mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 21:21:02 +07:00
39a67d49ba
Kprobes needs simulation of instructions that cannot be stepped from a different memory location, e.g.: those instructions that uses PC-relative addressing. In simulation, the behaviour of the instruction is implemented using a copy of pt_regs. The following instruction categories are simulated: - All branching instructions(conditional, register, and immediate) - Literal access instructions(load-literal, adr/adrp) Conditional execution is limited to branching instructions in ARM v8. If conditions at PSTATE do not match the condition fields of opcode, the instruction is effectively NOP. Thanks to Will Cohen for assorted suggested changes. Signed-off-by: Sandeepa Prabhu <sandeepa.s.prabhu@gmail.com> Signed-off-by: William Cohen <wcohen@redhat.com> Signed-off-by: David A. Long <dave.long@linaro.org> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> [catalin.marinas@arm.com: removed linux/module.h include] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
583 lines
15 KiB
C
583 lines
15 KiB
C
/*
|
|
* arch/arm64/kernel/probes/kprobes.c
|
|
*
|
|
* Kprobes support for ARM64
|
|
*
|
|
* Copyright (C) 2013 Linaro Limited.
|
|
* Author: Sandeepa Prabhu <sandeepa.prabhu@linaro.org>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/stringify.h>
|
|
#include <asm/traps.h>
|
|
#include <asm/ptrace.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/debug-monitors.h>
|
|
#include <asm/system_misc.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/irq.h>
|
|
#include <asm-generic/sections.h>
|
|
|
|
#include "decode-insn.h"
|
|
|
|
#define MIN_STACK_SIZE(addr) (on_irq_stack(addr, raw_smp_processor_id()) ? \
|
|
min((unsigned long)IRQ_STACK_SIZE, \
|
|
IRQ_STACK_PTR(raw_smp_processor_id()) - (addr)) : \
|
|
min((unsigned long)MAX_STACK_SIZE, \
|
|
(unsigned long)current_thread_info() + THREAD_START_SP - (addr)))
|
|
|
|
void jprobe_return_break(void);
|
|
|
|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
|
|
DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
|
|
|
|
static void __kprobes
|
|
post_kprobe_handler(struct kprobe_ctlblk *, struct pt_regs *);
|
|
|
|
static void __kprobes arch_prepare_ss_slot(struct kprobe *p)
|
|
{
|
|
/* prepare insn slot */
|
|
p->ainsn.insn[0] = cpu_to_le32(p->opcode);
|
|
|
|
flush_icache_range((uintptr_t) (p->ainsn.insn),
|
|
(uintptr_t) (p->ainsn.insn) +
|
|
MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
|
|
|
|
/*
|
|
* Needs restoring of return address after stepping xol.
|
|
*/
|
|
p->ainsn.restore = (unsigned long) p->addr +
|
|
sizeof(kprobe_opcode_t);
|
|
}
|
|
|
|
static void __kprobes arch_prepare_simulate(struct kprobe *p)
|
|
{
|
|
/* This instructions is not executed xol. No need to adjust the PC */
|
|
p->ainsn.restore = 0;
|
|
}
|
|
|
|
static void __kprobes arch_simulate_insn(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
if (p->ainsn.handler)
|
|
p->ainsn.handler((u32)p->opcode, (long)p->addr, regs);
|
|
|
|
/* single step simulated, now go for post processing */
|
|
post_kprobe_handler(kcb, regs);
|
|
}
|
|
|
|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
|
|
{
|
|
unsigned long probe_addr = (unsigned long)p->addr;
|
|
extern char __start_rodata[];
|
|
extern char __end_rodata[];
|
|
|
|
if (probe_addr & 0x3)
|
|
return -EINVAL;
|
|
|
|
/* copy instruction */
|
|
p->opcode = le32_to_cpu(*p->addr);
|
|
|
|
if (in_exception_text(probe_addr))
|
|
return -EINVAL;
|
|
if (probe_addr >= (unsigned long) __start_rodata &&
|
|
probe_addr <= (unsigned long) __end_rodata)
|
|
return -EINVAL;
|
|
|
|
/* decode instruction */
|
|
switch (arm_kprobe_decode_insn(p->addr, &p->ainsn)) {
|
|
case INSN_REJECTED: /* insn not supported */
|
|
return -EINVAL;
|
|
|
|
case INSN_GOOD_NO_SLOT: /* insn need simulation */
|
|
p->ainsn.insn = NULL;
|
|
break;
|
|
|
|
case INSN_GOOD: /* instruction uses slot */
|
|
p->ainsn.insn = get_insn_slot();
|
|
if (!p->ainsn.insn)
|
|
return -ENOMEM;
|
|
break;
|
|
};
|
|
|
|
/* prepare the instruction */
|
|
if (p->ainsn.insn)
|
|
arch_prepare_ss_slot(p);
|
|
else
|
|
arch_prepare_simulate(p);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __kprobes patch_text(kprobe_opcode_t *addr, u32 opcode)
|
|
{
|
|
void *addrs[1];
|
|
u32 insns[1];
|
|
|
|
addrs[0] = (void *)addr;
|
|
insns[0] = (u32)opcode;
|
|
|
|
return aarch64_insn_patch_text(addrs, insns, 1);
|
|
}
|
|
|
|
/* arm kprobe: install breakpoint in text */
|
|
void __kprobes arch_arm_kprobe(struct kprobe *p)
|
|
{
|
|
patch_text(p->addr, BRK64_OPCODE_KPROBES);
|
|
}
|
|
|
|
/* disarm kprobe: remove breakpoint from text */
|
|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
|
|
{
|
|
patch_text(p->addr, p->opcode);
|
|
}
|
|
|
|
void __kprobes arch_remove_kprobe(struct kprobe *p)
|
|
{
|
|
if (p->ainsn.insn) {
|
|
free_insn_slot(p->ainsn.insn, 0);
|
|
p->ainsn.insn = NULL;
|
|
}
|
|
}
|
|
|
|
static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->prev_kprobe.kp = kprobe_running();
|
|
kcb->prev_kprobe.status = kcb->kprobe_status;
|
|
}
|
|
|
|
static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
|
|
{
|
|
__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
|
|
kcb->kprobe_status = kcb->prev_kprobe.status;
|
|
}
|
|
|
|
static void __kprobes set_current_kprobe(struct kprobe *p)
|
|
{
|
|
__this_cpu_write(current_kprobe, p);
|
|
}
|
|
|
|
/*
|
|
* The D-flag (Debug mask) is set (masked) upon debug exception entry.
|
|
* Kprobes needs to clear (unmask) D-flag -ONLY- in case of recursive
|
|
* probe i.e. when probe hit from kprobe handler context upon
|
|
* executing the pre/post handlers. In this case we return with
|
|
* D-flag clear so that single-stepping can be carried-out.
|
|
*
|
|
* Leave D-flag set in all other cases.
|
|
*/
|
|
static void __kprobes
|
|
spsr_set_debug_flag(struct pt_regs *regs, int mask)
|
|
{
|
|
unsigned long spsr = regs->pstate;
|
|
|
|
if (mask)
|
|
spsr |= PSR_D_BIT;
|
|
else
|
|
spsr &= ~PSR_D_BIT;
|
|
|
|
regs->pstate = spsr;
|
|
}
|
|
|
|
/*
|
|
* Interrupts need to be disabled before single-step mode is set, and not
|
|
* reenabled until after single-step mode ends.
|
|
* Without disabling interrupt on local CPU, there is a chance of
|
|
* interrupt occurrence in the period of exception return and start of
|
|
* out-of-line single-step, that result in wrongly single stepping
|
|
* into the interrupt handler.
|
|
*/
|
|
static void __kprobes kprobes_save_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs)
|
|
{
|
|
kcb->saved_irqflag = regs->pstate;
|
|
regs->pstate |= PSR_I_BIT;
|
|
}
|
|
|
|
static void __kprobes kprobes_restore_local_irqflag(struct kprobe_ctlblk *kcb,
|
|
struct pt_regs *regs)
|
|
{
|
|
if (kcb->saved_irqflag & PSR_I_BIT)
|
|
regs->pstate |= PSR_I_BIT;
|
|
else
|
|
regs->pstate &= ~PSR_I_BIT;
|
|
}
|
|
|
|
static void __kprobes
|
|
set_ss_context(struct kprobe_ctlblk *kcb, unsigned long addr)
|
|
{
|
|
kcb->ss_ctx.ss_pending = true;
|
|
kcb->ss_ctx.match_addr = addr + sizeof(kprobe_opcode_t);
|
|
}
|
|
|
|
static void __kprobes clear_ss_context(struct kprobe_ctlblk *kcb)
|
|
{
|
|
kcb->ss_ctx.ss_pending = false;
|
|
kcb->ss_ctx.match_addr = 0;
|
|
}
|
|
|
|
static void __kprobes setup_singlestep(struct kprobe *p,
|
|
struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb, int reenter)
|
|
{
|
|
unsigned long slot;
|
|
|
|
if (reenter) {
|
|
save_previous_kprobe(kcb);
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_REENTER;
|
|
} else {
|
|
kcb->kprobe_status = KPROBE_HIT_SS;
|
|
}
|
|
|
|
|
|
if (p->ainsn.insn) {
|
|
/* prepare for single stepping */
|
|
slot = (unsigned long)p->ainsn.insn;
|
|
|
|
set_ss_context(kcb, slot); /* mark pending ss */
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
spsr_set_debug_flag(regs, 0);
|
|
|
|
/* IRQs and single stepping do not mix well. */
|
|
kprobes_save_local_irqflag(kcb, regs);
|
|
kernel_enable_single_step(regs);
|
|
instruction_pointer_set(regs, slot);
|
|
} else {
|
|
/* insn simulation */
|
|
arch_simulate_insn(p, regs);
|
|
}
|
|
}
|
|
|
|
static int __kprobes reenter_kprobe(struct kprobe *p,
|
|
struct pt_regs *regs,
|
|
struct kprobe_ctlblk *kcb)
|
|
{
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SSDONE:
|
|
case KPROBE_HIT_ACTIVE:
|
|
kprobes_inc_nmissed_count(p);
|
|
setup_singlestep(p, regs, kcb, 1);
|
|
break;
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
pr_warn("Unrecoverable kprobe detected at %p.\n", p->addr);
|
|
dump_kprobe(p);
|
|
BUG();
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void __kprobes
|
|
post_kprobe_handler(struct kprobe_ctlblk *kcb, struct pt_regs *regs)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
|
|
if (!cur)
|
|
return;
|
|
|
|
/* return addr restore if non-branching insn */
|
|
if (cur->ainsn.restore != 0)
|
|
instruction_pointer_set(regs, cur->ainsn.restore);
|
|
|
|
/* restore back original saved kprobe variables and continue */
|
|
if (kcb->kprobe_status == KPROBE_REENTER) {
|
|
restore_previous_kprobe(kcb);
|
|
return;
|
|
}
|
|
/* call post handler */
|
|
kcb->kprobe_status = KPROBE_HIT_SSDONE;
|
|
if (cur->post_handler) {
|
|
/* post_handler can hit breakpoint and single step
|
|
* again, so we enable D-flag for recursive exception.
|
|
*/
|
|
cur->post_handler(cur, regs, 0);
|
|
}
|
|
|
|
reset_current_kprobe();
|
|
}
|
|
|
|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
|
|
{
|
|
struct kprobe *cur = kprobe_running();
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
switch (kcb->kprobe_status) {
|
|
case KPROBE_HIT_SS:
|
|
case KPROBE_REENTER:
|
|
/*
|
|
* We are here because the instruction being single
|
|
* stepped caused a page fault. We reset the current
|
|
* kprobe and the ip points back to the probe address
|
|
* and allow the page fault handler to continue as a
|
|
* normal page fault.
|
|
*/
|
|
instruction_pointer_set(regs, (unsigned long) cur->addr);
|
|
if (!instruction_pointer(regs))
|
|
BUG();
|
|
|
|
kernel_disable_single_step();
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
spsr_set_debug_flag(regs, 1);
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
restore_previous_kprobe(kcb);
|
|
else
|
|
reset_current_kprobe();
|
|
|
|
break;
|
|
case KPROBE_HIT_ACTIVE:
|
|
case KPROBE_HIT_SSDONE:
|
|
/*
|
|
* We increment the nmissed count for accounting,
|
|
* we can also use npre/npostfault count for accounting
|
|
* these specific fault cases.
|
|
*/
|
|
kprobes_inc_nmissed_count(cur);
|
|
|
|
/*
|
|
* We come here because instructions in the pre/post
|
|
* handler caused the page_fault, this could happen
|
|
* if handler tries to access user space by
|
|
* copy_from_user(), get_user() etc. Let the
|
|
* user-specified handler try to fix it first.
|
|
*/
|
|
if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
|
|
return 1;
|
|
|
|
/*
|
|
* In case the user-specified fault handler returned
|
|
* zero, try to fix up.
|
|
*/
|
|
if (fixup_exception(regs))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
|
|
unsigned long val, void *data)
|
|
{
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
static void __kprobes kprobe_handler(struct pt_regs *regs)
|
|
{
|
|
struct kprobe *p, *cur_kprobe;
|
|
struct kprobe_ctlblk *kcb;
|
|
unsigned long addr = instruction_pointer(regs);
|
|
|
|
kcb = get_kprobe_ctlblk();
|
|
cur_kprobe = kprobe_running();
|
|
|
|
p = get_kprobe((kprobe_opcode_t *) addr);
|
|
|
|
if (p) {
|
|
if (cur_kprobe) {
|
|
if (reenter_kprobe(p, regs, kcb))
|
|
return;
|
|
} else {
|
|
/* Probe hit */
|
|
set_current_kprobe(p);
|
|
kcb->kprobe_status = KPROBE_HIT_ACTIVE;
|
|
|
|
/*
|
|
* If we have no pre-handler or it returned 0, we
|
|
* continue with normal processing. If we have a
|
|
* pre-handler and it returned non-zero, it prepped
|
|
* for calling the break_handler below on re-entry,
|
|
* so get out doing nothing more here.
|
|
*
|
|
* pre_handler can hit a breakpoint and can step thru
|
|
* before return, keep PSTATE D-flag enabled until
|
|
* pre_handler return back.
|
|
*/
|
|
if (!p->pre_handler || !p->pre_handler(p, regs)) {
|
|
setup_singlestep(p, regs, kcb, 0);
|
|
return;
|
|
}
|
|
}
|
|
} else if ((le32_to_cpu(*(kprobe_opcode_t *) addr) ==
|
|
BRK64_OPCODE_KPROBES) && cur_kprobe) {
|
|
/* We probably hit a jprobe. Call its break handler. */
|
|
if (cur_kprobe->break_handler &&
|
|
cur_kprobe->break_handler(cur_kprobe, regs)) {
|
|
setup_singlestep(cur_kprobe, regs, kcb, 0);
|
|
return;
|
|
}
|
|
}
|
|
/*
|
|
* The breakpoint instruction was removed right
|
|
* after we hit it. Another cpu has removed
|
|
* either a probepoint or a debugger breakpoint
|
|
* at this address. In either case, no further
|
|
* handling of this interrupt is appropriate.
|
|
* Return back to original instruction, and continue.
|
|
*/
|
|
}
|
|
|
|
static int __kprobes
|
|
kprobe_ss_hit(struct kprobe_ctlblk *kcb, unsigned long addr)
|
|
{
|
|
if ((kcb->ss_ctx.ss_pending)
|
|
&& (kcb->ss_ctx.match_addr == addr)) {
|
|
clear_ss_context(kcb); /* clear pending ss */
|
|
return DBG_HOOK_HANDLED;
|
|
}
|
|
/* not ours, kprobes should ignore it */
|
|
return DBG_HOOK_ERROR;
|
|
}
|
|
|
|
int __kprobes
|
|
kprobe_single_step_handler(struct pt_regs *regs, unsigned int esr)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
int retval;
|
|
|
|
/* return error if this is not our step */
|
|
retval = kprobe_ss_hit(kcb, instruction_pointer(regs));
|
|
|
|
if (retval == DBG_HOOK_HANDLED) {
|
|
kprobes_restore_local_irqflag(kcb, regs);
|
|
kernel_disable_single_step();
|
|
|
|
if (kcb->kprobe_status == KPROBE_REENTER)
|
|
spsr_set_debug_flag(regs, 1);
|
|
|
|
post_kprobe_handler(kcb, regs);
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
int __kprobes
|
|
kprobe_breakpoint_handler(struct pt_regs *regs, unsigned int esr)
|
|
{
|
|
kprobe_handler(regs);
|
|
return DBG_HOOK_HANDLED;
|
|
}
|
|
|
|
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
long stack_ptr = kernel_stack_pointer(regs);
|
|
|
|
kcb->jprobe_saved_regs = *regs;
|
|
/*
|
|
* As Linus pointed out, gcc assumes that the callee
|
|
* owns the argument space and could overwrite it, e.g.
|
|
* tailcall optimization. So, to be absolutely safe
|
|
* we also save and restore enough stack bytes to cover
|
|
* the argument area.
|
|
*/
|
|
memcpy(kcb->jprobes_stack, (void *)stack_ptr,
|
|
MIN_STACK_SIZE(stack_ptr));
|
|
|
|
instruction_pointer_set(regs, (unsigned long) jp->entry);
|
|
preempt_disable();
|
|
pause_graph_tracing();
|
|
return 1;
|
|
}
|
|
|
|
void __kprobes jprobe_return(void)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
|
|
/*
|
|
* Jprobe handler return by entering break exception,
|
|
* encoded same as kprobe, but with following conditions
|
|
* -a magic number in x0 to identify from rest of other kprobes.
|
|
* -restore stack addr to original saved pt_regs
|
|
*/
|
|
asm volatile ("ldr x0, [%0]\n\t"
|
|
"mov sp, x0\n\t"
|
|
".globl jprobe_return_break\n\t"
|
|
"jprobe_return_break:\n\t"
|
|
"brk %1\n\t"
|
|
:
|
|
: "r"(&kcb->jprobe_saved_regs.sp),
|
|
"I"(BRK64_ESR_KPROBES)
|
|
: "memory");
|
|
}
|
|
|
|
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
|
|
{
|
|
struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
|
|
long stack_addr = kcb->jprobe_saved_regs.sp;
|
|
long orig_sp = kernel_stack_pointer(regs);
|
|
struct jprobe *jp = container_of(p, struct jprobe, kp);
|
|
|
|
if (instruction_pointer(regs) != (u64) jprobe_return_break)
|
|
return 0;
|
|
|
|
if (orig_sp != stack_addr) {
|
|
struct pt_regs *saved_regs =
|
|
(struct pt_regs *)kcb->jprobe_saved_regs.sp;
|
|
pr_err("current sp %lx does not match saved sp %lx\n",
|
|
orig_sp, stack_addr);
|
|
pr_err("Saved registers for jprobe %p\n", jp);
|
|
show_regs(saved_regs);
|
|
pr_err("Current registers\n");
|
|
show_regs(regs);
|
|
BUG();
|
|
}
|
|
unpause_graph_tracing();
|
|
*regs = kcb->jprobe_saved_regs;
|
|
memcpy((void *)stack_addr, kcb->jprobes_stack,
|
|
MIN_STACK_SIZE(stack_addr));
|
|
preempt_enable_no_resched();
|
|
return 1;
|
|
}
|
|
|
|
bool arch_within_kprobe_blacklist(unsigned long addr)
|
|
{
|
|
extern char __idmap_text_start[], __idmap_text_end[];
|
|
extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
|
|
|
|
if ((addr >= (unsigned long)__kprobes_text_start &&
|
|
addr < (unsigned long)__kprobes_text_end) ||
|
|
(addr >= (unsigned long)__entry_text_start &&
|
|
addr < (unsigned long)__entry_text_end) ||
|
|
(addr >= (unsigned long)__idmap_text_start &&
|
|
addr < (unsigned long)__idmap_text_end) ||
|
|
!!search_exception_tables(addr))
|
|
return true;
|
|
|
|
if (!is_kernel_in_hyp_mode()) {
|
|
if ((addr >= (unsigned long)__hyp_text_start &&
|
|
addr < (unsigned long)__hyp_text_end) ||
|
|
(addr >= (unsigned long)__hyp_idmap_text_start &&
|
|
addr < (unsigned long)__hyp_idmap_text_end))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
int __init arch_init_kprobes(void)
|
|
{
|
|
return 0;
|
|
}
|