descq[0].qw[0];
++ppd->sdma_generation;
}
rvt_update_sge(ss, len, false);
dwoffset += dw;
dwords -= dw;
}
if (!tail)
descqp = &ppd->sdma_descq[ppd->sdma_descq_cnt].qw[0];
descqp -= 2;
descqp[0] |= cpu_to_le64(SDMA_DESC_LAST);
if (tx->txreq.flags & QIB_SDMA_TXREQ_F_HEADTOHOST)
descqp[0] |= cpu_to_le64(SDMA_DESC_DMA_HEAD);
if (tx->txreq.flags & QIB_SDMA_TXREQ_F_INTREQ)
descqp[0] |= cpu_to_le64(SDMA_DESC_INTR);
priv = tx->qp->priv;
atomic_inc(&priv->s_dma_busy);
tx->txreq.next_descq_idx = tail;
ppd->dd->f_sdma_update_tail(ppd, tail);
ppd->sdma_descq_added += tx->txreq.sg_count;
list_add_tail(&tx->txreq.list, &ppd->sdma_activelist);
goto unlock;
unmap:
for (;;) {
if (!tail)
tail = ppd->sdma_descq_cnt - 1;
else
tail--;
if (tail == ppd->sdma_descq_tail)
break;
unmap_desc(ppd, tail);
}
qp = tx->qp;
priv = qp->priv;
qib_put_txreq(tx);
spin_lock(&qp->r_lock);
spin_lock(&qp->s_lock);
if (qp->ibqp.qp_type == IB_QPT_RC) {
/* XXX what about error sending RDMA read responses? */
if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)
rvt_error_qp(qp, IB_WC_GENERAL_ERR);
} else if (qp->s_wqe)
rvt_send_complete(qp, qp->s_wqe, IB_WC_GENERAL_ERR);
spin_unlock(&qp->s_lock);
spin_unlock(&qp->r_lock);
/* return zero to process the next send work request */
goto unlock;
busy:
qp = tx->qp;
priv = qp->priv;
spin_lock(&qp->s_lock);
if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
struct qib_ibdev *dev;
/*
* If we couldn't queue the DMA request, save the info
* and try again later rather than destroying the
* buffer and undoing the side effects of the copy.
*/
tx->ss = ss;
tx->dwords = dwords;
priv->s_tx = tx;
dev = &ppd->dd->verbs_dev;
spin_lock(&dev->rdi.pending_lock);
if (list_empty(&priv->iowait)) {
struct qib_ibport *ibp;
ibp = &ppd->ibport_data;
ibp->rvp.n_dmawait++;
qp->s_flags |= RVT_S_WAIT_DMA_DESC;
list_add_tail(&priv->iowait, &dev->dmawait);
}
spin_unlock(&dev->rdi.pending_lock);
qp->s_flags &= ~RVT_S_BUSY;
spin_unlock(&qp->s_lock);
ret = -EBUSY;
} else {
spin_unlock(&qp->s_lock);
qib_put_txreq(tx);
}
unlock:
spin_unlock_irqrestore(&ppd->sdma_lock, flags);
return ret;
}
/*
* sdma_lock should be acquired before calling this routine
*/
void dump_sdma_state(struct qib_pportdata *ppd)
{
struct qib_sdma_desc *descq;
struct qib_sdma_txreq *txp, *txpnext;
__le64 *descqp;
u64 desc[2];
u64 addr;
u16 gen, dwlen, dwoffset;
u16 head, tail, cnt;
head = ppd->sdma_descq_head;
tail = ppd->sdma_descq_tail;
cnt = qib_sdma_descq_freecnt(ppd);
descq = ppd->sdma_descq;
qib_dev_porterr(ppd->dd, ppd->port,
"SDMA ppd->sdma_descq_head: %u\n", head);
qib_dev_porterr(ppd->dd, ppd->port,
"SDMA ppd->sdma_descq_tail: %u\n", tail);
qib_dev_porterr(ppd->dd, ppd->port,
"SDMA sdma_descq_freecnt: %u\n", cnt);
/* print info for each entry in the descriptor queue */
while (head != tail) {
char flags[6] = { 'x', 'x', 'x', 'x', 'x', 0 };
descqp = &descq[head].qw[0];
desc[0] = le64_to_cpu(descqp[0]);
desc[1] = le64_to_cpu(descqp[1]);
flags[0] = (desc[0] & 1<<15) ? 'I' : '-';
flags[1] = (desc[0] & 1<<14) ? 'L' : 'S';
flags[2] = (desc[0] & 1<<13) ? 'H' : '-';
flags[3] = (desc[0] & 1<<12) ? 'F' : '-';
flags[4] = (desc[0] & 1<<11) ? 'L' : '-';
addr = (desc[1] << 32) | ((desc[0] >> 32) & 0xfffffffcULL);
gen = (desc[0] >> 30) & 3ULL;
dwlen = (desc[0] >> 14) & (0x7ffULL << 2);
dwoffset = (desc[0] & 0x7ffULL) << 2;
qib_dev_porterr(ppd->dd, ppd->port,
"SDMA sdmadesc[%u]: flags:%s addr:0x%016llx gen:%u len:%u bytes offset:%u bytes\n",
head, flags, addr, gen, dwlen, dwoffset);
if (++head == ppd->sdma_descq_cnt)
head = 0;
}
/* print dma descriptor indices from the TX requests */
list_for_each_entry_safe(txp, txpnext, &ppd->sdma_activelist,
list)
qib_dev_porterr(ppd->dd, ppd->port,
"SDMA txp->start_idx: %u txp->next_descq_idx: %u\n",
txp->start_idx, txp->next_descq_idx);
}
void qib_sdma_process_event(struct qib_pportdata *ppd,
enum qib_sdma_events event)
{
unsigned long flags;
spin_lock_irqsave(&ppd->sdma_lock, flags);
__qib_sdma_process_event(ppd, event);
if (ppd->sdma_state.current_state == qib_sdma_state_s99_running)
qib_verbs_sdma_desc_avail(ppd, qib_sdma_descq_freecnt(ppd));
spin_unlock_irqrestore(&ppd->sdma_lock, flags);
}
void __qib_sdma_process_event(struct qib_pportdata *ppd,
enum qib_sdma_events event)
{
struct qib_sdma_state *ss = &ppd->sdma_state;
switch (ss->current_state) {
case qib_sdma_state_s00_hw_down:
switch (event) {
case qib_sdma_event_e00_go_hw_down:
break;
case qib_sdma_event_e30_go_running:
/*
* If down, but running requested (usually result
* of link up, then we need to start up.
* This can happen when hw down is requested while
* bringing the link up with traffic active on
* 7220, e.g. */
ss->go_s99_running = 1;
/* fall through -- and start dma engine */
case qib_sdma_event_e10_go_hw_start:
/* This reference means the state machine is started */
sdma_get(&ppd->sdma_state);
sdma_set_state(ppd,
qib_sdma_state_s10_hw_start_up_wait);
break;
case qib_sdma_event_e20_hw_started:
break;
case qib_sdma_event_e40_sw_cleaned:
sdma_sw_tear_down(ppd);
break;
case qib_sdma_event_e50_hw_cleaned:
break;
case qib_sdma_event_e60_hw_halted:
break;
case qib_sdma_event_e70_go_idle:
break;
case qib_sdma_event_e7220_err_halted:
break;
case qib_sdma_event_e7322_err_halted:
break;
case qib_sdma_event_e90_timer_tick:
break;
}
break;
case qib_sdma_state_s10_hw_start_up_wait:
switch (event) {
case qib_sdma_event_e00_go_hw_down:
sdma_set_state(ppd, qib_sdma_state_s00_hw_down);
sdma_sw_tear_down(ppd);
break;
case qib_sdma_event_e10_go_hw_start:
break;
case qib_sdma_event_e20_hw_started:
sdma_set_state(ppd, ss->go_s99_running ?
qib_sdma_state_s99_running :
qib_sdma_state_s20_idle);
break;
case qib_sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case qib_sdma_event_e40_sw_cleaned:
break;
case qib_sdma_event_e50_hw_cleaned:
break;
case qib_sdma_event_e60_hw_halted:
break;
case qib_sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case qib_sdma_event_e7220_err_halted:
break;
case qib_sdma_event_e7322_err_halted:
break;
case qib_sdma_event_e90_timer_tick:
break;
}
break;
case qib_sdma_state_s20_idle:
switch (event) {
case qib_sdma_event_e00_go_hw_down:
sdma_set_state(ppd, qib_sdma_state_s00_hw_down);
sdma_sw_tear_down(ppd);
break;
case qib_sdma_event_e10_go_hw_start:
break;
case qib_sdma_event_e20_hw_started:
break;
case qib_sdma_event_e30_go_running:
sdma_set_state(ppd, qib_sdma_state_s99_running);
ss->go_s99_running = 1;
break;
case qib_sdma_event_e40_sw_cleaned:
break;
case qib_sdma_event_e50_hw_cleaned:
break;
case qib_sdma_event_e60_hw_halted:
break;
case qib_sdma_event_e70_go_idle:
break;
case qib_sdma_event_e7220_err_halted:
break;
case qib_sdma_event_e7322_err_halted:
break;
case qib_sdma_event_e90_timer_tick:
break;
}
break;
case qib_sdma_state_s30_sw_clean_up_wait:
switch (event) {
case qib_sdma_event_e00_go_hw_down:
sdma_set_state(ppd, qib_sdma_state_s00_hw_down);
break;
case qib_sdma_event_e10_go_hw_start:
break;
case qib_sdma_event_e20_hw_started:
break;
case qib_sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case qib_sdma_event_e40_sw_cleaned:
sdma_set_state(ppd,
qib_sdma_state_s10_hw_start_up_wait);
sdma_hw_start_up(ppd);
break;
case qib_sdma_event_e50_hw_cleaned:
break;
case qib_sdma_event_e60_hw_halted:
break;
case qib_sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case qib_sdma_event_e7220_err_halted:
break;
case qib_sdma_event_e7322_err_halted:
break;
case qib_sdma_event_e90_timer_tick:
break;
}
break;
case qib_sdma_state_s40_hw_clean_up_wait:
switch (event) {
case qib_sdma_event_e00_go_hw_down:
sdma_set_state(ppd, qib_sdma_state_s00_hw_down);
sdma_start_sw_clean_up(ppd);
break;
case qib_sdma_event_e10_go_hw_start:
break;
case qib_sdma_event_e20_hw_started:
break;
case qib_sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case qib_sdma_event_e40_sw_cleaned:
break;
case qib_sdma_event_e50_hw_cleaned:
sdma_set_state(ppd,
qib_sdma_state_s30_sw_clean_up_wait);
sdma_start_sw_clean_up(ppd);
break;
case qib_sdma_event_e60_hw_halted:
break;
case qib_sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case qib_sdma_event_e7220_err_halted:
break;
case qib_sdma_event_e7322_err_halted:
break;
case qib_sdma_event_e90_timer_tick:
break;
}
break;
case qib_sdma_state_s50_hw_halt_wait:
switch (event) {
case qib_sdma_event_e00_go_hw_down:
sdma_set_state(ppd, qib_sdma_state_s00_hw_down);
sdma_start_sw_clean_up(ppd);
break;
case qib_sdma_event_e10_go_hw_start:
break;
case qib_sdma_event_e20_hw_started:
break;
case qib_sdma_event_e30_go_running:
ss->go_s99_running = 1;
break;
case qib_sdma_event_e40_sw_cleaned:
break;
case qib_sdma_event_e50_hw_cleaned:
break;
case qib_sdma_event_e60_hw_halted:
sdma_set_state(ppd,
qib_sdma_state_s40_hw_clean_up_wait);
ppd->dd->f_sdma_hw_clean_up(ppd);
break;
case qib_sdma_event_e70_go_idle:
ss->go_s99_running = 0;
break;
case qib_sdma_event_e7220_err_halted:
break;
case qib_sdma_event_e7322_err_halted:
break;
case qib_sdma_event_e90_timer_tick:
break;
}
break;
case qib_sdma_state_s99_running:
switch (event) {
case qib_sdma_event_e00_go_hw_down:
sdma_set_state(ppd, qib_sdma_state_s00_hw_down);
sdma_start_sw_clean_up(ppd);
break;
case qib_sdma_event_e10_go_hw_start:
break;
case qib_sdma_event_e20_hw_started:
break;
case qib_sdma_event_e30_go_running:
break;
case qib_sdma_event_e40_sw_cleaned:
break;
case qib_sdma_event_e50_hw_cleaned:
break;
case qib_sdma_event_e60_hw_halted:
sdma_set_state(ppd,
qib_sdma_state_s30_sw_clean_up_wait);
sdma_start_sw_clean_up(ppd);
break;
case qib_sdma_event_e70_go_idle:
sdma_set_state(ppd, qib_sdma_state_s50_hw_halt_wait);
ss->go_s99_running = 0;
break;
case qib_sdma_event_e7220_err_halted:
sdma_set_state(ppd,
qib_sdma_state_s30_sw_clean_up_wait);
sdma_start_sw_clean_up(ppd);
break;
case qib_sdma_event_e7322_err_halted:
sdma_set_state(ppd, qib_sdma_state_s50_hw_halt_wait);
break;
case qib_sdma_event_e90_timer_tick:
break;
}
break;
}
ss->last_event = event;
}