mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-25 17:35:07 +07:00
2d1eb87ae1
Pull ARM changes from Russell King: - Perf updates from Will Deacon: - Support for Qualcomm Krait processors (run perf on your phone!) - Support for Cortex-A12 (run perf stat on your FPGA!) - Support for perf_sample_event_took, allowing us to automatically decrease the sample rate if we can't handle the PMU interrupts quickly enough (run perf record on your FPGA!). - Basic uprobes support from David Long: This patch series adds basic uprobes support to ARM. It is based on patches developed earlier by Rabin Vincent. That approach of adding hooks into the kprobes instruction parsing code was not well received. This approach separates the ARM instruction parsing code in kprobes out into a separate set of functions which can be used by both kprobes and uprobes. Both kprobes and uprobes then provide their own semantic action tables to process the results of the parsing. - ARMv7M (microcontroller) updates from Uwe Kleine-König - OMAP DMA updates (recently added Vinod's Ack even though they've been sitting in linux-next for a few months) to reduce the reliance of omap-dma on the code in arch/arm. - SA11x0 changes from Dmitry Eremin-Solenikov and Alexander Shiyan - Support for Cortex-A12 CPU - Align support for ARMv6 with ARMv7 so they can cooperate better in a single zImage. - Addition of first AT_HWCAP2 feature bits for ARMv8 crypto support. - Removal of IRQ_DISABLED from various ARM files - Improved efficiency of virt_to_page() for single zImage - Patch from Ulf Hansson to permit runtime PM callbacks to be available for AMBA devices for suspend/resume as well. - Finally kill asm/system.h on ARM. * 'for-linus' of git://ftp.arm.linux.org.uk/~rmk/linux-arm: (89 commits) dmaengine: omap-dma: more consolidation of CCR register setup dmaengine: omap-dma: move IRQ handling to omap-dma dmaengine: omap-dma: move register read/writes into omap-dma.c ARM: omap: dma: get rid of 'p' allocation and clean up ARM: omap: move dma channel allocation into plat-omap code ARM: omap: dma: get rid of errata global ARM: omap: clean up DMA register accesses ARM: omap: remove almost-const variables ARM: omap: remove references to disable_irq_lch dmaengine: omap-dma: cleanup errata 3.3 handling dmaengine: omap-dma: provide register read/write functions dmaengine: omap-dma: use cached CCR value when enabling DMA dmaengine: omap-dma: move barrier to omap_dma_start_desc() dmaengine: omap-dma: move clnk_ctrl setting to preparation functions dmaengine: omap-dma: improve efficiency loading C.SA/C.EI/C.FI registers dmaengine: omap-dma: consolidate clearing channel status register dmaengine: omap-dma: move CCR buffering disable errata out of the fast path dmaengine: omap-dma: provide register definitions dmaengine: omap-dma: consolidate setup of CCR dmaengine: omap-dma: consolidate setup of CSDP ... |
||
---|---|---|
.. | ||
atm | ||
c67x00 | ||
chipidea | ||
class | ||
core | ||
dwc2 | ||
dwc3 | ||
early | ||
gadget | ||
host | ||
image | ||
misc | ||
mon | ||
musb | ||
phy | ||
renesas_usbhs | ||
serial | ||
storage | ||
wusbcore | ||
Kconfig | ||
Makefile | ||
README | ||
usb-common.c | ||
usb-skeleton.c |
To understand all the Linux-USB framework, you'll use these resources: * This source code. This is necessarily an evolving work, and includes kerneldoc that should help you get a current overview. ("make pdfdocs", and then look at "usb.pdf" for host side and "gadget.pdf" for peripheral side.) Also, Documentation/usb has more information. * The USB 2.0 specification (from www.usb.org), with supplements such as those for USB OTG and the various device classes. The USB specification has a good overview chapter, and USB peripherals conform to the widely known "Chapter 9". * Chip specifications for USB controllers. Examples include host controllers (on PCs, servers, and more); peripheral controllers (in devices with Linux firmware, like printers or cell phones); and hard-wired peripherals like Ethernet adapters. * Specifications for other protocols implemented by USB peripheral functions. Some are vendor-specific; others are vendor-neutral but just standardized outside of the www.usb.org team. Here is a list of what each subdirectory here is, and what is contained in them. core/ - This is for the core USB host code, including the usbfs files and the hub class driver ("khubd"). host/ - This is for USB host controller drivers. This includes UHCI, OHCI, EHCI, and others that might be used with more specialized "embedded" systems. gadget/ - This is for USB peripheral controller drivers and the various gadget drivers which talk to them. Individual USB driver directories. A new driver should be added to the first subdirectory in the list below that it fits into. image/ - This is for still image drivers, like scanners or digital cameras. ../input/ - This is for any driver that uses the input subsystem, like keyboard, mice, touchscreens, tablets, etc. ../media/ - This is for multimedia drivers, like video cameras, radios, and any other drivers that talk to the v4l subsystem. ../net/ - This is for network drivers. serial/ - This is for USB to serial drivers. storage/ - This is for USB mass-storage drivers. class/ - This is for all USB device drivers that do not fit into any of the above categories, and work for a range of USB Class specified devices. misc/ - This is for all USB device drivers that do not fit into any of the above categories.