linux_dsm_epyc7002/fs/ext4/readpage.c
Jaegeuk Kim a7550b30ab ext4 crypto: migrate into vfs's crypto engine
This patch removes the most parts of internal crypto codes.
And then, it modifies and adds some ext4-specific crypt codes to use the generic
facility.

Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2016-07-10 14:01:03 -04:00

293 lines
7.4 KiB
C

/*
* linux/fs/ext4/readpage.c
*
* Copyright (C) 2002, Linus Torvalds.
* Copyright (C) 2015, Google, Inc.
*
* This was originally taken from fs/mpage.c
*
* The intent is the ext4_mpage_readpages() function here is intended
* to replace mpage_readpages() in the general case, not just for
* encrypted files. It has some limitations (see below), where it
* will fall back to read_block_full_page(), but these limitations
* should only be hit when page_size != block_size.
*
* This will allow us to attach a callback function to support ext4
* encryption.
*
* If anything unusual happens, such as:
*
* - encountering a page which has buffers
* - encountering a page which has a non-hole after a hole
* - encountering a page with non-contiguous blocks
*
* then this code just gives up and calls the buffer_head-based read function.
* It does handle a page which has holes at the end - that is a common case:
* the end-of-file on blocksize < PAGE_SIZE setups.
*
*/
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/mm.h>
#include <linux/kdev_t.h>
#include <linux/gfp.h>
#include <linux/bio.h>
#include <linux/fs.h>
#include <linux/buffer_head.h>
#include <linux/blkdev.h>
#include <linux/highmem.h>
#include <linux/prefetch.h>
#include <linux/mpage.h>
#include <linux/writeback.h>
#include <linux/backing-dev.h>
#include <linux/pagevec.h>
#include <linux/cleancache.h>
#include "ext4.h"
static inline bool ext4_bio_encrypted(struct bio *bio)
{
#ifdef CONFIG_EXT4_FS_ENCRYPTION
return unlikely(bio->bi_private != NULL);
#else
return false;
#endif
}
/*
* I/O completion handler for multipage BIOs.
*
* The mpage code never puts partial pages into a BIO (except for end-of-file).
* If a page does not map to a contiguous run of blocks then it simply falls
* back to block_read_full_page().
*
* Why is this? If a page's completion depends on a number of different BIOs
* which can complete in any order (or at the same time) then determining the
* status of that page is hard. See end_buffer_async_read() for the details.
* There is no point in duplicating all that complexity.
*/
static void mpage_end_io(struct bio *bio)
{
struct bio_vec *bv;
int i;
if (ext4_bio_encrypted(bio)) {
if (bio->bi_error) {
fscrypt_release_ctx(bio->bi_private);
} else {
fscrypt_decrypt_bio_pages(bio->bi_private, bio);
return;
}
}
bio_for_each_segment_all(bv, bio, i) {
struct page *page = bv->bv_page;
if (!bio->bi_error) {
SetPageUptodate(page);
} else {
ClearPageUptodate(page);
SetPageError(page);
}
unlock_page(page);
}
bio_put(bio);
}
int ext4_mpage_readpages(struct address_space *mapping,
struct list_head *pages, struct page *page,
unsigned nr_pages)
{
struct bio *bio = NULL;
sector_t last_block_in_bio = 0;
struct inode *inode = mapping->host;
const unsigned blkbits = inode->i_blkbits;
const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
const unsigned blocksize = 1 << blkbits;
sector_t block_in_file;
sector_t last_block;
sector_t last_block_in_file;
sector_t blocks[MAX_BUF_PER_PAGE];
unsigned page_block;
struct block_device *bdev = inode->i_sb->s_bdev;
int length;
unsigned relative_block = 0;
struct ext4_map_blocks map;
map.m_pblk = 0;
map.m_lblk = 0;
map.m_len = 0;
map.m_flags = 0;
for (; nr_pages; nr_pages--) {
int fully_mapped = 1;
unsigned first_hole = blocks_per_page;
prefetchw(&page->flags);
if (pages) {
page = list_entry(pages->prev, struct page, lru);
list_del(&page->lru);
if (add_to_page_cache_lru(page, mapping, page->index,
mapping_gfp_constraint(mapping, GFP_KERNEL)))
goto next_page;
}
if (page_has_buffers(page))
goto confused;
block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
last_block = block_in_file + nr_pages * blocks_per_page;
last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
if (last_block > last_block_in_file)
last_block = last_block_in_file;
page_block = 0;
/*
* Map blocks using the previous result first.
*/
if ((map.m_flags & EXT4_MAP_MAPPED) &&
block_in_file > map.m_lblk &&
block_in_file < (map.m_lblk + map.m_len)) {
unsigned map_offset = block_in_file - map.m_lblk;
unsigned last = map.m_len - map_offset;
for (relative_block = 0; ; relative_block++) {
if (relative_block == last) {
/* needed? */
map.m_flags &= ~EXT4_MAP_MAPPED;
break;
}
if (page_block == blocks_per_page)
break;
blocks[page_block] = map.m_pblk + map_offset +
relative_block;
page_block++;
block_in_file++;
}
}
/*
* Then do more ext4_map_blocks() calls until we are
* done with this page.
*/
while (page_block < blocks_per_page) {
if (block_in_file < last_block) {
map.m_lblk = block_in_file;
map.m_len = last_block - block_in_file;
if (ext4_map_blocks(NULL, inode, &map, 0) < 0) {
set_error_page:
SetPageError(page);
zero_user_segment(page, 0,
PAGE_SIZE);
unlock_page(page);
goto next_page;
}
}
if ((map.m_flags & EXT4_MAP_MAPPED) == 0) {
fully_mapped = 0;
if (first_hole == blocks_per_page)
first_hole = page_block;
page_block++;
block_in_file++;
continue;
}
if (first_hole != blocks_per_page)
goto confused; /* hole -> non-hole */
/* Contiguous blocks? */
if (page_block && blocks[page_block-1] != map.m_pblk-1)
goto confused;
for (relative_block = 0; ; relative_block++) {
if (relative_block == map.m_len) {
/* needed? */
map.m_flags &= ~EXT4_MAP_MAPPED;
break;
} else if (page_block == blocks_per_page)
break;
blocks[page_block] = map.m_pblk+relative_block;
page_block++;
block_in_file++;
}
}
if (first_hole != blocks_per_page) {
zero_user_segment(page, first_hole << blkbits,
PAGE_SIZE);
if (first_hole == 0) {
SetPageUptodate(page);
unlock_page(page);
goto next_page;
}
} else if (fully_mapped) {
SetPageMappedToDisk(page);
}
if (fully_mapped && blocks_per_page == 1 &&
!PageUptodate(page) && cleancache_get_page(page) == 0) {
SetPageUptodate(page);
goto confused;
}
/*
* This page will go to BIO. Do we need to send this
* BIO off first?
*/
if (bio && (last_block_in_bio != blocks[0] - 1)) {
submit_and_realloc:
submit_bio(READ, bio);
bio = NULL;
}
if (bio == NULL) {
struct fscrypt_ctx *ctx = NULL;
if (ext4_encrypted_inode(inode) &&
S_ISREG(inode->i_mode)) {
ctx = fscrypt_get_ctx(inode, GFP_NOFS);
if (IS_ERR(ctx))
goto set_error_page;
}
bio = bio_alloc(GFP_KERNEL,
min_t(int, nr_pages, BIO_MAX_PAGES));
if (!bio) {
if (ctx)
fscrypt_release_ctx(ctx);
goto set_error_page;
}
bio->bi_bdev = bdev;
bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
bio->bi_end_io = mpage_end_io;
bio->bi_private = ctx;
}
length = first_hole << blkbits;
if (bio_add_page(bio, page, length, 0) < length)
goto submit_and_realloc;
if (((map.m_flags & EXT4_MAP_BOUNDARY) &&
(relative_block == map.m_len)) ||
(first_hole != blocks_per_page)) {
submit_bio(READ, bio);
bio = NULL;
} else
last_block_in_bio = blocks[blocks_per_page - 1];
goto next_page;
confused:
if (bio) {
submit_bio(READ, bio);
bio = NULL;
}
if (!PageUptodate(page))
block_read_full_page(page, ext4_get_block);
else
unlock_page(page);
next_page:
if (pages)
put_page(page);
}
BUG_ON(pages && !list_empty(pages));
if (bio)
submit_bio(READ, bio);
return 0;
}