mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 16:15:29 +07:00
6290602709
Add a new page flag, PageWaiters, to indicate the page waitqueue has tasks waiting. This can be tested rather than testing waitqueue_active which requires another cacheline load. This bit is always set when the page has tasks on page_waitqueue(page), and is set and cleared under the waitqueue lock. It may be set when there are no tasks on the waitqueue, which will cause a harmless extra wakeup check that will clears the bit. The generic bit-waitqueue infrastructure is no longer used for pages. Instead, waitqueues are used directly with a custom key type. The generic code was not flexible enough to have PageWaiters manipulation under the waitqueue lock (which simplifies concurrency). This improves the performance of page lock intensive microbenchmarks by 2-3%. Putting two bits in the same word opens the opportunity to remove the memory barrier between clearing the lock bit and testing the waiters bit, after some work on the arch primitives (e.g., ensuring memory operand widths match and cover both bits). Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Bob Peterson <rpeterso@redhat.com> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Andrew Lutomirski <luto@kernel.org> Cc: Andreas Gruenbacher <agruenba@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2445 lines
76 KiB
C
2445 lines
76 KiB
C
#ifndef _LINUX_MM_H
|
|
#define _LINUX_MM_H
|
|
|
|
#include <linux/errno.h>
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#include <linux/mmdebug.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/bug.h>
|
|
#include <linux/list.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/atomic.h>
|
|
#include <linux/debug_locks.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/range.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/percpu-refcount.h>
|
|
#include <linux/bit_spinlock.h>
|
|
#include <linux/shrinker.h>
|
|
#include <linux/resource.h>
|
|
#include <linux/page_ext.h>
|
|
#include <linux/err.h>
|
|
#include <linux/page_ref.h>
|
|
|
|
struct mempolicy;
|
|
struct anon_vma;
|
|
struct anon_vma_chain;
|
|
struct file_ra_state;
|
|
struct user_struct;
|
|
struct writeback_control;
|
|
struct bdi_writeback;
|
|
|
|
#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
|
|
extern unsigned long max_mapnr;
|
|
|
|
static inline void set_max_mapnr(unsigned long limit)
|
|
{
|
|
max_mapnr = limit;
|
|
}
|
|
#else
|
|
static inline void set_max_mapnr(unsigned long limit) { }
|
|
#endif
|
|
|
|
extern unsigned long totalram_pages;
|
|
extern void * high_memory;
|
|
extern int page_cluster;
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
extern int sysctl_legacy_va_layout;
|
|
#else
|
|
#define sysctl_legacy_va_layout 0
|
|
#endif
|
|
|
|
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
|
|
extern const int mmap_rnd_bits_min;
|
|
extern const int mmap_rnd_bits_max;
|
|
extern int mmap_rnd_bits __read_mostly;
|
|
#endif
|
|
#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
|
|
extern const int mmap_rnd_compat_bits_min;
|
|
extern const int mmap_rnd_compat_bits_max;
|
|
extern int mmap_rnd_compat_bits __read_mostly;
|
|
#endif
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/processor.h>
|
|
|
|
#ifndef __pa_symbol
|
|
#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
|
|
#endif
|
|
|
|
#ifndef page_to_virt
|
|
#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
|
|
#endif
|
|
|
|
/*
|
|
* To prevent common memory management code establishing
|
|
* a zero page mapping on a read fault.
|
|
* This macro should be defined within <asm/pgtable.h>.
|
|
* s390 does this to prevent multiplexing of hardware bits
|
|
* related to the physical page in case of virtualization.
|
|
*/
|
|
#ifndef mm_forbids_zeropage
|
|
#define mm_forbids_zeropage(X) (0)
|
|
#endif
|
|
|
|
/*
|
|
* Default maximum number of active map areas, this limits the number of vmas
|
|
* per mm struct. Users can overwrite this number by sysctl but there is a
|
|
* problem.
|
|
*
|
|
* When a program's coredump is generated as ELF format, a section is created
|
|
* per a vma. In ELF, the number of sections is represented in unsigned short.
|
|
* This means the number of sections should be smaller than 65535 at coredump.
|
|
* Because the kernel adds some informative sections to a image of program at
|
|
* generating coredump, we need some margin. The number of extra sections is
|
|
* 1-3 now and depends on arch. We use "5" as safe margin, here.
|
|
*
|
|
* ELF extended numbering allows more than 65535 sections, so 16-bit bound is
|
|
* not a hard limit any more. Although some userspace tools can be surprised by
|
|
* that.
|
|
*/
|
|
#define MAPCOUNT_ELF_CORE_MARGIN (5)
|
|
#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
|
|
|
|
extern int sysctl_max_map_count;
|
|
|
|
extern unsigned long sysctl_user_reserve_kbytes;
|
|
extern unsigned long sysctl_admin_reserve_kbytes;
|
|
|
|
extern int sysctl_overcommit_memory;
|
|
extern int sysctl_overcommit_ratio;
|
|
extern unsigned long sysctl_overcommit_kbytes;
|
|
|
|
extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
|
|
size_t *, loff_t *);
|
|
extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
|
|
size_t *, loff_t *);
|
|
|
|
#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
|
|
|
|
/* to align the pointer to the (next) page boundary */
|
|
#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
|
|
|
|
/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
|
|
#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
|
|
|
|
/*
|
|
* Linux kernel virtual memory manager primitives.
|
|
* The idea being to have a "virtual" mm in the same way
|
|
* we have a virtual fs - giving a cleaner interface to the
|
|
* mm details, and allowing different kinds of memory mappings
|
|
* (from shared memory to executable loading to arbitrary
|
|
* mmap() functions).
|
|
*/
|
|
|
|
extern struct kmem_cache *vm_area_cachep;
|
|
|
|
#ifndef CONFIG_MMU
|
|
extern struct rb_root nommu_region_tree;
|
|
extern struct rw_semaphore nommu_region_sem;
|
|
|
|
extern unsigned int kobjsize(const void *objp);
|
|
#endif
|
|
|
|
/*
|
|
* vm_flags in vm_area_struct, see mm_types.h.
|
|
* When changing, update also include/trace/events/mmflags.h
|
|
*/
|
|
#define VM_NONE 0x00000000
|
|
|
|
#define VM_READ 0x00000001 /* currently active flags */
|
|
#define VM_WRITE 0x00000002
|
|
#define VM_EXEC 0x00000004
|
|
#define VM_SHARED 0x00000008
|
|
|
|
/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
|
|
#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
|
|
#define VM_MAYWRITE 0x00000020
|
|
#define VM_MAYEXEC 0x00000040
|
|
#define VM_MAYSHARE 0x00000080
|
|
|
|
#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
|
|
#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
|
|
#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
|
|
#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
|
|
#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
|
|
|
|
#define VM_LOCKED 0x00002000
|
|
#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
|
|
|
|
/* Used by sys_madvise() */
|
|
#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
|
|
#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
|
|
|
|
#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
|
|
#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
|
|
#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
|
|
#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
|
|
#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
|
|
#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
|
|
#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
|
|
#define VM_ARCH_2 0x02000000
|
|
#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
|
|
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
|
|
#else
|
|
# define VM_SOFTDIRTY 0
|
|
#endif
|
|
|
|
#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
|
|
#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
|
|
#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
|
|
#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
|
|
|
|
#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
|
|
#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
|
|
#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
|
|
#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
|
|
#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
|
|
#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
|
|
#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
|
|
#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
|
|
#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
|
|
#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
|
|
|
|
#if defined(CONFIG_X86)
|
|
# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
|
|
#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
|
|
# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
|
|
# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
|
|
# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
|
|
# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
|
|
# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
|
|
#endif
|
|
#elif defined(CONFIG_PPC)
|
|
# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
|
|
#elif defined(CONFIG_PARISC)
|
|
# define VM_GROWSUP VM_ARCH_1
|
|
#elif defined(CONFIG_METAG)
|
|
# define VM_GROWSUP VM_ARCH_1
|
|
#elif defined(CONFIG_IA64)
|
|
# define VM_GROWSUP VM_ARCH_1
|
|
#elif !defined(CONFIG_MMU)
|
|
# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
|
|
#endif
|
|
|
|
#if defined(CONFIG_X86)
|
|
/* MPX specific bounds table or bounds directory */
|
|
# define VM_MPX VM_ARCH_2
|
|
#endif
|
|
|
|
#ifndef VM_GROWSUP
|
|
# define VM_GROWSUP VM_NONE
|
|
#endif
|
|
|
|
/* Bits set in the VMA until the stack is in its final location */
|
|
#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
|
|
|
|
#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
|
|
#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
|
|
#endif
|
|
|
|
#ifdef CONFIG_STACK_GROWSUP
|
|
#define VM_STACK VM_GROWSUP
|
|
#else
|
|
#define VM_STACK VM_GROWSDOWN
|
|
#endif
|
|
|
|
#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
|
|
|
|
/*
|
|
* Special vmas that are non-mergable, non-mlock()able.
|
|
* Note: mm/huge_memory.c VM_NO_THP depends on this definition.
|
|
*/
|
|
#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
|
|
|
|
/* This mask defines which mm->def_flags a process can inherit its parent */
|
|
#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
|
|
|
|
/* This mask is used to clear all the VMA flags used by mlock */
|
|
#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
|
|
|
|
/*
|
|
* mapping from the currently active vm_flags protection bits (the
|
|
* low four bits) to a page protection mask..
|
|
*/
|
|
extern pgprot_t protection_map[16];
|
|
|
|
#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
|
|
#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
|
|
#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
|
|
#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
|
|
#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
|
|
#define FAULT_FLAG_TRIED 0x20 /* Second try */
|
|
#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
|
|
#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
|
|
#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
|
|
|
|
/*
|
|
* vm_fault is filled by the the pagefault handler and passed to the vma's
|
|
* ->fault function. The vma's ->fault is responsible for returning a bitmask
|
|
* of VM_FAULT_xxx flags that give details about how the fault was handled.
|
|
*
|
|
* MM layer fills up gfp_mask for page allocations but fault handler might
|
|
* alter it if its implementation requires a different allocation context.
|
|
*
|
|
* pgoff should be used in favour of virtual_address, if possible.
|
|
*/
|
|
struct vm_fault {
|
|
struct vm_area_struct *vma; /* Target VMA */
|
|
unsigned int flags; /* FAULT_FLAG_xxx flags */
|
|
gfp_t gfp_mask; /* gfp mask to be used for allocations */
|
|
pgoff_t pgoff; /* Logical page offset based on vma */
|
|
unsigned long address; /* Faulting virtual address */
|
|
pmd_t *pmd; /* Pointer to pmd entry matching
|
|
* the 'address' */
|
|
pte_t orig_pte; /* Value of PTE at the time of fault */
|
|
|
|
struct page *cow_page; /* Page handler may use for COW fault */
|
|
struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */
|
|
struct page *page; /* ->fault handlers should return a
|
|
* page here, unless VM_FAULT_NOPAGE
|
|
* is set (which is also implied by
|
|
* VM_FAULT_ERROR).
|
|
*/
|
|
/* These three entries are valid only while holding ptl lock */
|
|
pte_t *pte; /* Pointer to pte entry matching
|
|
* the 'address'. NULL if the page
|
|
* table hasn't been allocated.
|
|
*/
|
|
spinlock_t *ptl; /* Page table lock.
|
|
* Protects pte page table if 'pte'
|
|
* is not NULL, otherwise pmd.
|
|
*/
|
|
pgtable_t prealloc_pte; /* Pre-allocated pte page table.
|
|
* vm_ops->map_pages() calls
|
|
* alloc_set_pte() from atomic context.
|
|
* do_fault_around() pre-allocates
|
|
* page table to avoid allocation from
|
|
* atomic context.
|
|
*/
|
|
};
|
|
|
|
/*
|
|
* These are the virtual MM functions - opening of an area, closing and
|
|
* unmapping it (needed to keep files on disk up-to-date etc), pointer
|
|
* to the functions called when a no-page or a wp-page exception occurs.
|
|
*/
|
|
struct vm_operations_struct {
|
|
void (*open)(struct vm_area_struct * area);
|
|
void (*close)(struct vm_area_struct * area);
|
|
int (*mremap)(struct vm_area_struct * area);
|
|
int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
|
|
int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
|
|
pmd_t *, unsigned int flags);
|
|
void (*map_pages)(struct vm_fault *vmf,
|
|
pgoff_t start_pgoff, pgoff_t end_pgoff);
|
|
|
|
/* notification that a previously read-only page is about to become
|
|
* writable, if an error is returned it will cause a SIGBUS */
|
|
int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
|
|
|
|
/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
|
|
int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
|
|
|
|
/* called by access_process_vm when get_user_pages() fails, typically
|
|
* for use by special VMAs that can switch between memory and hardware
|
|
*/
|
|
int (*access)(struct vm_area_struct *vma, unsigned long addr,
|
|
void *buf, int len, int write);
|
|
|
|
/* Called by the /proc/PID/maps code to ask the vma whether it
|
|
* has a special name. Returning non-NULL will also cause this
|
|
* vma to be dumped unconditionally. */
|
|
const char *(*name)(struct vm_area_struct *vma);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* set_policy() op must add a reference to any non-NULL @new mempolicy
|
|
* to hold the policy upon return. Caller should pass NULL @new to
|
|
* remove a policy and fall back to surrounding context--i.e. do not
|
|
* install a MPOL_DEFAULT policy, nor the task or system default
|
|
* mempolicy.
|
|
*/
|
|
int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
|
|
|
|
/*
|
|
* get_policy() op must add reference [mpol_get()] to any policy at
|
|
* (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
|
|
* in mm/mempolicy.c will do this automatically.
|
|
* get_policy() must NOT add a ref if the policy at (vma,addr) is not
|
|
* marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
|
|
* If no [shared/vma] mempolicy exists at the addr, get_policy() op
|
|
* must return NULL--i.e., do not "fallback" to task or system default
|
|
* policy.
|
|
*/
|
|
struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
|
|
unsigned long addr);
|
|
#endif
|
|
/*
|
|
* Called by vm_normal_page() for special PTEs to find the
|
|
* page for @addr. This is useful if the default behavior
|
|
* (using pte_page()) would not find the correct page.
|
|
*/
|
|
struct page *(*find_special_page)(struct vm_area_struct *vma,
|
|
unsigned long addr);
|
|
};
|
|
|
|
struct mmu_gather;
|
|
struct inode;
|
|
|
|
#define page_private(page) ((page)->private)
|
|
#define set_page_private(page, v) ((page)->private = (v))
|
|
|
|
#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
|
|
static inline int pmd_devmap(pmd_t pmd)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* FIXME: take this include out, include page-flags.h in
|
|
* files which need it (119 of them)
|
|
*/
|
|
#include <linux/page-flags.h>
|
|
#include <linux/huge_mm.h>
|
|
|
|
/*
|
|
* Methods to modify the page usage count.
|
|
*
|
|
* What counts for a page usage:
|
|
* - cache mapping (page->mapping)
|
|
* - private data (page->private)
|
|
* - page mapped in a task's page tables, each mapping
|
|
* is counted separately
|
|
*
|
|
* Also, many kernel routines increase the page count before a critical
|
|
* routine so they can be sure the page doesn't go away from under them.
|
|
*/
|
|
|
|
/*
|
|
* Drop a ref, return true if the refcount fell to zero (the page has no users)
|
|
*/
|
|
static inline int put_page_testzero(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
|
|
return page_ref_dec_and_test(page);
|
|
}
|
|
|
|
/*
|
|
* Try to grab a ref unless the page has a refcount of zero, return false if
|
|
* that is the case.
|
|
* This can be called when MMU is off so it must not access
|
|
* any of the virtual mappings.
|
|
*/
|
|
static inline int get_page_unless_zero(struct page *page)
|
|
{
|
|
return page_ref_add_unless(page, 1, 0);
|
|
}
|
|
|
|
extern int page_is_ram(unsigned long pfn);
|
|
|
|
enum {
|
|
REGION_INTERSECTS,
|
|
REGION_DISJOINT,
|
|
REGION_MIXED,
|
|
};
|
|
|
|
int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
|
|
unsigned long desc);
|
|
|
|
/* Support for virtually mapped pages */
|
|
struct page *vmalloc_to_page(const void *addr);
|
|
unsigned long vmalloc_to_pfn(const void *addr);
|
|
|
|
/*
|
|
* Determine if an address is within the vmalloc range
|
|
*
|
|
* On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
|
|
* is no special casing required.
|
|
*/
|
|
static inline bool is_vmalloc_addr(const void *x)
|
|
{
|
|
#ifdef CONFIG_MMU
|
|
unsigned long addr = (unsigned long)x;
|
|
|
|
return addr >= VMALLOC_START && addr < VMALLOC_END;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
#ifdef CONFIG_MMU
|
|
extern int is_vmalloc_or_module_addr(const void *x);
|
|
#else
|
|
static inline int is_vmalloc_or_module_addr(const void *x)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
extern void kvfree(const void *addr);
|
|
|
|
static inline atomic_t *compound_mapcount_ptr(struct page *page)
|
|
{
|
|
return &page[1].compound_mapcount;
|
|
}
|
|
|
|
static inline int compound_mapcount(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(!PageCompound(page), page);
|
|
page = compound_head(page);
|
|
return atomic_read(compound_mapcount_ptr(page)) + 1;
|
|
}
|
|
|
|
/*
|
|
* The atomic page->_mapcount, starts from -1: so that transitions
|
|
* both from it and to it can be tracked, using atomic_inc_and_test
|
|
* and atomic_add_negative(-1).
|
|
*/
|
|
static inline void page_mapcount_reset(struct page *page)
|
|
{
|
|
atomic_set(&(page)->_mapcount, -1);
|
|
}
|
|
|
|
int __page_mapcount(struct page *page);
|
|
|
|
static inline int page_mapcount(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(PageSlab(page), page);
|
|
|
|
if (unlikely(PageCompound(page)))
|
|
return __page_mapcount(page);
|
|
return atomic_read(&page->_mapcount) + 1;
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
int total_mapcount(struct page *page);
|
|
int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
|
|
#else
|
|
static inline int total_mapcount(struct page *page)
|
|
{
|
|
return page_mapcount(page);
|
|
}
|
|
static inline int page_trans_huge_mapcount(struct page *page,
|
|
int *total_mapcount)
|
|
{
|
|
int mapcount = page_mapcount(page);
|
|
if (total_mapcount)
|
|
*total_mapcount = mapcount;
|
|
return mapcount;
|
|
}
|
|
#endif
|
|
|
|
static inline struct page *virt_to_head_page(const void *x)
|
|
{
|
|
struct page *page = virt_to_page(x);
|
|
|
|
return compound_head(page);
|
|
}
|
|
|
|
void __put_page(struct page *page);
|
|
|
|
void put_pages_list(struct list_head *pages);
|
|
|
|
void split_page(struct page *page, unsigned int order);
|
|
|
|
/*
|
|
* Compound pages have a destructor function. Provide a
|
|
* prototype for that function and accessor functions.
|
|
* These are _only_ valid on the head of a compound page.
|
|
*/
|
|
typedef void compound_page_dtor(struct page *);
|
|
|
|
/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
|
|
enum compound_dtor_id {
|
|
NULL_COMPOUND_DTOR,
|
|
COMPOUND_PAGE_DTOR,
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
HUGETLB_PAGE_DTOR,
|
|
#endif
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
TRANSHUGE_PAGE_DTOR,
|
|
#endif
|
|
NR_COMPOUND_DTORS,
|
|
};
|
|
extern compound_page_dtor * const compound_page_dtors[];
|
|
|
|
static inline void set_compound_page_dtor(struct page *page,
|
|
enum compound_dtor_id compound_dtor)
|
|
{
|
|
VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
|
|
page[1].compound_dtor = compound_dtor;
|
|
}
|
|
|
|
static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
|
|
{
|
|
VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
|
|
return compound_page_dtors[page[1].compound_dtor];
|
|
}
|
|
|
|
static inline unsigned int compound_order(struct page *page)
|
|
{
|
|
if (!PageHead(page))
|
|
return 0;
|
|
return page[1].compound_order;
|
|
}
|
|
|
|
static inline void set_compound_order(struct page *page, unsigned int order)
|
|
{
|
|
page[1].compound_order = order;
|
|
}
|
|
|
|
void free_compound_page(struct page *page);
|
|
|
|
#ifdef CONFIG_MMU
|
|
/*
|
|
* Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
|
|
* servicing faults for write access. In the normal case, do always want
|
|
* pte_mkwrite. But get_user_pages can cause write faults for mappings
|
|
* that do not have writing enabled, when used by access_process_vm.
|
|
*/
|
|
static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
|
|
{
|
|
if (likely(vma->vm_flags & VM_WRITE))
|
|
pte = pte_mkwrite(pte);
|
|
return pte;
|
|
}
|
|
|
|
int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
|
|
struct page *page);
|
|
int finish_fault(struct vm_fault *vmf);
|
|
int finish_mkwrite_fault(struct vm_fault *vmf);
|
|
#endif
|
|
|
|
/*
|
|
* Multiple processes may "see" the same page. E.g. for untouched
|
|
* mappings of /dev/null, all processes see the same page full of
|
|
* zeroes, and text pages of executables and shared libraries have
|
|
* only one copy in memory, at most, normally.
|
|
*
|
|
* For the non-reserved pages, page_count(page) denotes a reference count.
|
|
* page_count() == 0 means the page is free. page->lru is then used for
|
|
* freelist management in the buddy allocator.
|
|
* page_count() > 0 means the page has been allocated.
|
|
*
|
|
* Pages are allocated by the slab allocator in order to provide memory
|
|
* to kmalloc and kmem_cache_alloc. In this case, the management of the
|
|
* page, and the fields in 'struct page' are the responsibility of mm/slab.c
|
|
* unless a particular usage is carefully commented. (the responsibility of
|
|
* freeing the kmalloc memory is the caller's, of course).
|
|
*
|
|
* A page may be used by anyone else who does a __get_free_page().
|
|
* In this case, page_count still tracks the references, and should only
|
|
* be used through the normal accessor functions. The top bits of page->flags
|
|
* and page->virtual store page management information, but all other fields
|
|
* are unused and could be used privately, carefully. The management of this
|
|
* page is the responsibility of the one who allocated it, and those who have
|
|
* subsequently been given references to it.
|
|
*
|
|
* The other pages (we may call them "pagecache pages") are completely
|
|
* managed by the Linux memory manager: I/O, buffers, swapping etc.
|
|
* The following discussion applies only to them.
|
|
*
|
|
* A pagecache page contains an opaque `private' member, which belongs to the
|
|
* page's address_space. Usually, this is the address of a circular list of
|
|
* the page's disk buffers. PG_private must be set to tell the VM to call
|
|
* into the filesystem to release these pages.
|
|
*
|
|
* A page may belong to an inode's memory mapping. In this case, page->mapping
|
|
* is the pointer to the inode, and page->index is the file offset of the page,
|
|
* in units of PAGE_SIZE.
|
|
*
|
|
* If pagecache pages are not associated with an inode, they are said to be
|
|
* anonymous pages. These may become associated with the swapcache, and in that
|
|
* case PG_swapcache is set, and page->private is an offset into the swapcache.
|
|
*
|
|
* In either case (swapcache or inode backed), the pagecache itself holds one
|
|
* reference to the page. Setting PG_private should also increment the
|
|
* refcount. The each user mapping also has a reference to the page.
|
|
*
|
|
* The pagecache pages are stored in a per-mapping radix tree, which is
|
|
* rooted at mapping->page_tree, and indexed by offset.
|
|
* Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
|
|
* lists, we instead now tag pages as dirty/writeback in the radix tree.
|
|
*
|
|
* All pagecache pages may be subject to I/O:
|
|
* - inode pages may need to be read from disk,
|
|
* - inode pages which have been modified and are MAP_SHARED may need
|
|
* to be written back to the inode on disk,
|
|
* - anonymous pages (including MAP_PRIVATE file mappings) which have been
|
|
* modified may need to be swapped out to swap space and (later) to be read
|
|
* back into memory.
|
|
*/
|
|
|
|
/*
|
|
* The zone field is never updated after free_area_init_core()
|
|
* sets it, so none of the operations on it need to be atomic.
|
|
*/
|
|
|
|
/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
|
|
#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
|
|
#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
|
|
#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
|
|
#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
|
|
|
|
/*
|
|
* Define the bit shifts to access each section. For non-existent
|
|
* sections we define the shift as 0; that plus a 0 mask ensures
|
|
* the compiler will optimise away reference to them.
|
|
*/
|
|
#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
|
|
#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
|
|
#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
|
|
#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
|
|
|
|
/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
|
|
#ifdef NODE_NOT_IN_PAGE_FLAGS
|
|
#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
|
|
#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
|
|
SECTIONS_PGOFF : ZONES_PGOFF)
|
|
#else
|
|
#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
|
|
#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
|
|
NODES_PGOFF : ZONES_PGOFF)
|
|
#endif
|
|
|
|
#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
|
|
|
|
#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
|
|
#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
|
|
#endif
|
|
|
|
#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
|
|
#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
|
|
#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
|
|
#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
|
|
#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
|
|
|
|
static inline enum zone_type page_zonenum(const struct page *page)
|
|
{
|
|
return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
|
|
}
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
void get_zone_device_page(struct page *page);
|
|
void put_zone_device_page(struct page *page);
|
|
static inline bool is_zone_device_page(const struct page *page)
|
|
{
|
|
return page_zonenum(page) == ZONE_DEVICE;
|
|
}
|
|
#else
|
|
static inline void get_zone_device_page(struct page *page)
|
|
{
|
|
}
|
|
static inline void put_zone_device_page(struct page *page)
|
|
{
|
|
}
|
|
static inline bool is_zone_device_page(const struct page *page)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
static inline void get_page(struct page *page)
|
|
{
|
|
page = compound_head(page);
|
|
/*
|
|
* Getting a normal page or the head of a compound page
|
|
* requires to already have an elevated page->_refcount.
|
|
*/
|
|
VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
|
|
page_ref_inc(page);
|
|
|
|
if (unlikely(is_zone_device_page(page)))
|
|
get_zone_device_page(page);
|
|
}
|
|
|
|
static inline void put_page(struct page *page)
|
|
{
|
|
page = compound_head(page);
|
|
|
|
if (put_page_testzero(page))
|
|
__put_page(page);
|
|
|
|
if (unlikely(is_zone_device_page(page)))
|
|
put_zone_device_page(page);
|
|
}
|
|
|
|
#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
|
|
#define SECTION_IN_PAGE_FLAGS
|
|
#endif
|
|
|
|
/*
|
|
* The identification function is mainly used by the buddy allocator for
|
|
* determining if two pages could be buddies. We are not really identifying
|
|
* the zone since we could be using the section number id if we do not have
|
|
* node id available in page flags.
|
|
* We only guarantee that it will return the same value for two combinable
|
|
* pages in a zone.
|
|
*/
|
|
static inline int page_zone_id(struct page *page)
|
|
{
|
|
return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
|
|
}
|
|
|
|
static inline int zone_to_nid(struct zone *zone)
|
|
{
|
|
#ifdef CONFIG_NUMA
|
|
return zone->node;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#ifdef NODE_NOT_IN_PAGE_FLAGS
|
|
extern int page_to_nid(const struct page *page);
|
|
#else
|
|
static inline int page_to_nid(const struct page *page)
|
|
{
|
|
return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
static inline int cpu_pid_to_cpupid(int cpu, int pid)
|
|
{
|
|
return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
|
|
}
|
|
|
|
static inline int cpupid_to_pid(int cpupid)
|
|
{
|
|
return cpupid & LAST__PID_MASK;
|
|
}
|
|
|
|
static inline int cpupid_to_cpu(int cpupid)
|
|
{
|
|
return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
|
|
}
|
|
|
|
static inline int cpupid_to_nid(int cpupid)
|
|
{
|
|
return cpu_to_node(cpupid_to_cpu(cpupid));
|
|
}
|
|
|
|
static inline bool cpupid_pid_unset(int cpupid)
|
|
{
|
|
return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
|
|
}
|
|
|
|
static inline bool cpupid_cpu_unset(int cpupid)
|
|
{
|
|
return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
|
|
}
|
|
|
|
static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
|
|
{
|
|
return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
|
|
}
|
|
|
|
#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
|
|
#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
|
|
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
|
|
{
|
|
return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
|
|
}
|
|
|
|
static inline int page_cpupid_last(struct page *page)
|
|
{
|
|
return page->_last_cpupid;
|
|
}
|
|
static inline void page_cpupid_reset_last(struct page *page)
|
|
{
|
|
page->_last_cpupid = -1 & LAST_CPUPID_MASK;
|
|
}
|
|
#else
|
|
static inline int page_cpupid_last(struct page *page)
|
|
{
|
|
return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
|
|
}
|
|
|
|
extern int page_cpupid_xchg_last(struct page *page, int cpupid);
|
|
|
|
static inline void page_cpupid_reset_last(struct page *page)
|
|
{
|
|
page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
|
|
}
|
|
#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
|
|
#else /* !CONFIG_NUMA_BALANCING */
|
|
static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
|
|
{
|
|
return page_to_nid(page); /* XXX */
|
|
}
|
|
|
|
static inline int page_cpupid_last(struct page *page)
|
|
{
|
|
return page_to_nid(page); /* XXX */
|
|
}
|
|
|
|
static inline int cpupid_to_nid(int cpupid)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static inline int cpupid_to_pid(int cpupid)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static inline int cpupid_to_cpu(int cpupid)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static inline int cpu_pid_to_cpupid(int nid, int pid)
|
|
{
|
|
return -1;
|
|
}
|
|
|
|
static inline bool cpupid_pid_unset(int cpupid)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static inline void page_cpupid_reset_last(struct page *page)
|
|
{
|
|
}
|
|
|
|
static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_NUMA_BALANCING */
|
|
|
|
static inline struct zone *page_zone(const struct page *page)
|
|
{
|
|
return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
|
|
}
|
|
|
|
static inline pg_data_t *page_pgdat(const struct page *page)
|
|
{
|
|
return NODE_DATA(page_to_nid(page));
|
|
}
|
|
|
|
#ifdef SECTION_IN_PAGE_FLAGS
|
|
static inline void set_page_section(struct page *page, unsigned long section)
|
|
{
|
|
page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
|
|
page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
|
|
}
|
|
|
|
static inline unsigned long page_to_section(const struct page *page)
|
|
{
|
|
return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
|
|
}
|
|
#endif
|
|
|
|
static inline void set_page_zone(struct page *page, enum zone_type zone)
|
|
{
|
|
page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
|
|
page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
|
|
}
|
|
|
|
static inline void set_page_node(struct page *page, unsigned long node)
|
|
{
|
|
page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
|
|
page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
|
|
}
|
|
|
|
static inline void set_page_links(struct page *page, enum zone_type zone,
|
|
unsigned long node, unsigned long pfn)
|
|
{
|
|
set_page_zone(page, zone);
|
|
set_page_node(page, node);
|
|
#ifdef SECTION_IN_PAGE_FLAGS
|
|
set_page_section(page, pfn_to_section_nr(pfn));
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_MEMCG
|
|
static inline struct mem_cgroup *page_memcg(struct page *page)
|
|
{
|
|
return page->mem_cgroup;
|
|
}
|
|
static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
|
|
{
|
|
WARN_ON_ONCE(!rcu_read_lock_held());
|
|
return READ_ONCE(page->mem_cgroup);
|
|
}
|
|
#else
|
|
static inline struct mem_cgroup *page_memcg(struct page *page)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
|
|
{
|
|
WARN_ON_ONCE(!rcu_read_lock_held());
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Some inline functions in vmstat.h depend on page_zone()
|
|
*/
|
|
#include <linux/vmstat.h>
|
|
|
|
static __always_inline void *lowmem_page_address(const struct page *page)
|
|
{
|
|
return page_to_virt(page);
|
|
}
|
|
|
|
#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
|
|
#define HASHED_PAGE_VIRTUAL
|
|
#endif
|
|
|
|
#if defined(WANT_PAGE_VIRTUAL)
|
|
static inline void *page_address(const struct page *page)
|
|
{
|
|
return page->virtual;
|
|
}
|
|
static inline void set_page_address(struct page *page, void *address)
|
|
{
|
|
page->virtual = address;
|
|
}
|
|
#define page_address_init() do { } while(0)
|
|
#endif
|
|
|
|
#if defined(HASHED_PAGE_VIRTUAL)
|
|
void *page_address(const struct page *page);
|
|
void set_page_address(struct page *page, void *virtual);
|
|
void page_address_init(void);
|
|
#endif
|
|
|
|
#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
|
|
#define page_address(page) lowmem_page_address(page)
|
|
#define set_page_address(page, address) do { } while(0)
|
|
#define page_address_init() do { } while(0)
|
|
#endif
|
|
|
|
extern void *page_rmapping(struct page *page);
|
|
extern struct anon_vma *page_anon_vma(struct page *page);
|
|
extern struct address_space *page_mapping(struct page *page);
|
|
|
|
extern struct address_space *__page_file_mapping(struct page *);
|
|
|
|
static inline
|
|
struct address_space *page_file_mapping(struct page *page)
|
|
{
|
|
if (unlikely(PageSwapCache(page)))
|
|
return __page_file_mapping(page);
|
|
|
|
return page->mapping;
|
|
}
|
|
|
|
extern pgoff_t __page_file_index(struct page *page);
|
|
|
|
/*
|
|
* Return the pagecache index of the passed page. Regular pagecache pages
|
|
* use ->index whereas swapcache pages use swp_offset(->private)
|
|
*/
|
|
static inline pgoff_t page_index(struct page *page)
|
|
{
|
|
if (unlikely(PageSwapCache(page)))
|
|
return __page_file_index(page);
|
|
return page->index;
|
|
}
|
|
|
|
bool page_mapped(struct page *page);
|
|
struct address_space *page_mapping(struct page *page);
|
|
|
|
/*
|
|
* Return true only if the page has been allocated with
|
|
* ALLOC_NO_WATERMARKS and the low watermark was not
|
|
* met implying that the system is under some pressure.
|
|
*/
|
|
static inline bool page_is_pfmemalloc(struct page *page)
|
|
{
|
|
/*
|
|
* Page index cannot be this large so this must be
|
|
* a pfmemalloc page.
|
|
*/
|
|
return page->index == -1UL;
|
|
}
|
|
|
|
/*
|
|
* Only to be called by the page allocator on a freshly allocated
|
|
* page.
|
|
*/
|
|
static inline void set_page_pfmemalloc(struct page *page)
|
|
{
|
|
page->index = -1UL;
|
|
}
|
|
|
|
static inline void clear_page_pfmemalloc(struct page *page)
|
|
{
|
|
page->index = 0;
|
|
}
|
|
|
|
/*
|
|
* Different kinds of faults, as returned by handle_mm_fault().
|
|
* Used to decide whether a process gets delivered SIGBUS or
|
|
* just gets major/minor fault counters bumped up.
|
|
*/
|
|
|
|
#define VM_FAULT_OOM 0x0001
|
|
#define VM_FAULT_SIGBUS 0x0002
|
|
#define VM_FAULT_MAJOR 0x0004
|
|
#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
|
|
#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
|
|
#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
|
|
#define VM_FAULT_SIGSEGV 0x0040
|
|
|
|
#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
|
|
#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
|
|
#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
|
|
#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
|
|
#define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */
|
|
|
|
#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
|
|
|
|
#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
|
|
VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
|
|
VM_FAULT_FALLBACK)
|
|
|
|
/* Encode hstate index for a hwpoisoned large page */
|
|
#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
|
|
#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
|
|
|
|
/*
|
|
* Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
|
|
*/
|
|
extern void pagefault_out_of_memory(void);
|
|
|
|
#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
|
|
|
|
/*
|
|
* Flags passed to show_mem() and show_free_areas() to suppress output in
|
|
* various contexts.
|
|
*/
|
|
#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
|
|
|
|
extern void show_free_areas(unsigned int flags);
|
|
extern bool skip_free_areas_node(unsigned int flags, int nid);
|
|
|
|
int shmem_zero_setup(struct vm_area_struct *);
|
|
#ifdef CONFIG_SHMEM
|
|
bool shmem_mapping(struct address_space *mapping);
|
|
#else
|
|
static inline bool shmem_mapping(struct address_space *mapping)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
extern bool can_do_mlock(void);
|
|
extern int user_shm_lock(size_t, struct user_struct *);
|
|
extern void user_shm_unlock(size_t, struct user_struct *);
|
|
|
|
/*
|
|
* Parameter block passed down to zap_pte_range in exceptional cases.
|
|
*/
|
|
struct zap_details {
|
|
struct address_space *check_mapping; /* Check page->mapping if set */
|
|
pgoff_t first_index; /* Lowest page->index to unmap */
|
|
pgoff_t last_index; /* Highest page->index to unmap */
|
|
bool ignore_dirty; /* Ignore dirty pages */
|
|
bool check_swap_entries; /* Check also swap entries */
|
|
};
|
|
|
|
struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
|
|
pte_t pte);
|
|
struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
|
|
pmd_t pmd);
|
|
|
|
int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long size);
|
|
void zap_page_range(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long size, struct zap_details *);
|
|
void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
|
|
unsigned long start, unsigned long end);
|
|
|
|
/**
|
|
* mm_walk - callbacks for walk_page_range
|
|
* @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
|
|
* this handler is required to be able to handle
|
|
* pmd_trans_huge() pmds. They may simply choose to
|
|
* split_huge_page() instead of handling it explicitly.
|
|
* @pte_entry: if set, called for each non-empty PTE (4th-level) entry
|
|
* @pte_hole: if set, called for each hole at all levels
|
|
* @hugetlb_entry: if set, called for each hugetlb entry
|
|
* @test_walk: caller specific callback function to determine whether
|
|
* we walk over the current vma or not. Returning 0
|
|
* value means "do page table walk over the current vma,"
|
|
* and a negative one means "abort current page table walk
|
|
* right now." 1 means "skip the current vma."
|
|
* @mm: mm_struct representing the target process of page table walk
|
|
* @vma: vma currently walked (NULL if walking outside vmas)
|
|
* @private: private data for callbacks' usage
|
|
*
|
|
* (see the comment on walk_page_range() for more details)
|
|
*/
|
|
struct mm_walk {
|
|
int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
|
|
unsigned long next, struct mm_walk *walk);
|
|
int (*pte_entry)(pte_t *pte, unsigned long addr,
|
|
unsigned long next, struct mm_walk *walk);
|
|
int (*pte_hole)(unsigned long addr, unsigned long next,
|
|
struct mm_walk *walk);
|
|
int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long next,
|
|
struct mm_walk *walk);
|
|
int (*test_walk)(unsigned long addr, unsigned long next,
|
|
struct mm_walk *walk);
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
void *private;
|
|
};
|
|
|
|
int walk_page_range(unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk);
|
|
int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
|
|
void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
|
|
unsigned long end, unsigned long floor, unsigned long ceiling);
|
|
int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
|
|
struct vm_area_struct *vma);
|
|
void unmap_mapping_range(struct address_space *mapping,
|
|
loff_t const holebegin, loff_t const holelen, int even_cows);
|
|
int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp,
|
|
spinlock_t **ptlp);
|
|
int follow_pfn(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned long *pfn);
|
|
int follow_phys(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned int flags, unsigned long *prot, resource_size_t *phys);
|
|
int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
|
|
void *buf, int len, int write);
|
|
|
|
static inline void unmap_shared_mapping_range(struct address_space *mapping,
|
|
loff_t const holebegin, loff_t const holelen)
|
|
{
|
|
unmap_mapping_range(mapping, holebegin, holelen, 0);
|
|
}
|
|
|
|
extern void truncate_pagecache(struct inode *inode, loff_t new);
|
|
extern void truncate_setsize(struct inode *inode, loff_t newsize);
|
|
void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
|
|
void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
|
|
int truncate_inode_page(struct address_space *mapping, struct page *page);
|
|
int generic_error_remove_page(struct address_space *mapping, struct page *page);
|
|
int invalidate_inode_page(struct page *page);
|
|
|
|
#ifdef CONFIG_MMU
|
|
extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
|
|
unsigned int flags);
|
|
extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long address, unsigned int fault_flags,
|
|
bool *unlocked);
|
|
#else
|
|
static inline int handle_mm_fault(struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int flags)
|
|
{
|
|
/* should never happen if there's no MMU */
|
|
BUG();
|
|
return VM_FAULT_SIGBUS;
|
|
}
|
|
static inline int fixup_user_fault(struct task_struct *tsk,
|
|
struct mm_struct *mm, unsigned long address,
|
|
unsigned int fault_flags, bool *unlocked)
|
|
{
|
|
/* should never happen if there's no MMU */
|
|
BUG();
|
|
return -EFAULT;
|
|
}
|
|
#endif
|
|
|
|
extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
|
|
unsigned int gup_flags);
|
|
extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
|
|
void *buf, int len, unsigned int gup_flags);
|
|
extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long addr, void *buf, int len, unsigned int gup_flags);
|
|
|
|
long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
|
|
unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas, int *locked);
|
|
long get_user_pages(unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages,
|
|
struct vm_area_struct **vmas);
|
|
long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
|
|
unsigned int gup_flags, struct page **pages, int *locked);
|
|
long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
|
|
struct page **pages, unsigned int gup_flags);
|
|
int get_user_pages_fast(unsigned long start, int nr_pages, int write,
|
|
struct page **pages);
|
|
|
|
/* Container for pinned pfns / pages */
|
|
struct frame_vector {
|
|
unsigned int nr_allocated; /* Number of frames we have space for */
|
|
unsigned int nr_frames; /* Number of frames stored in ptrs array */
|
|
bool got_ref; /* Did we pin pages by getting page ref? */
|
|
bool is_pfns; /* Does array contain pages or pfns? */
|
|
void *ptrs[0]; /* Array of pinned pfns / pages. Use
|
|
* pfns_vector_pages() or pfns_vector_pfns()
|
|
* for access */
|
|
};
|
|
|
|
struct frame_vector *frame_vector_create(unsigned int nr_frames);
|
|
void frame_vector_destroy(struct frame_vector *vec);
|
|
int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
|
|
unsigned int gup_flags, struct frame_vector *vec);
|
|
void put_vaddr_frames(struct frame_vector *vec);
|
|
int frame_vector_to_pages(struct frame_vector *vec);
|
|
void frame_vector_to_pfns(struct frame_vector *vec);
|
|
|
|
static inline unsigned int frame_vector_count(struct frame_vector *vec)
|
|
{
|
|
return vec->nr_frames;
|
|
}
|
|
|
|
static inline struct page **frame_vector_pages(struct frame_vector *vec)
|
|
{
|
|
if (vec->is_pfns) {
|
|
int err = frame_vector_to_pages(vec);
|
|
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
}
|
|
return (struct page **)(vec->ptrs);
|
|
}
|
|
|
|
static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
|
|
{
|
|
if (!vec->is_pfns)
|
|
frame_vector_to_pfns(vec);
|
|
return (unsigned long *)(vec->ptrs);
|
|
}
|
|
|
|
struct kvec;
|
|
int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
|
|
struct page **pages);
|
|
int get_kernel_page(unsigned long start, int write, struct page **pages);
|
|
struct page *get_dump_page(unsigned long addr);
|
|
|
|
extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
|
|
extern void do_invalidatepage(struct page *page, unsigned int offset,
|
|
unsigned int length);
|
|
|
|
int __set_page_dirty_nobuffers(struct page *page);
|
|
int __set_page_dirty_no_writeback(struct page *page);
|
|
int redirty_page_for_writepage(struct writeback_control *wbc,
|
|
struct page *page);
|
|
void account_page_dirtied(struct page *page, struct address_space *mapping);
|
|
void account_page_cleaned(struct page *page, struct address_space *mapping,
|
|
struct bdi_writeback *wb);
|
|
int set_page_dirty(struct page *page);
|
|
int set_page_dirty_lock(struct page *page);
|
|
void cancel_dirty_page(struct page *page);
|
|
int clear_page_dirty_for_io(struct page *page);
|
|
|
|
int get_cmdline(struct task_struct *task, char *buffer, int buflen);
|
|
|
|
/* Is the vma a continuation of the stack vma above it? */
|
|
static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
|
|
}
|
|
|
|
static inline bool vma_is_anonymous(struct vm_area_struct *vma)
|
|
{
|
|
return !vma->vm_ops;
|
|
}
|
|
|
|
static inline int stack_guard_page_start(struct vm_area_struct *vma,
|
|
unsigned long addr)
|
|
{
|
|
return (vma->vm_flags & VM_GROWSDOWN) &&
|
|
(vma->vm_start == addr) &&
|
|
!vma_growsdown(vma->vm_prev, addr);
|
|
}
|
|
|
|
/* Is the vma a continuation of the stack vma below it? */
|
|
static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
|
|
{
|
|
return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
|
|
}
|
|
|
|
static inline int stack_guard_page_end(struct vm_area_struct *vma,
|
|
unsigned long addr)
|
|
{
|
|
return (vma->vm_flags & VM_GROWSUP) &&
|
|
(vma->vm_end == addr) &&
|
|
!vma_growsup(vma->vm_next, addr);
|
|
}
|
|
|
|
int vma_is_stack_for_current(struct vm_area_struct *vma);
|
|
|
|
extern unsigned long move_page_tables(struct vm_area_struct *vma,
|
|
unsigned long old_addr, struct vm_area_struct *new_vma,
|
|
unsigned long new_addr, unsigned long len,
|
|
bool need_rmap_locks);
|
|
extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, pgprot_t newprot,
|
|
int dirty_accountable, int prot_numa);
|
|
extern int mprotect_fixup(struct vm_area_struct *vma,
|
|
struct vm_area_struct **pprev, unsigned long start,
|
|
unsigned long end, unsigned long newflags);
|
|
|
|
/*
|
|
* doesn't attempt to fault and will return short.
|
|
*/
|
|
int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
|
|
struct page **pages);
|
|
/*
|
|
* per-process(per-mm_struct) statistics.
|
|
*/
|
|
static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
|
|
{
|
|
long val = atomic_long_read(&mm->rss_stat.count[member]);
|
|
|
|
#ifdef SPLIT_RSS_COUNTING
|
|
/*
|
|
* counter is updated in asynchronous manner and may go to minus.
|
|
* But it's never be expected number for users.
|
|
*/
|
|
if (val < 0)
|
|
val = 0;
|
|
#endif
|
|
return (unsigned long)val;
|
|
}
|
|
|
|
static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
|
|
{
|
|
atomic_long_add(value, &mm->rss_stat.count[member]);
|
|
}
|
|
|
|
static inline void inc_mm_counter(struct mm_struct *mm, int member)
|
|
{
|
|
atomic_long_inc(&mm->rss_stat.count[member]);
|
|
}
|
|
|
|
static inline void dec_mm_counter(struct mm_struct *mm, int member)
|
|
{
|
|
atomic_long_dec(&mm->rss_stat.count[member]);
|
|
}
|
|
|
|
/* Optimized variant when page is already known not to be PageAnon */
|
|
static inline int mm_counter_file(struct page *page)
|
|
{
|
|
if (PageSwapBacked(page))
|
|
return MM_SHMEMPAGES;
|
|
return MM_FILEPAGES;
|
|
}
|
|
|
|
static inline int mm_counter(struct page *page)
|
|
{
|
|
if (PageAnon(page))
|
|
return MM_ANONPAGES;
|
|
return mm_counter_file(page);
|
|
}
|
|
|
|
static inline unsigned long get_mm_rss(struct mm_struct *mm)
|
|
{
|
|
return get_mm_counter(mm, MM_FILEPAGES) +
|
|
get_mm_counter(mm, MM_ANONPAGES) +
|
|
get_mm_counter(mm, MM_SHMEMPAGES);
|
|
}
|
|
|
|
static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
|
|
{
|
|
return max(mm->hiwater_rss, get_mm_rss(mm));
|
|
}
|
|
|
|
static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
|
|
{
|
|
return max(mm->hiwater_vm, mm->total_vm);
|
|
}
|
|
|
|
static inline void update_hiwater_rss(struct mm_struct *mm)
|
|
{
|
|
unsigned long _rss = get_mm_rss(mm);
|
|
|
|
if ((mm)->hiwater_rss < _rss)
|
|
(mm)->hiwater_rss = _rss;
|
|
}
|
|
|
|
static inline void update_hiwater_vm(struct mm_struct *mm)
|
|
{
|
|
if (mm->hiwater_vm < mm->total_vm)
|
|
mm->hiwater_vm = mm->total_vm;
|
|
}
|
|
|
|
static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
|
|
{
|
|
mm->hiwater_rss = get_mm_rss(mm);
|
|
}
|
|
|
|
static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
|
|
struct mm_struct *mm)
|
|
{
|
|
unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
|
|
|
|
if (*maxrss < hiwater_rss)
|
|
*maxrss = hiwater_rss;
|
|
}
|
|
|
|
#if defined(SPLIT_RSS_COUNTING)
|
|
void sync_mm_rss(struct mm_struct *mm);
|
|
#else
|
|
static inline void sync_mm_rss(struct mm_struct *mm)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifndef __HAVE_ARCH_PTE_DEVMAP
|
|
static inline int pte_devmap(pte_t pte)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
|
|
|
|
extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
|
|
spinlock_t **ptl);
|
|
static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
|
|
spinlock_t **ptl)
|
|
{
|
|
pte_t *ptep;
|
|
__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
|
|
return ptep;
|
|
}
|
|
|
|
#ifdef __PAGETABLE_PUD_FOLDED
|
|
static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
|
|
unsigned long address)
|
|
{
|
|
return 0;
|
|
}
|
|
#else
|
|
int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
|
|
#endif
|
|
|
|
#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
|
|
static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
|
|
unsigned long address)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
|
|
|
|
static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
|
|
static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
|
|
|
|
#else
|
|
int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
|
|
|
|
static inline void mm_nr_pmds_init(struct mm_struct *mm)
|
|
{
|
|
atomic_long_set(&mm->nr_pmds, 0);
|
|
}
|
|
|
|
static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
|
|
{
|
|
return atomic_long_read(&mm->nr_pmds);
|
|
}
|
|
|
|
static inline void mm_inc_nr_pmds(struct mm_struct *mm)
|
|
{
|
|
atomic_long_inc(&mm->nr_pmds);
|
|
}
|
|
|
|
static inline void mm_dec_nr_pmds(struct mm_struct *mm)
|
|
{
|
|
atomic_long_dec(&mm->nr_pmds);
|
|
}
|
|
#endif
|
|
|
|
int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
|
|
int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
|
|
|
|
/*
|
|
* The following ifdef needed to get the 4level-fixup.h header to work.
|
|
* Remove it when 4level-fixup.h has been removed.
|
|
*/
|
|
#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
|
|
static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
|
|
{
|
|
return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
|
|
NULL: pud_offset(pgd, address);
|
|
}
|
|
|
|
static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
|
|
{
|
|
return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
|
|
NULL: pmd_offset(pud, address);
|
|
}
|
|
#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
|
|
|
|
#if USE_SPLIT_PTE_PTLOCKS
|
|
#if ALLOC_SPLIT_PTLOCKS
|
|
void __init ptlock_cache_init(void);
|
|
extern bool ptlock_alloc(struct page *page);
|
|
extern void ptlock_free(struct page *page);
|
|
|
|
static inline spinlock_t *ptlock_ptr(struct page *page)
|
|
{
|
|
return page->ptl;
|
|
}
|
|
#else /* ALLOC_SPLIT_PTLOCKS */
|
|
static inline void ptlock_cache_init(void)
|
|
{
|
|
}
|
|
|
|
static inline bool ptlock_alloc(struct page *page)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static inline void ptlock_free(struct page *page)
|
|
{
|
|
}
|
|
|
|
static inline spinlock_t *ptlock_ptr(struct page *page)
|
|
{
|
|
return &page->ptl;
|
|
}
|
|
#endif /* ALLOC_SPLIT_PTLOCKS */
|
|
|
|
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
return ptlock_ptr(pmd_page(*pmd));
|
|
}
|
|
|
|
static inline bool ptlock_init(struct page *page)
|
|
{
|
|
/*
|
|
* prep_new_page() initialize page->private (and therefore page->ptl)
|
|
* with 0. Make sure nobody took it in use in between.
|
|
*
|
|
* It can happen if arch try to use slab for page table allocation:
|
|
* slab code uses page->slab_cache, which share storage with page->ptl.
|
|
*/
|
|
VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
|
|
if (!ptlock_alloc(page))
|
|
return false;
|
|
spin_lock_init(ptlock_ptr(page));
|
|
return true;
|
|
}
|
|
|
|
/* Reset page->mapping so free_pages_check won't complain. */
|
|
static inline void pte_lock_deinit(struct page *page)
|
|
{
|
|
page->mapping = NULL;
|
|
ptlock_free(page);
|
|
}
|
|
|
|
#else /* !USE_SPLIT_PTE_PTLOCKS */
|
|
/*
|
|
* We use mm->page_table_lock to guard all pagetable pages of the mm.
|
|
*/
|
|
static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
return &mm->page_table_lock;
|
|
}
|
|
static inline void ptlock_cache_init(void) {}
|
|
static inline bool ptlock_init(struct page *page) { return true; }
|
|
static inline void pte_lock_deinit(struct page *page) {}
|
|
#endif /* USE_SPLIT_PTE_PTLOCKS */
|
|
|
|
static inline void pgtable_init(void)
|
|
{
|
|
ptlock_cache_init();
|
|
pgtable_cache_init();
|
|
}
|
|
|
|
static inline bool pgtable_page_ctor(struct page *page)
|
|
{
|
|
if (!ptlock_init(page))
|
|
return false;
|
|
inc_zone_page_state(page, NR_PAGETABLE);
|
|
return true;
|
|
}
|
|
|
|
static inline void pgtable_page_dtor(struct page *page)
|
|
{
|
|
pte_lock_deinit(page);
|
|
dec_zone_page_state(page, NR_PAGETABLE);
|
|
}
|
|
|
|
#define pte_offset_map_lock(mm, pmd, address, ptlp) \
|
|
({ \
|
|
spinlock_t *__ptl = pte_lockptr(mm, pmd); \
|
|
pte_t *__pte = pte_offset_map(pmd, address); \
|
|
*(ptlp) = __ptl; \
|
|
spin_lock(__ptl); \
|
|
__pte; \
|
|
})
|
|
|
|
#define pte_unmap_unlock(pte, ptl) do { \
|
|
spin_unlock(ptl); \
|
|
pte_unmap(pte); \
|
|
} while (0)
|
|
|
|
#define pte_alloc(mm, pmd, address) \
|
|
(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
|
|
|
|
#define pte_alloc_map(mm, pmd, address) \
|
|
(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
|
|
|
|
#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
|
|
(pte_alloc(mm, pmd, address) ? \
|
|
NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
|
|
|
|
#define pte_alloc_kernel(pmd, address) \
|
|
((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
|
|
NULL: pte_offset_kernel(pmd, address))
|
|
|
|
#if USE_SPLIT_PMD_PTLOCKS
|
|
|
|
static struct page *pmd_to_page(pmd_t *pmd)
|
|
{
|
|
unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
|
|
return virt_to_page((void *)((unsigned long) pmd & mask));
|
|
}
|
|
|
|
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
return ptlock_ptr(pmd_to_page(pmd));
|
|
}
|
|
|
|
static inline bool pgtable_pmd_page_ctor(struct page *page)
|
|
{
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
page->pmd_huge_pte = NULL;
|
|
#endif
|
|
return ptlock_init(page);
|
|
}
|
|
|
|
static inline void pgtable_pmd_page_dtor(struct page *page)
|
|
{
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
|
|
#endif
|
|
ptlock_free(page);
|
|
}
|
|
|
|
#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
|
|
|
|
#else
|
|
|
|
static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
return &mm->page_table_lock;
|
|
}
|
|
|
|
static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
|
|
static inline void pgtable_pmd_page_dtor(struct page *page) {}
|
|
|
|
#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
|
|
|
|
#endif
|
|
|
|
static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
|
|
{
|
|
spinlock_t *ptl = pmd_lockptr(mm, pmd);
|
|
spin_lock(ptl);
|
|
return ptl;
|
|
}
|
|
|
|
extern void __init pagecache_init(void);
|
|
|
|
extern void free_area_init(unsigned long * zones_size);
|
|
extern void free_area_init_node(int nid, unsigned long * zones_size,
|
|
unsigned long zone_start_pfn, unsigned long *zholes_size);
|
|
extern void free_initmem(void);
|
|
|
|
/*
|
|
* Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
|
|
* into the buddy system. The freed pages will be poisoned with pattern
|
|
* "poison" if it's within range [0, UCHAR_MAX].
|
|
* Return pages freed into the buddy system.
|
|
*/
|
|
extern unsigned long free_reserved_area(void *start, void *end,
|
|
int poison, char *s);
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
/*
|
|
* Free a highmem page into the buddy system, adjusting totalhigh_pages
|
|
* and totalram_pages.
|
|
*/
|
|
extern void free_highmem_page(struct page *page);
|
|
#endif
|
|
|
|
extern void adjust_managed_page_count(struct page *page, long count);
|
|
extern void mem_init_print_info(const char *str);
|
|
|
|
extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
|
|
|
|
/* Free the reserved page into the buddy system, so it gets managed. */
|
|
static inline void __free_reserved_page(struct page *page)
|
|
{
|
|
ClearPageReserved(page);
|
|
init_page_count(page);
|
|
__free_page(page);
|
|
}
|
|
|
|
static inline void free_reserved_page(struct page *page)
|
|
{
|
|
__free_reserved_page(page);
|
|
adjust_managed_page_count(page, 1);
|
|
}
|
|
|
|
static inline void mark_page_reserved(struct page *page)
|
|
{
|
|
SetPageReserved(page);
|
|
adjust_managed_page_count(page, -1);
|
|
}
|
|
|
|
/*
|
|
* Default method to free all the __init memory into the buddy system.
|
|
* The freed pages will be poisoned with pattern "poison" if it's within
|
|
* range [0, UCHAR_MAX].
|
|
* Return pages freed into the buddy system.
|
|
*/
|
|
static inline unsigned long free_initmem_default(int poison)
|
|
{
|
|
extern char __init_begin[], __init_end[];
|
|
|
|
return free_reserved_area(&__init_begin, &__init_end,
|
|
poison, "unused kernel");
|
|
}
|
|
|
|
static inline unsigned long get_num_physpages(void)
|
|
{
|
|
int nid;
|
|
unsigned long phys_pages = 0;
|
|
|
|
for_each_online_node(nid)
|
|
phys_pages += node_present_pages(nid);
|
|
|
|
return phys_pages;
|
|
}
|
|
|
|
#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
|
|
/*
|
|
* With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
|
|
* zones, allocate the backing mem_map and account for memory holes in a more
|
|
* architecture independent manner. This is a substitute for creating the
|
|
* zone_sizes[] and zholes_size[] arrays and passing them to
|
|
* free_area_init_node()
|
|
*
|
|
* An architecture is expected to register range of page frames backed by
|
|
* physical memory with memblock_add[_node]() before calling
|
|
* free_area_init_nodes() passing in the PFN each zone ends at. At a basic
|
|
* usage, an architecture is expected to do something like
|
|
*
|
|
* unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
|
|
* max_highmem_pfn};
|
|
* for_each_valid_physical_page_range()
|
|
* memblock_add_node(base, size, nid)
|
|
* free_area_init_nodes(max_zone_pfns);
|
|
*
|
|
* free_bootmem_with_active_regions() calls free_bootmem_node() for each
|
|
* registered physical page range. Similarly
|
|
* sparse_memory_present_with_active_regions() calls memory_present() for
|
|
* each range when SPARSEMEM is enabled.
|
|
*
|
|
* See mm/page_alloc.c for more information on each function exposed by
|
|
* CONFIG_HAVE_MEMBLOCK_NODE_MAP.
|
|
*/
|
|
extern void free_area_init_nodes(unsigned long *max_zone_pfn);
|
|
unsigned long node_map_pfn_alignment(void);
|
|
unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn);
|
|
extern unsigned long absent_pages_in_range(unsigned long start_pfn,
|
|
unsigned long end_pfn);
|
|
extern void get_pfn_range_for_nid(unsigned int nid,
|
|
unsigned long *start_pfn, unsigned long *end_pfn);
|
|
extern unsigned long find_min_pfn_with_active_regions(void);
|
|
extern void free_bootmem_with_active_regions(int nid,
|
|
unsigned long max_low_pfn);
|
|
extern void sparse_memory_present_with_active_regions(int nid);
|
|
|
|
#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
|
|
|
|
#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
|
|
!defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
|
|
static inline int __early_pfn_to_nid(unsigned long pfn,
|
|
struct mminit_pfnnid_cache *state)
|
|
{
|
|
return 0;
|
|
}
|
|
#else
|
|
/* please see mm/page_alloc.c */
|
|
extern int __meminit early_pfn_to_nid(unsigned long pfn);
|
|
/* there is a per-arch backend function. */
|
|
extern int __meminit __early_pfn_to_nid(unsigned long pfn,
|
|
struct mminit_pfnnid_cache *state);
|
|
#endif
|
|
|
|
extern void set_dma_reserve(unsigned long new_dma_reserve);
|
|
extern void memmap_init_zone(unsigned long, int, unsigned long,
|
|
unsigned long, enum memmap_context);
|
|
extern void setup_per_zone_wmarks(void);
|
|
extern int __meminit init_per_zone_wmark_min(void);
|
|
extern void mem_init(void);
|
|
extern void __init mmap_init(void);
|
|
extern void show_mem(unsigned int flags);
|
|
extern long si_mem_available(void);
|
|
extern void si_meminfo(struct sysinfo * val);
|
|
extern void si_meminfo_node(struct sysinfo *val, int nid);
|
|
#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
|
|
extern unsigned long arch_reserved_kernel_pages(void);
|
|
#endif
|
|
|
|
extern __printf(2, 3)
|
|
void warn_alloc(gfp_t gfp_mask, const char *fmt, ...);
|
|
|
|
extern void setup_per_cpu_pageset(void);
|
|
|
|
extern void zone_pcp_update(struct zone *zone);
|
|
extern void zone_pcp_reset(struct zone *zone);
|
|
|
|
/* page_alloc.c */
|
|
extern int min_free_kbytes;
|
|
extern int watermark_scale_factor;
|
|
|
|
/* nommu.c */
|
|
extern atomic_long_t mmap_pages_allocated;
|
|
extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
|
|
|
|
/* interval_tree.c */
|
|
void vma_interval_tree_insert(struct vm_area_struct *node,
|
|
struct rb_root *root);
|
|
void vma_interval_tree_insert_after(struct vm_area_struct *node,
|
|
struct vm_area_struct *prev,
|
|
struct rb_root *root);
|
|
void vma_interval_tree_remove(struct vm_area_struct *node,
|
|
struct rb_root *root);
|
|
struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
|
|
unsigned long start, unsigned long last);
|
|
struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
|
|
unsigned long start, unsigned long last);
|
|
|
|
#define vma_interval_tree_foreach(vma, root, start, last) \
|
|
for (vma = vma_interval_tree_iter_first(root, start, last); \
|
|
vma; vma = vma_interval_tree_iter_next(vma, start, last))
|
|
|
|
void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
|
|
struct rb_root *root);
|
|
void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
|
|
struct rb_root *root);
|
|
struct anon_vma_chain *anon_vma_interval_tree_iter_first(
|
|
struct rb_root *root, unsigned long start, unsigned long last);
|
|
struct anon_vma_chain *anon_vma_interval_tree_iter_next(
|
|
struct anon_vma_chain *node, unsigned long start, unsigned long last);
|
|
#ifdef CONFIG_DEBUG_VM_RB
|
|
void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
|
|
#endif
|
|
|
|
#define anon_vma_interval_tree_foreach(avc, root, start, last) \
|
|
for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
|
|
avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
|
|
|
|
/* mmap.c */
|
|
extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
|
|
extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
|
|
struct vm_area_struct *expand);
|
|
static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
|
|
unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
|
|
{
|
|
return __vma_adjust(vma, start, end, pgoff, insert, NULL);
|
|
}
|
|
extern struct vm_area_struct *vma_merge(struct mm_struct *,
|
|
struct vm_area_struct *prev, unsigned long addr, unsigned long end,
|
|
unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
|
|
struct mempolicy *, struct vm_userfaultfd_ctx);
|
|
extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
|
|
extern int split_vma(struct mm_struct *,
|
|
struct vm_area_struct *, unsigned long addr, int new_below);
|
|
extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
|
|
extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
|
|
struct rb_node **, struct rb_node *);
|
|
extern void unlink_file_vma(struct vm_area_struct *);
|
|
extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
|
|
unsigned long addr, unsigned long len, pgoff_t pgoff,
|
|
bool *need_rmap_locks);
|
|
extern void exit_mmap(struct mm_struct *);
|
|
|
|
static inline int check_data_rlimit(unsigned long rlim,
|
|
unsigned long new,
|
|
unsigned long start,
|
|
unsigned long end_data,
|
|
unsigned long start_data)
|
|
{
|
|
if (rlim < RLIM_INFINITY) {
|
|
if (((new - start) + (end_data - start_data)) > rlim)
|
|
return -ENOSPC;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
extern int mm_take_all_locks(struct mm_struct *mm);
|
|
extern void mm_drop_all_locks(struct mm_struct *mm);
|
|
|
|
extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
|
|
extern struct file *get_mm_exe_file(struct mm_struct *mm);
|
|
extern struct file *get_task_exe_file(struct task_struct *task);
|
|
|
|
extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
|
|
extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
|
|
|
|
extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
|
|
const struct vm_special_mapping *sm);
|
|
extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long len,
|
|
unsigned long flags,
|
|
const struct vm_special_mapping *spec);
|
|
/* This is an obsolete alternative to _install_special_mapping. */
|
|
extern int install_special_mapping(struct mm_struct *mm,
|
|
unsigned long addr, unsigned long len,
|
|
unsigned long flags, struct page **pages);
|
|
|
|
extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
|
|
|
|
extern unsigned long mmap_region(struct file *file, unsigned long addr,
|
|
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
|
|
extern unsigned long do_mmap(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long prot, unsigned long flags,
|
|
vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
|
|
extern int do_munmap(struct mm_struct *, unsigned long, size_t);
|
|
|
|
static inline unsigned long
|
|
do_mmap_pgoff(struct file *file, unsigned long addr,
|
|
unsigned long len, unsigned long prot, unsigned long flags,
|
|
unsigned long pgoff, unsigned long *populate)
|
|
{
|
|
return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
extern int __mm_populate(unsigned long addr, unsigned long len,
|
|
int ignore_errors);
|
|
static inline void mm_populate(unsigned long addr, unsigned long len)
|
|
{
|
|
/* Ignore errors */
|
|
(void) __mm_populate(addr, len, 1);
|
|
}
|
|
#else
|
|
static inline void mm_populate(unsigned long addr, unsigned long len) {}
|
|
#endif
|
|
|
|
/* These take the mm semaphore themselves */
|
|
extern int __must_check vm_brk(unsigned long, unsigned long);
|
|
extern int vm_munmap(unsigned long, size_t);
|
|
extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
|
|
unsigned long, unsigned long,
|
|
unsigned long, unsigned long);
|
|
|
|
struct vm_unmapped_area_info {
|
|
#define VM_UNMAPPED_AREA_TOPDOWN 1
|
|
unsigned long flags;
|
|
unsigned long length;
|
|
unsigned long low_limit;
|
|
unsigned long high_limit;
|
|
unsigned long align_mask;
|
|
unsigned long align_offset;
|
|
};
|
|
|
|
extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
|
|
extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
|
|
|
|
/*
|
|
* Search for an unmapped address range.
|
|
*
|
|
* We are looking for a range that:
|
|
* - does not intersect with any VMA;
|
|
* - is contained within the [low_limit, high_limit) interval;
|
|
* - is at least the desired size.
|
|
* - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
|
|
*/
|
|
static inline unsigned long
|
|
vm_unmapped_area(struct vm_unmapped_area_info *info)
|
|
{
|
|
if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
|
|
return unmapped_area_topdown(info);
|
|
else
|
|
return unmapped_area(info);
|
|
}
|
|
|
|
/* truncate.c */
|
|
extern void truncate_inode_pages(struct address_space *, loff_t);
|
|
extern void truncate_inode_pages_range(struct address_space *,
|
|
loff_t lstart, loff_t lend);
|
|
extern void truncate_inode_pages_final(struct address_space *);
|
|
|
|
/* generic vm_area_ops exported for stackable file systems */
|
|
extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
|
|
extern void filemap_map_pages(struct vm_fault *vmf,
|
|
pgoff_t start_pgoff, pgoff_t end_pgoff);
|
|
extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
|
|
|
|
/* mm/page-writeback.c */
|
|
int write_one_page(struct page *page, int wait);
|
|
void task_dirty_inc(struct task_struct *tsk);
|
|
|
|
/* readahead.c */
|
|
#define VM_MAX_READAHEAD 128 /* kbytes */
|
|
#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
|
|
|
|
int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
|
|
pgoff_t offset, unsigned long nr_to_read);
|
|
|
|
void page_cache_sync_readahead(struct address_space *mapping,
|
|
struct file_ra_state *ra,
|
|
struct file *filp,
|
|
pgoff_t offset,
|
|
unsigned long size);
|
|
|
|
void page_cache_async_readahead(struct address_space *mapping,
|
|
struct file_ra_state *ra,
|
|
struct file *filp,
|
|
struct page *pg,
|
|
pgoff_t offset,
|
|
unsigned long size);
|
|
|
|
/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
|
|
extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
|
|
|
|
/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
|
|
extern int expand_downwards(struct vm_area_struct *vma,
|
|
unsigned long address);
|
|
#if VM_GROWSUP
|
|
extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
|
|
#else
|
|
#define expand_upwards(vma, address) (0)
|
|
#endif
|
|
|
|
/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
|
|
extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
|
|
extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
|
|
struct vm_area_struct **pprev);
|
|
|
|
/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
|
|
NULL if none. Assume start_addr < end_addr. */
|
|
static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
|
|
{
|
|
struct vm_area_struct * vma = find_vma(mm,start_addr);
|
|
|
|
if (vma && end_addr <= vma->vm_start)
|
|
vma = NULL;
|
|
return vma;
|
|
}
|
|
|
|
static inline unsigned long vma_pages(struct vm_area_struct *vma)
|
|
{
|
|
return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
|
|
}
|
|
|
|
/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
|
|
static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
|
|
unsigned long vm_start, unsigned long vm_end)
|
|
{
|
|
struct vm_area_struct *vma = find_vma(mm, vm_start);
|
|
|
|
if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
|
|
vma = NULL;
|
|
|
|
return vma;
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
pgprot_t vm_get_page_prot(unsigned long vm_flags);
|
|
void vma_set_page_prot(struct vm_area_struct *vma);
|
|
#else
|
|
static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
|
|
{
|
|
return __pgprot(0);
|
|
}
|
|
static inline void vma_set_page_prot(struct vm_area_struct *vma)
|
|
{
|
|
vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
unsigned long change_prot_numa(struct vm_area_struct *vma,
|
|
unsigned long start, unsigned long end);
|
|
#endif
|
|
|
|
struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
|
|
int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
|
|
unsigned long pfn, unsigned long size, pgprot_t);
|
|
int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
|
|
int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn);
|
|
int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
|
|
unsigned long pfn, pgprot_t pgprot);
|
|
int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
|
|
pfn_t pfn);
|
|
int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
|
|
|
|
|
|
struct page *follow_page_mask(struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int foll_flags,
|
|
unsigned int *page_mask);
|
|
|
|
static inline struct page *follow_page(struct vm_area_struct *vma,
|
|
unsigned long address, unsigned int foll_flags)
|
|
{
|
|
unsigned int unused_page_mask;
|
|
return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
|
|
}
|
|
|
|
#define FOLL_WRITE 0x01 /* check pte is writable */
|
|
#define FOLL_TOUCH 0x02 /* mark page accessed */
|
|
#define FOLL_GET 0x04 /* do get_page on page */
|
|
#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
|
|
#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
|
|
#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
|
|
* and return without waiting upon it */
|
|
#define FOLL_POPULATE 0x40 /* fault in page */
|
|
#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
|
|
#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
|
|
#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
|
|
#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
|
|
#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
|
|
#define FOLL_MLOCK 0x1000 /* lock present pages */
|
|
#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
|
|
#define FOLL_COW 0x4000 /* internal GUP flag */
|
|
|
|
typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
|
|
void *data);
|
|
extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
|
|
unsigned long size, pte_fn_t fn, void *data);
|
|
|
|
|
|
#ifdef CONFIG_PAGE_POISONING
|
|
extern bool page_poisoning_enabled(void);
|
|
extern void kernel_poison_pages(struct page *page, int numpages, int enable);
|
|
extern bool page_is_poisoned(struct page *page);
|
|
#else
|
|
static inline bool page_poisoning_enabled(void) { return false; }
|
|
static inline void kernel_poison_pages(struct page *page, int numpages,
|
|
int enable) { }
|
|
static inline bool page_is_poisoned(struct page *page) { return false; }
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
extern bool _debug_pagealloc_enabled;
|
|
extern void __kernel_map_pages(struct page *page, int numpages, int enable);
|
|
|
|
static inline bool debug_pagealloc_enabled(void)
|
|
{
|
|
return _debug_pagealloc_enabled;
|
|
}
|
|
|
|
static inline void
|
|
kernel_map_pages(struct page *page, int numpages, int enable)
|
|
{
|
|
if (!debug_pagealloc_enabled())
|
|
return;
|
|
|
|
__kernel_map_pages(page, numpages, enable);
|
|
}
|
|
#ifdef CONFIG_HIBERNATION
|
|
extern bool kernel_page_present(struct page *page);
|
|
#endif /* CONFIG_HIBERNATION */
|
|
#else /* CONFIG_DEBUG_PAGEALLOC */
|
|
static inline void
|
|
kernel_map_pages(struct page *page, int numpages, int enable) {}
|
|
#ifdef CONFIG_HIBERNATION
|
|
static inline bool kernel_page_present(struct page *page) { return true; }
|
|
#endif /* CONFIG_HIBERNATION */
|
|
static inline bool debug_pagealloc_enabled(void)
|
|
{
|
|
return false;
|
|
}
|
|
#endif /* CONFIG_DEBUG_PAGEALLOC */
|
|
|
|
#ifdef __HAVE_ARCH_GATE_AREA
|
|
extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
|
|
extern int in_gate_area_no_mm(unsigned long addr);
|
|
extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
|
|
#else
|
|
static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
|
|
{
|
|
return NULL;
|
|
}
|
|
static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
|
|
static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* __HAVE_ARCH_GATE_AREA */
|
|
|
|
extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
|
|
|
|
#ifdef CONFIG_SYSCTL
|
|
extern int sysctl_drop_caches;
|
|
int drop_caches_sysctl_handler(struct ctl_table *, int,
|
|
void __user *, size_t *, loff_t *);
|
|
#endif
|
|
|
|
void drop_slab(void);
|
|
void drop_slab_node(int nid);
|
|
|
|
#ifndef CONFIG_MMU
|
|
#define randomize_va_space 0
|
|
#else
|
|
extern int randomize_va_space;
|
|
#endif
|
|
|
|
const char * arch_vma_name(struct vm_area_struct *vma);
|
|
void print_vma_addr(char *prefix, unsigned long rip);
|
|
|
|
void sparse_mem_maps_populate_node(struct page **map_map,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long map_count,
|
|
int nodeid);
|
|
|
|
struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
|
|
pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
|
|
pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
|
|
pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
|
|
pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
|
|
void *vmemmap_alloc_block(unsigned long size, int node);
|
|
struct vmem_altmap;
|
|
void *__vmemmap_alloc_block_buf(unsigned long size, int node,
|
|
struct vmem_altmap *altmap);
|
|
static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
|
|
{
|
|
return __vmemmap_alloc_block_buf(size, node, NULL);
|
|
}
|
|
|
|
void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
|
|
int vmemmap_populate_basepages(unsigned long start, unsigned long end,
|
|
int node);
|
|
int vmemmap_populate(unsigned long start, unsigned long end, int node);
|
|
void vmemmap_populate_print_last(void);
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
void vmemmap_free(unsigned long start, unsigned long end);
|
|
#endif
|
|
void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
|
|
unsigned long size);
|
|
|
|
enum mf_flags {
|
|
MF_COUNT_INCREASED = 1 << 0,
|
|
MF_ACTION_REQUIRED = 1 << 1,
|
|
MF_MUST_KILL = 1 << 2,
|
|
MF_SOFT_OFFLINE = 1 << 3,
|
|
};
|
|
extern int memory_failure(unsigned long pfn, int trapno, int flags);
|
|
extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
|
|
extern int unpoison_memory(unsigned long pfn);
|
|
extern int get_hwpoison_page(struct page *page);
|
|
#define put_hwpoison_page(page) put_page(page)
|
|
extern int sysctl_memory_failure_early_kill;
|
|
extern int sysctl_memory_failure_recovery;
|
|
extern void shake_page(struct page *p, int access);
|
|
extern atomic_long_t num_poisoned_pages;
|
|
extern int soft_offline_page(struct page *page, int flags);
|
|
|
|
|
|
/*
|
|
* Error handlers for various types of pages.
|
|
*/
|
|
enum mf_result {
|
|
MF_IGNORED, /* Error: cannot be handled */
|
|
MF_FAILED, /* Error: handling failed */
|
|
MF_DELAYED, /* Will be handled later */
|
|
MF_RECOVERED, /* Successfully recovered */
|
|
};
|
|
|
|
enum mf_action_page_type {
|
|
MF_MSG_KERNEL,
|
|
MF_MSG_KERNEL_HIGH_ORDER,
|
|
MF_MSG_SLAB,
|
|
MF_MSG_DIFFERENT_COMPOUND,
|
|
MF_MSG_POISONED_HUGE,
|
|
MF_MSG_HUGE,
|
|
MF_MSG_FREE_HUGE,
|
|
MF_MSG_UNMAP_FAILED,
|
|
MF_MSG_DIRTY_SWAPCACHE,
|
|
MF_MSG_CLEAN_SWAPCACHE,
|
|
MF_MSG_DIRTY_MLOCKED_LRU,
|
|
MF_MSG_CLEAN_MLOCKED_LRU,
|
|
MF_MSG_DIRTY_UNEVICTABLE_LRU,
|
|
MF_MSG_CLEAN_UNEVICTABLE_LRU,
|
|
MF_MSG_DIRTY_LRU,
|
|
MF_MSG_CLEAN_LRU,
|
|
MF_MSG_TRUNCATED_LRU,
|
|
MF_MSG_BUDDY,
|
|
MF_MSG_BUDDY_2ND,
|
|
MF_MSG_UNKNOWN,
|
|
};
|
|
|
|
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
|
|
extern void clear_huge_page(struct page *page,
|
|
unsigned long addr,
|
|
unsigned int pages_per_huge_page);
|
|
extern void copy_user_huge_page(struct page *dst, struct page *src,
|
|
unsigned long addr, struct vm_area_struct *vma,
|
|
unsigned int pages_per_huge_page);
|
|
#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
|
|
|
|
extern struct page_ext_operations debug_guardpage_ops;
|
|
extern struct page_ext_operations page_poisoning_ops;
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
extern unsigned int _debug_guardpage_minorder;
|
|
extern bool _debug_guardpage_enabled;
|
|
|
|
static inline unsigned int debug_guardpage_minorder(void)
|
|
{
|
|
return _debug_guardpage_minorder;
|
|
}
|
|
|
|
static inline bool debug_guardpage_enabled(void)
|
|
{
|
|
return _debug_guardpage_enabled;
|
|
}
|
|
|
|
static inline bool page_is_guard(struct page *page)
|
|
{
|
|
struct page_ext *page_ext;
|
|
|
|
if (!debug_guardpage_enabled())
|
|
return false;
|
|
|
|
page_ext = lookup_page_ext(page);
|
|
if (unlikely(!page_ext))
|
|
return false;
|
|
|
|
return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
|
|
}
|
|
#else
|
|
static inline unsigned int debug_guardpage_minorder(void) { return 0; }
|
|
static inline bool debug_guardpage_enabled(void) { return false; }
|
|
static inline bool page_is_guard(struct page *page) { return false; }
|
|
#endif /* CONFIG_DEBUG_PAGEALLOC */
|
|
|
|
#if MAX_NUMNODES > 1
|
|
void __init setup_nr_node_ids(void);
|
|
#else
|
|
static inline void setup_nr_node_ids(void) {}
|
|
#endif
|
|
|
|
#endif /* __KERNEL__ */
|
|
#endif /* _LINUX_MM_H */
|