linux_dsm_epyc7002/include/linux/security.h
Alexey Dobriyan 50462062a0 [PATCH] fs.h: ifdef security fields
[assuming BSD security levels are deleted]
The only user of i_security, f_security, s_security fields is SELinux,
however, quite a few security modules are trying to get into kernel.
So, wrap them under CONFIG_SECURITY. Adding config option for each
security field is likely an overkill.

Following Stephen Smalley's suggestion, i_security initialization is
moved to security_inode_alloc() to not clutter core code with ifdefs
and make alloc_inode() codepath tiny little bit smaller and faster.

The user of (highly greppable) struct fown_struct::security field is
still to be found. I've checked every "fown_struct" and every "f_owner"
occurence. Additionally it's removal doesn't break i386 allmodconfig
build.

struct inode, struct file, struct super_block, struct fown_struct
become smaller.

P.S. Combined with two reiserfs inode shrinking patches sent to
linux-fsdevel, I can finally suck 12 reiserfs inodes into one page.

		/proc/slabinfo

	-ext2_inode_cache	388	10
	+ext2_inode_cache	384	10
	-inode_cache		280	14
	+inode_cache		276	14
	-proc_inode_cache	296	13
	+proc_inode_cache	292	13
	-reiser_inode_cache	336	11
	+reiser_inode_cache	332	12 <=
	-shmem_inode_cache	372	10
	+shmem_inode_cache	368	10

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Stephen Smalley <sds@tycho.nsa.gov>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-09-29 09:18:11 -07:00

3314 lines
108 KiB
C

/*
* Linux Security plug
*
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
* Copyright (C) 2001 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
* Copyright (C) 2001 James Morris <jmorris@intercode.com.au>
* Copyright (C) 2001 Silicon Graphics, Inc. (Trust Technology Group)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Due to this file being licensed under the GPL there is controversy over
* whether this permits you to write a module that #includes this file
* without placing your module under the GPL. Please consult a lawyer for
* advice before doing this.
*
*/
#ifndef __LINUX_SECURITY_H
#define __LINUX_SECURITY_H
#include <linux/fs.h>
#include <linux/binfmts.h>
#include <linux/signal.h>
#include <linux/resource.h>
#include <linux/sem.h>
#include <linux/shm.h>
#include <linux/msg.h>
#include <linux/sched.h>
#include <linux/key.h>
#include <linux/xfrm.h>
#include <net/flow.h>
struct ctl_table;
/*
* These functions are in security/capability.c and are used
* as the default capabilities functions
*/
extern int cap_capable (struct task_struct *tsk, int cap);
extern int cap_settime (struct timespec *ts, struct timezone *tz);
extern int cap_ptrace (struct task_struct *parent, struct task_struct *child);
extern int cap_capget (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
extern int cap_capset_check (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
extern void cap_capset_set (struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted);
extern int cap_bprm_set_security (struct linux_binprm *bprm);
extern void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe);
extern int cap_bprm_secureexec(struct linux_binprm *bprm);
extern int cap_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags);
extern int cap_inode_removexattr(struct dentry *dentry, char *name);
extern int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid, int flags);
extern void cap_task_reparent_to_init (struct task_struct *p);
extern int cap_syslog (int type);
extern int cap_vm_enough_memory (long pages);
struct msghdr;
struct sk_buff;
struct sock;
struct sockaddr;
struct socket;
struct flowi;
struct dst_entry;
struct xfrm_selector;
struct xfrm_policy;
struct xfrm_state;
struct xfrm_user_sec_ctx;
extern int cap_netlink_send(struct sock *sk, struct sk_buff *skb);
extern int cap_netlink_recv(struct sk_buff *skb, int cap);
/*
* Values used in the task_security_ops calls
*/
/* setuid or setgid, id0 == uid or gid */
#define LSM_SETID_ID 1
/* setreuid or setregid, id0 == real, id1 == eff */
#define LSM_SETID_RE 2
/* setresuid or setresgid, id0 == real, id1 == eff, uid2 == saved */
#define LSM_SETID_RES 4
/* setfsuid or setfsgid, id0 == fsuid or fsgid */
#define LSM_SETID_FS 8
/* forward declares to avoid warnings */
struct nfsctl_arg;
struct sched_param;
struct swap_info_struct;
struct request_sock;
/* bprm_apply_creds unsafe reasons */
#define LSM_UNSAFE_SHARE 1
#define LSM_UNSAFE_PTRACE 2
#define LSM_UNSAFE_PTRACE_CAP 4
#ifdef CONFIG_SECURITY
/**
* struct security_operations - main security structure
*
* Security hooks for program execution operations.
*
* @bprm_alloc_security:
* Allocate and attach a security structure to the @bprm->security field.
* The security field is initialized to NULL when the bprm structure is
* allocated.
* @bprm contains the linux_binprm structure to be modified.
* Return 0 if operation was successful.
* @bprm_free_security:
* @bprm contains the linux_binprm structure to be modified.
* Deallocate and clear the @bprm->security field.
* @bprm_apply_creds:
* Compute and set the security attributes of a process being transformed
* by an execve operation based on the old attributes (current->security)
* and the information saved in @bprm->security by the set_security hook.
* Since this hook function (and its caller) are void, this hook can not
* return an error. However, it can leave the security attributes of the
* process unchanged if an access failure occurs at this point.
* bprm_apply_creds is called under task_lock. @unsafe indicates various
* reasons why it may be unsafe to change security state.
* @bprm contains the linux_binprm structure.
* @bprm_post_apply_creds:
* Runs after bprm_apply_creds with the task_lock dropped, so that
* functions which cannot be called safely under the task_lock can
* be used. This hook is a good place to perform state changes on
* the process such as closing open file descriptors to which access
* is no longer granted if the attributes were changed.
* Note that a security module might need to save state between
* bprm_apply_creds and bprm_post_apply_creds to store the decision
* on whether the process may proceed.
* @bprm contains the linux_binprm structure.
* @bprm_set_security:
* Save security information in the bprm->security field, typically based
* on information about the bprm->file, for later use by the apply_creds
* hook. This hook may also optionally check permissions (e.g. for
* transitions between security domains).
* This hook may be called multiple times during a single execve, e.g. for
* interpreters. The hook can tell whether it has already been called by
* checking to see if @bprm->security is non-NULL. If so, then the hook
* may decide either to retain the security information saved earlier or
* to replace it.
* @bprm contains the linux_binprm structure.
* Return 0 if the hook is successful and permission is granted.
* @bprm_check_security:
* This hook mediates the point when a search for a binary handler will
* begin. It allows a check the @bprm->security value which is set in
* the preceding set_security call. The primary difference from
* set_security is that the argv list and envp list are reliably
* available in @bprm. This hook may be called multiple times
* during a single execve; and in each pass set_security is called
* first.
* @bprm contains the linux_binprm structure.
* Return 0 if the hook is successful and permission is granted.
* @bprm_secureexec:
* Return a boolean value (0 or 1) indicating whether a "secure exec"
* is required. The flag is passed in the auxiliary table
* on the initial stack to the ELF interpreter to indicate whether libc
* should enable secure mode.
* @bprm contains the linux_binprm structure.
*
* Security hooks for filesystem operations.
*
* @sb_alloc_security:
* Allocate and attach a security structure to the sb->s_security field.
* The s_security field is initialized to NULL when the structure is
* allocated.
* @sb contains the super_block structure to be modified.
* Return 0 if operation was successful.
* @sb_free_security:
* Deallocate and clear the sb->s_security field.
* @sb contains the super_block structure to be modified.
* @sb_statfs:
* Check permission before obtaining filesystem statistics for the @mnt
* mountpoint.
* @dentry is a handle on the superblock for the filesystem.
* Return 0 if permission is granted.
* @sb_mount:
* Check permission before an object specified by @dev_name is mounted on
* the mount point named by @nd. For an ordinary mount, @dev_name
* identifies a device if the file system type requires a device. For a
* remount (@flags & MS_REMOUNT), @dev_name is irrelevant. For a
* loopback/bind mount (@flags & MS_BIND), @dev_name identifies the
* pathname of the object being mounted.
* @dev_name contains the name for object being mounted.
* @nd contains the nameidata structure for mount point object.
* @type contains the filesystem type.
* @flags contains the mount flags.
* @data contains the filesystem-specific data.
* Return 0 if permission is granted.
* @sb_copy_data:
* Allow mount option data to be copied prior to parsing by the filesystem,
* so that the security module can extract security-specific mount
* options cleanly (a filesystem may modify the data e.g. with strsep()).
* This also allows the original mount data to be stripped of security-
* specific options to avoid having to make filesystems aware of them.
* @type the type of filesystem being mounted.
* @orig the original mount data copied from userspace.
* @copy copied data which will be passed to the security module.
* Returns 0 if the copy was successful.
* @sb_check_sb:
* Check permission before the device with superblock @mnt->sb is mounted
* on the mount point named by @nd.
* @mnt contains the vfsmount for device being mounted.
* @nd contains the nameidata object for the mount point.
* Return 0 if permission is granted.
* @sb_umount:
* Check permission before the @mnt file system is unmounted.
* @mnt contains the mounted file system.
* @flags contains the unmount flags, e.g. MNT_FORCE.
* Return 0 if permission is granted.
* @sb_umount_close:
* Close any files in the @mnt mounted filesystem that are held open by
* the security module. This hook is called during an umount operation
* prior to checking whether the filesystem is still busy.
* @mnt contains the mounted filesystem.
* @sb_umount_busy:
* Handle a failed umount of the @mnt mounted filesystem, e.g. re-opening
* any files that were closed by umount_close. This hook is called during
* an umount operation if the umount fails after a call to the
* umount_close hook.
* @mnt contains the mounted filesystem.
* @sb_post_remount:
* Update the security module's state when a filesystem is remounted.
* This hook is only called if the remount was successful.
* @mnt contains the mounted file system.
* @flags contains the new filesystem flags.
* @data contains the filesystem-specific data.
* @sb_post_mountroot:
* Update the security module's state when the root filesystem is mounted.
* This hook is only called if the mount was successful.
* @sb_post_addmount:
* Update the security module's state when a filesystem is mounted.
* This hook is called any time a mount is successfully grafetd to
* the tree.
* @mnt contains the mounted filesystem.
* @mountpoint_nd contains the nameidata structure for the mount point.
* @sb_pivotroot:
* Check permission before pivoting the root filesystem.
* @old_nd contains the nameidata structure for the new location of the current root (put_old).
* @new_nd contains the nameidata structure for the new root (new_root).
* Return 0 if permission is granted.
* @sb_post_pivotroot:
* Update module state after a successful pivot.
* @old_nd contains the nameidata structure for the old root.
* @new_nd contains the nameidata structure for the new root.
*
* Security hooks for inode operations.
*
* @inode_alloc_security:
* Allocate and attach a security structure to @inode->i_security. The
* i_security field is initialized to NULL when the inode structure is
* allocated.
* @inode contains the inode structure.
* Return 0 if operation was successful.
* @inode_free_security:
* @inode contains the inode structure.
* Deallocate the inode security structure and set @inode->i_security to
* NULL.
* @inode_init_security:
* Obtain the security attribute name suffix and value to set on a newly
* created inode and set up the incore security field for the new inode.
* This hook is called by the fs code as part of the inode creation
* transaction and provides for atomic labeling of the inode, unlike
* the post_create/mkdir/... hooks called by the VFS. The hook function
* is expected to allocate the name and value via kmalloc, with the caller
* being responsible for calling kfree after using them.
* If the security module does not use security attributes or does
* not wish to put a security attribute on this particular inode,
* then it should return -EOPNOTSUPP to skip this processing.
* @inode contains the inode structure of the newly created inode.
* @dir contains the inode structure of the parent directory.
* @name will be set to the allocated name suffix (e.g. selinux).
* @value will be set to the allocated attribute value.
* @len will be set to the length of the value.
* Returns 0 if @name and @value have been successfully set,
* -EOPNOTSUPP if no security attribute is needed, or
* -ENOMEM on memory allocation failure.
* @inode_create:
* Check permission to create a regular file.
* @dir contains inode structure of the parent of the new file.
* @dentry contains the dentry structure for the file to be created.
* @mode contains the file mode of the file to be created.
* Return 0 if permission is granted.
* @inode_link:
* Check permission before creating a new hard link to a file.
* @old_dentry contains the dentry structure for an existing link to the file.
* @dir contains the inode structure of the parent directory of the new link.
* @new_dentry contains the dentry structure for the new link.
* Return 0 if permission is granted.
* @inode_unlink:
* Check the permission to remove a hard link to a file.
* @dir contains the inode structure of parent directory of the file.
* @dentry contains the dentry structure for file to be unlinked.
* Return 0 if permission is granted.
* @inode_symlink:
* Check the permission to create a symbolic link to a file.
* @dir contains the inode structure of parent directory of the symbolic link.
* @dentry contains the dentry structure of the symbolic link.
* @old_name contains the pathname of file.
* Return 0 if permission is granted.
* @inode_mkdir:
* Check permissions to create a new directory in the existing directory
* associated with inode strcture @dir.
* @dir containst the inode structure of parent of the directory to be created.
* @dentry contains the dentry structure of new directory.
* @mode contains the mode of new directory.
* Return 0 if permission is granted.
* @inode_rmdir:
* Check the permission to remove a directory.
* @dir contains the inode structure of parent of the directory to be removed.
* @dentry contains the dentry structure of directory to be removed.
* Return 0 if permission is granted.
* @inode_mknod:
* Check permissions when creating a special file (or a socket or a fifo
* file created via the mknod system call). Note that if mknod operation
* is being done for a regular file, then the create hook will be called
* and not this hook.
* @dir contains the inode structure of parent of the new file.
* @dentry contains the dentry structure of the new file.
* @mode contains the mode of the new file.
* @dev contains the the device number.
* Return 0 if permission is granted.
* @inode_rename:
* Check for permission to rename a file or directory.
* @old_dir contains the inode structure for parent of the old link.
* @old_dentry contains the dentry structure of the old link.
* @new_dir contains the inode structure for parent of the new link.
* @new_dentry contains the dentry structure of the new link.
* Return 0 if permission is granted.
* @inode_readlink:
* Check the permission to read the symbolic link.
* @dentry contains the dentry structure for the file link.
* Return 0 if permission is granted.
* @inode_follow_link:
* Check permission to follow a symbolic link when looking up a pathname.
* @dentry contains the dentry structure for the link.
* @nd contains the nameidata structure for the parent directory.
* Return 0 if permission is granted.
* @inode_permission:
* Check permission before accessing an inode. This hook is called by the
* existing Linux permission function, so a security module can use it to
* provide additional checking for existing Linux permission checks.
* Notice that this hook is called when a file is opened (as well as many
* other operations), whereas the file_security_ops permission hook is
* called when the actual read/write operations are performed.
* @inode contains the inode structure to check.
* @mask contains the permission mask.
* @nd contains the nameidata (may be NULL).
* Return 0 if permission is granted.
* @inode_setattr:
* Check permission before setting file attributes. Note that the kernel
* call to notify_change is performed from several locations, whenever
* file attributes change (such as when a file is truncated, chown/chmod
* operations, transferring disk quotas, etc).
* @dentry contains the dentry structure for the file.
* @attr is the iattr structure containing the new file attributes.
* Return 0 if permission is granted.
* @inode_getattr:
* Check permission before obtaining file attributes.
* @mnt is the vfsmount where the dentry was looked up
* @dentry contains the dentry structure for the file.
* Return 0 if permission is granted.
* @inode_delete:
* @inode contains the inode structure for deleted inode.
* This hook is called when a deleted inode is released (i.e. an inode
* with no hard links has its use count drop to zero). A security module
* can use this hook to release any persistent label associated with the
* inode.
* @inode_setxattr:
* Check permission before setting the extended attributes
* @value identified by @name for @dentry.
* Return 0 if permission is granted.
* @inode_post_setxattr:
* Update inode security field after successful setxattr operation.
* @value identified by @name for @dentry.
* @inode_getxattr:
* Check permission before obtaining the extended attributes
* identified by @name for @dentry.
* Return 0 if permission is granted.
* @inode_listxattr:
* Check permission before obtaining the list of extended attribute
* names for @dentry.
* Return 0 if permission is granted.
* @inode_removexattr:
* Check permission before removing the extended attribute
* identified by @name for @dentry.
* Return 0 if permission is granted.
* @inode_getsecurity:
* Copy the extended attribute representation of the security label
* associated with @name for @inode into @buffer. @buffer may be
* NULL to request the size of the buffer required. @size indicates
* the size of @buffer in bytes. Note that @name is the remainder
* of the attribute name after the security. prefix has been removed.
* @err is the return value from the preceding fs getxattr call,
* and can be used by the security module to determine whether it
* should try and canonicalize the attribute value.
* Return number of bytes used/required on success.
* @inode_setsecurity:
* Set the security label associated with @name for @inode from the
* extended attribute value @value. @size indicates the size of the
* @value in bytes. @flags may be XATTR_CREATE, XATTR_REPLACE, or 0.
* Note that @name is the remainder of the attribute name after the
* security. prefix has been removed.
* Return 0 on success.
* @inode_listsecurity:
* Copy the extended attribute names for the security labels
* associated with @inode into @buffer. The maximum size of @buffer
* is specified by @buffer_size. @buffer may be NULL to request
* the size of the buffer required.
* Returns number of bytes used/required on success.
*
* Security hooks for file operations
*
* @file_permission:
* Check file permissions before accessing an open file. This hook is
* called by various operations that read or write files. A security
* module can use this hook to perform additional checking on these
* operations, e.g. to revalidate permissions on use to support privilege
* bracketing or policy changes. Notice that this hook is used when the
* actual read/write operations are performed, whereas the
* inode_security_ops hook is called when a file is opened (as well as
* many other operations).
* Caveat: Although this hook can be used to revalidate permissions for
* various system call operations that read or write files, it does not
* address the revalidation of permissions for memory-mapped files.
* Security modules must handle this separately if they need such
* revalidation.
* @file contains the file structure being accessed.
* @mask contains the requested permissions.
* Return 0 if permission is granted.
* @file_alloc_security:
* Allocate and attach a security structure to the file->f_security field.
* The security field is initialized to NULL when the structure is first
* created.
* @file contains the file structure to secure.
* Return 0 if the hook is successful and permission is granted.
* @file_free_security:
* Deallocate and free any security structures stored in file->f_security.
* @file contains the file structure being modified.
* @file_ioctl:
* @file contains the file structure.
* @cmd contains the operation to perform.
* @arg contains the operational arguments.
* Check permission for an ioctl operation on @file. Note that @arg can
* sometimes represents a user space pointer; in other cases, it may be a
* simple integer value. When @arg represents a user space pointer, it
* should never be used by the security module.
* Return 0 if permission is granted.
* @file_mmap :
* Check permissions for a mmap operation. The @file may be NULL, e.g.
* if mapping anonymous memory.
* @file contains the file structure for file to map (may be NULL).
* @reqprot contains the protection requested by the application.
* @prot contains the protection that will be applied by the kernel.
* @flags contains the operational flags.
* Return 0 if permission is granted.
* @file_mprotect:
* Check permissions before changing memory access permissions.
* @vma contains the memory region to modify.
* @reqprot contains the protection requested by the application.
* @prot contains the protection that will be applied by the kernel.
* Return 0 if permission is granted.
* @file_lock:
* Check permission before performing file locking operations.
* Note: this hook mediates both flock and fcntl style locks.
* @file contains the file structure.
* @cmd contains the posix-translated lock operation to perform
* (e.g. F_RDLCK, F_WRLCK).
* Return 0 if permission is granted.
* @file_fcntl:
* Check permission before allowing the file operation specified by @cmd
* from being performed on the file @file. Note that @arg can sometimes
* represents a user space pointer; in other cases, it may be a simple
* integer value. When @arg represents a user space pointer, it should
* never be used by the security module.
* @file contains the file structure.
* @cmd contains the operation to be performed.
* @arg contains the operational arguments.
* Return 0 if permission is granted.
* @file_set_fowner:
* Save owner security information (typically from current->security) in
* file->f_security for later use by the send_sigiotask hook.
* @file contains the file structure to update.
* Return 0 on success.
* @file_send_sigiotask:
* Check permission for the file owner @fown to send SIGIO or SIGURG to the
* process @tsk. Note that this hook is sometimes called from interrupt.
* Note that the fown_struct, @fown, is never outside the context of a
* struct file, so the file structure (and associated security information)
* can always be obtained:
* (struct file *)((long)fown - offsetof(struct file,f_owner));
* @tsk contains the structure of task receiving signal.
* @fown contains the file owner information.
* @sig is the signal that will be sent. When 0, kernel sends SIGIO.
* Return 0 if permission is granted.
* @file_receive:
* This hook allows security modules to control the ability of a process
* to receive an open file descriptor via socket IPC.
* @file contains the file structure being received.
* Return 0 if permission is granted.
*
* Security hooks for task operations.
*
* @task_create:
* Check permission before creating a child process. See the clone(2)
* manual page for definitions of the @clone_flags.
* @clone_flags contains the flags indicating what should be shared.
* Return 0 if permission is granted.
* @task_alloc_security:
* @p contains the task_struct for child process.
* Allocate and attach a security structure to the p->security field. The
* security field is initialized to NULL when the task structure is
* allocated.
* Return 0 if operation was successful.
* @task_free_security:
* @p contains the task_struct for process.
* Deallocate and clear the p->security field.
* @task_setuid:
* Check permission before setting one or more of the user identity
* attributes of the current process. The @flags parameter indicates
* which of the set*uid system calls invoked this hook and how to
* interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
* definitions at the beginning of this file for the @flags values and
* their meanings.
* @id0 contains a uid.
* @id1 contains a uid.
* @id2 contains a uid.
* @flags contains one of the LSM_SETID_* values.
* Return 0 if permission is granted.
* @task_post_setuid:
* Update the module's state after setting one or more of the user
* identity attributes of the current process. The @flags parameter
* indicates which of the set*uid system calls invoked this hook. If
* @flags is LSM_SETID_FS, then @old_ruid is the old fs uid and the other
* parameters are not used.
* @old_ruid contains the old real uid (or fs uid if LSM_SETID_FS).
* @old_euid contains the old effective uid (or -1 if LSM_SETID_FS).
* @old_suid contains the old saved uid (or -1 if LSM_SETID_FS).
* @flags contains one of the LSM_SETID_* values.
* Return 0 on success.
* @task_setgid:
* Check permission before setting one or more of the group identity
* attributes of the current process. The @flags parameter indicates
* which of the set*gid system calls invoked this hook and how to
* interpret the @id0, @id1, and @id2 parameters. See the LSM_SETID
* definitions at the beginning of this file for the @flags values and
* their meanings.
* @id0 contains a gid.
* @id1 contains a gid.
* @id2 contains a gid.
* @flags contains one of the LSM_SETID_* values.
* Return 0 if permission is granted.
* @task_setpgid:
* Check permission before setting the process group identifier of the
* process @p to @pgid.
* @p contains the task_struct for process being modified.
* @pgid contains the new pgid.
* Return 0 if permission is granted.
* @task_getpgid:
* Check permission before getting the process group identifier of the
* process @p.
* @p contains the task_struct for the process.
* Return 0 if permission is granted.
* @task_getsid:
* Check permission before getting the session identifier of the process
* @p.
* @p contains the task_struct for the process.
* Return 0 if permission is granted.
* @task_getsecid:
* Retrieve the security identifier of the process @p.
* @p contains the task_struct for the process and place is into @secid.
* @task_setgroups:
* Check permission before setting the supplementary group set of the
* current process.
* @group_info contains the new group information.
* Return 0 if permission is granted.
* @task_setnice:
* Check permission before setting the nice value of @p to @nice.
* @p contains the task_struct of process.
* @nice contains the new nice value.
* Return 0 if permission is granted.
* @task_setioprio
* Check permission before setting the ioprio value of @p to @ioprio.
* @p contains the task_struct of process.
* @ioprio contains the new ioprio value
* Return 0 if permission is granted.
* @task_getioprio
* Check permission before getting the ioprio value of @p.
* @p contains the task_struct of process.
* Return 0 if permission is granted.
* @task_setrlimit:
* Check permission before setting the resource limits of the current
* process for @resource to @new_rlim. The old resource limit values can
* be examined by dereferencing (current->signal->rlim + resource).
* @resource contains the resource whose limit is being set.
* @new_rlim contains the new limits for @resource.
* Return 0 if permission is granted.
* @task_setscheduler:
* Check permission before setting scheduling policy and/or parameters of
* process @p based on @policy and @lp.
* @p contains the task_struct for process.
* @policy contains the scheduling policy.
* @lp contains the scheduling parameters.
* Return 0 if permission is granted.
* @task_getscheduler:
* Check permission before obtaining scheduling information for process
* @p.
* @p contains the task_struct for process.
* Return 0 if permission is granted.
* @task_movememory
* Check permission before moving memory owned by process @p.
* @p contains the task_struct for process.
* Return 0 if permission is granted.
* @task_kill:
* Check permission before sending signal @sig to @p. @info can be NULL,
* the constant 1, or a pointer to a siginfo structure. If @info is 1 or
* SI_FROMKERNEL(info) is true, then the signal should be viewed as coming
* from the kernel and should typically be permitted.
* SIGIO signals are handled separately by the send_sigiotask hook in
* file_security_ops.
* @p contains the task_struct for process.
* @info contains the signal information.
* @sig contains the signal value.
* @secid contains the sid of the process where the signal originated
* Return 0 if permission is granted.
* @task_wait:
* Check permission before allowing a process to reap a child process @p
* and collect its status information.
* @p contains the task_struct for process.
* Return 0 if permission is granted.
* @task_prctl:
* Check permission before performing a process control operation on the
* current process.
* @option contains the operation.
* @arg2 contains a argument.
* @arg3 contains a argument.
* @arg4 contains a argument.
* @arg5 contains a argument.
* Return 0 if permission is granted.
* @task_reparent_to_init:
* Set the security attributes in @p->security for a kernel thread that
* is being reparented to the init task.
* @p contains the task_struct for the kernel thread.
* @task_to_inode:
* Set the security attributes for an inode based on an associated task's
* security attributes, e.g. for /proc/pid inodes.
* @p contains the task_struct for the task.
* @inode contains the inode structure for the inode.
*
* Security hooks for Netlink messaging.
*
* @netlink_send:
* Save security information for a netlink message so that permission
* checking can be performed when the message is processed. The security
* information can be saved using the eff_cap field of the
* netlink_skb_parms structure. Also may be used to provide fine
* grained control over message transmission.
* @sk associated sock of task sending the message.,
* @skb contains the sk_buff structure for the netlink message.
* Return 0 if the information was successfully saved and message
* is allowed to be transmitted.
* @netlink_recv:
* Check permission before processing the received netlink message in
* @skb.
* @skb contains the sk_buff structure for the netlink message.
* @cap indicates the capability required
* Return 0 if permission is granted.
*
* Security hooks for Unix domain networking.
*
* @unix_stream_connect:
* Check permissions before establishing a Unix domain stream connection
* between @sock and @other.
* @sock contains the socket structure.
* @other contains the peer socket structure.
* Return 0 if permission is granted.
* @unix_may_send:
* Check permissions before connecting or sending datagrams from @sock to
* @other.
* @sock contains the socket structure.
* @sock contains the peer socket structure.
* Return 0 if permission is granted.
*
* The @unix_stream_connect and @unix_may_send hooks were necessary because
* Linux provides an alternative to the conventional file name space for Unix
* domain sockets. Whereas binding and connecting to sockets in the file name
* space is mediated by the typical file permissions (and caught by the mknod
* and permission hooks in inode_security_ops), binding and connecting to
* sockets in the abstract name space is completely unmediated. Sufficient
* control of Unix domain sockets in the abstract name space isn't possible
* using only the socket layer hooks, since we need to know the actual target
* socket, which is not looked up until we are inside the af_unix code.
*
* Security hooks for socket operations.
*
* @socket_create:
* Check permissions prior to creating a new socket.
* @family contains the requested protocol family.
* @type contains the requested communications type.
* @protocol contains the requested protocol.
* @kern set to 1 if a kernel socket.
* Return 0 if permission is granted.
* @socket_post_create:
* This hook allows a module to update or allocate a per-socket security
* structure. Note that the security field was not added directly to the
* socket structure, but rather, the socket security information is stored
* in the associated inode. Typically, the inode alloc_security hook will
* allocate and and attach security information to
* sock->inode->i_security. This hook may be used to update the
* sock->inode->i_security field with additional information that wasn't
* available when the inode was allocated.
* @sock contains the newly created socket structure.
* @family contains the requested protocol family.
* @type contains the requested communications type.
* @protocol contains the requested protocol.
* @kern set to 1 if a kernel socket.
* @socket_bind:
* Check permission before socket protocol layer bind operation is
* performed and the socket @sock is bound to the address specified in the
* @address parameter.
* @sock contains the socket structure.
* @address contains the address to bind to.
* @addrlen contains the length of address.
* Return 0 if permission is granted.
* @socket_connect:
* Check permission before socket protocol layer connect operation
* attempts to connect socket @sock to a remote address, @address.
* @sock contains the socket structure.
* @address contains the address of remote endpoint.
* @addrlen contains the length of address.
* Return 0 if permission is granted.
* @socket_listen:
* Check permission before socket protocol layer listen operation.
* @sock contains the socket structure.
* @backlog contains the maximum length for the pending connection queue.
* Return 0 if permission is granted.
* @socket_accept:
* Check permission before accepting a new connection. Note that the new
* socket, @newsock, has been created and some information copied to it,
* but the accept operation has not actually been performed.
* @sock contains the listening socket structure.
* @newsock contains the newly created server socket for connection.
* Return 0 if permission is granted.
* @socket_post_accept:
* This hook allows a security module to copy security
* information into the newly created socket's inode.
* @sock contains the listening socket structure.
* @newsock contains the newly created server socket for connection.
* @socket_sendmsg:
* Check permission before transmitting a message to another socket.
* @sock contains the socket structure.
* @msg contains the message to be transmitted.
* @size contains the size of message.
* Return 0 if permission is granted.
* @socket_recvmsg:
* Check permission before receiving a message from a socket.
* @sock contains the socket structure.
* @msg contains the message structure.
* @size contains the size of message structure.
* @flags contains the operational flags.
* Return 0 if permission is granted.
* @socket_getsockname:
* Check permission before the local address (name) of the socket object
* @sock is retrieved.
* @sock contains the socket structure.
* Return 0 if permission is granted.
* @socket_getpeername:
* Check permission before the remote address (name) of a socket object
* @sock is retrieved.
* @sock contains the socket structure.
* Return 0 if permission is granted.
* @socket_getsockopt:
* Check permissions before retrieving the options associated with socket
* @sock.
* @sock contains the socket structure.
* @level contains the protocol level to retrieve option from.
* @optname contains the name of option to retrieve.
* Return 0 if permission is granted.
* @socket_setsockopt:
* Check permissions before setting the options associated with socket
* @sock.
* @sock contains the socket structure.
* @level contains the protocol level to set options for.
* @optname contains the name of the option to set.
* Return 0 if permission is granted.
* @socket_shutdown:
* Checks permission before all or part of a connection on the socket
* @sock is shut down.
* @sock contains the socket structure.
* @how contains the flag indicating how future sends and receives are handled.
* Return 0 if permission is granted.
* @socket_sock_rcv_skb:
* Check permissions on incoming network packets. This hook is distinct
* from Netfilter's IP input hooks since it is the first time that the
* incoming sk_buff @skb has been associated with a particular socket, @sk.
* @sk contains the sock (not socket) associated with the incoming sk_buff.
* @skb contains the incoming network data.
* @socket_getpeersec:
* This hook allows the security module to provide peer socket security
* state to userspace via getsockopt SO_GETPEERSEC.
* @sock is the local socket.
* @optval userspace memory where the security state is to be copied.
* @optlen userspace int where the module should copy the actual length
* of the security state.
* @len as input is the maximum length to copy to userspace provided
* by the caller.
* Return 0 if all is well, otherwise, typical getsockopt return
* values.
* @sk_alloc_security:
* Allocate and attach a security structure to the sk->sk_security field,
* which is used to copy security attributes between local stream sockets.
* @sk_free_security:
* Deallocate security structure.
* @sk_clone_security:
* Clone/copy security structure.
* @sk_getsecid:
* Retrieve the LSM-specific secid for the sock to enable caching of network
* authorizations.
* @sock_graft:
* Sets the socket's isec sid to the sock's sid.
* @inet_conn_request:
* Sets the openreq's sid to socket's sid with MLS portion taken from peer sid.
* @inet_csk_clone:
* Sets the new child socket's sid to the openreq sid.
* @req_classify_flow:
* Sets the flow's sid to the openreq sid.
*
* Security hooks for XFRM operations.
*
* @xfrm_policy_alloc_security:
* @xp contains the xfrm_policy being added to Security Policy Database
* used by the XFRM system.
* @sec_ctx contains the security context information being provided by
* the user-level policy update program (e.g., setkey).
* @sk refers to the sock from which to derive the security context.
* Allocate a security structure to the xp->security field; the security
* field is initialized to NULL when the xfrm_policy is allocated. Only
* one of sec_ctx or sock can be specified.
* Return 0 if operation was successful (memory to allocate, legal context)
* @xfrm_policy_clone_security:
* @old contains an existing xfrm_policy in the SPD.
* @new contains a new xfrm_policy being cloned from old.
* Allocate a security structure to the new->security field
* that contains the information from the old->security field.
* Return 0 if operation was successful (memory to allocate).
* @xfrm_policy_free_security:
* @xp contains the xfrm_policy
* Deallocate xp->security.
* @xfrm_policy_delete_security:
* @xp contains the xfrm_policy.
* Authorize deletion of xp->security.
* @xfrm_state_alloc_security:
* @x contains the xfrm_state being added to the Security Association
* Database by the XFRM system.
* @sec_ctx contains the security context information being provided by
* the user-level SA generation program (e.g., setkey or racoon).
* @polsec contains the security context information associated with a xfrm
* policy rule from which to take the base context. polsec must be NULL
* when sec_ctx is specified.
* @secid contains the secid from which to take the mls portion of the context.
* Allocate a security structure to the x->security field; the security
* field is initialized to NULL when the xfrm_state is allocated. Set the
* context to correspond to either sec_ctx or polsec, with the mls portion
* taken from secid in the latter case.
* Return 0 if operation was successful (memory to allocate, legal context).
* @xfrm_state_free_security:
* @x contains the xfrm_state.
* Deallocate x->security.
* @xfrm_state_delete_security:
* @x contains the xfrm_state.
* Authorize deletion of x->security.
* @xfrm_policy_lookup:
* @xp contains the xfrm_policy for which the access control is being
* checked.
* @fl_secid contains the flow security label that is used to authorize
* access to the policy xp.
* @dir contains the direction of the flow (input or output).
* Check permission when a flow selects a xfrm_policy for processing
* XFRMs on a packet. The hook is called when selecting either a
* per-socket policy or a generic xfrm policy.
* Return 0 if permission is granted.
* @xfrm_state_pol_flow_match:
* @x contains the state to match.
* @xp contains the policy to check for a match.
* @fl contains the flow to check for a match.
* Return 1 if there is a match.
* @xfrm_flow_state_match:
* @fl contains the flow key to match.
* @xfrm points to the xfrm_state to match.
* Return 1 if there is a match.
* @xfrm_decode_session:
* @skb points to skb to decode.
* @secid points to the flow key secid to set.
* @ckall says if all xfrms used should be checked for same secid.
* Return 0 if ckall is zero or all xfrms used have the same secid.
*
* Security hooks affecting all Key Management operations
*
* @key_alloc:
* Permit allocation of a key and assign security data. Note that key does
* not have a serial number assigned at this point.
* @key points to the key.
* @flags is the allocation flags
* Return 0 if permission is granted, -ve error otherwise.
* @key_free:
* Notification of destruction; free security data.
* @key points to the key.
* No return value.
* @key_permission:
* See whether a specific operational right is granted to a process on a
* key.
* @key_ref refers to the key (key pointer + possession attribute bit).
* @context points to the process to provide the context against which to
* evaluate the security data on the key.
* @perm describes the combination of permissions required of this key.
* Return 1 if permission granted, 0 if permission denied and -ve it the
* normal permissions model should be effected.
*
* Security hooks affecting all System V IPC operations.
*
* @ipc_permission:
* Check permissions for access to IPC
* @ipcp contains the kernel IPC permission structure
* @flag contains the desired (requested) permission set
* Return 0 if permission is granted.
*
* Security hooks for individual messages held in System V IPC message queues
* @msg_msg_alloc_security:
* Allocate and attach a security structure to the msg->security field.
* The security field is initialized to NULL when the structure is first
* created.
* @msg contains the message structure to be modified.
* Return 0 if operation was successful and permission is granted.
* @msg_msg_free_security:
* Deallocate the security structure for this message.
* @msg contains the message structure to be modified.
*
* Security hooks for System V IPC Message Queues
*
* @msg_queue_alloc_security:
* Allocate and attach a security structure to the
* msq->q_perm.security field. The security field is initialized to
* NULL when the structure is first created.
* @msq contains the message queue structure to be modified.
* Return 0 if operation was successful and permission is granted.
* @msg_queue_free_security:
* Deallocate security structure for this message queue.
* @msq contains the message queue structure to be modified.
* @msg_queue_associate:
* Check permission when a message queue is requested through the
* msgget system call. This hook is only called when returning the
* message queue identifier for an existing message queue, not when a
* new message queue is created.
* @msq contains the message queue to act upon.
* @msqflg contains the operation control flags.
* Return 0 if permission is granted.
* @msg_queue_msgctl:
* Check permission when a message control operation specified by @cmd
* is to be performed on the message queue @msq.
* The @msq may be NULL, e.g. for IPC_INFO or MSG_INFO.
* @msq contains the message queue to act upon. May be NULL.
* @cmd contains the operation to be performed.
* Return 0 if permission is granted.
* @msg_queue_msgsnd:
* Check permission before a message, @msg, is enqueued on the message
* queue, @msq.
* @msq contains the message queue to send message to.
* @msg contains the message to be enqueued.
* @msqflg contains operational flags.
* Return 0 if permission is granted.
* @msg_queue_msgrcv:
* Check permission before a message, @msg, is removed from the message
* queue, @msq. The @target task structure contains a pointer to the
* process that will be receiving the message (not equal to the current
* process when inline receives are being performed).
* @msq contains the message queue to retrieve message from.
* @msg contains the message destination.
* @target contains the task structure for recipient process.
* @type contains the type of message requested.
* @mode contains the operational flags.
* Return 0 if permission is granted.
*
* Security hooks for System V Shared Memory Segments
*
* @shm_alloc_security:
* Allocate and attach a security structure to the shp->shm_perm.security
* field. The security field is initialized to NULL when the structure is
* first created.
* @shp contains the shared memory structure to be modified.
* Return 0 if operation was successful and permission is granted.
* @shm_free_security:
* Deallocate the security struct for this memory segment.
* @shp contains the shared memory structure to be modified.
* @shm_associate:
* Check permission when a shared memory region is requested through the
* shmget system call. This hook is only called when returning the shared
* memory region identifier for an existing region, not when a new shared
* memory region is created.
* @shp contains the shared memory structure to be modified.
* @shmflg contains the operation control flags.
* Return 0 if permission is granted.
* @shm_shmctl:
* Check permission when a shared memory control operation specified by
* @cmd is to be performed on the shared memory region @shp.
* The @shp may be NULL, e.g. for IPC_INFO or SHM_INFO.
* @shp contains shared memory structure to be modified.
* @cmd contains the operation to be performed.
* Return 0 if permission is granted.
* @shm_shmat:
* Check permissions prior to allowing the shmat system call to attach the
* shared memory segment @shp to the data segment of the calling process.
* The attaching address is specified by @shmaddr.
* @shp contains the shared memory structure to be modified.
* @shmaddr contains the address to attach memory region to.
* @shmflg contains the operational flags.
* Return 0 if permission is granted.
*
* Security hooks for System V Semaphores
*
* @sem_alloc_security:
* Allocate and attach a security structure to the sma->sem_perm.security
* field. The security field is initialized to NULL when the structure is
* first created.
* @sma contains the semaphore structure
* Return 0 if operation was successful and permission is granted.
* @sem_free_security:
* deallocate security struct for this semaphore
* @sma contains the semaphore structure.
* @sem_associate:
* Check permission when a semaphore is requested through the semget
* system call. This hook is only called when returning the semaphore
* identifier for an existing semaphore, not when a new one must be
* created.
* @sma contains the semaphore structure.
* @semflg contains the operation control flags.
* Return 0 if permission is granted.
* @sem_semctl:
* Check permission when a semaphore operation specified by @cmd is to be
* performed on the semaphore @sma. The @sma may be NULL, e.g. for
* IPC_INFO or SEM_INFO.
* @sma contains the semaphore structure. May be NULL.
* @cmd contains the operation to be performed.
* Return 0 if permission is granted.
* @sem_semop
* Check permissions before performing operations on members of the
* semaphore set @sma. If the @alter flag is nonzero, the semaphore set
* may be modified.
* @sma contains the semaphore structure.
* @sops contains the operations to perform.
* @nsops contains the number of operations to perform.
* @alter contains the flag indicating whether changes are to be made.
* Return 0 if permission is granted.
*
* @ptrace:
* Check permission before allowing the @parent process to trace the
* @child process.
* Security modules may also want to perform a process tracing check
* during an execve in the set_security or apply_creds hooks of
* binprm_security_ops if the process is being traced and its security
* attributes would be changed by the execve.
* @parent contains the task_struct structure for parent process.
* @child contains the task_struct structure for child process.
* Return 0 if permission is granted.
* @capget:
* Get the @effective, @inheritable, and @permitted capability sets for
* the @target process. The hook may also perform permission checking to
* determine if the current process is allowed to see the capability sets
* of the @target process.
* @target contains the task_struct structure for target process.
* @effective contains the effective capability set.
* @inheritable contains the inheritable capability set.
* @permitted contains the permitted capability set.
* Return 0 if the capability sets were successfully obtained.
* @capset_check:
* Check permission before setting the @effective, @inheritable, and
* @permitted capability sets for the @target process.
* Caveat: @target is also set to current if a set of processes is
* specified (i.e. all processes other than current and init or a
* particular process group). Hence, the capset_set hook may need to
* revalidate permission to the actual target process.
* @target contains the task_struct structure for target process.
* @effective contains the effective capability set.
* @inheritable contains the inheritable capability set.
* @permitted contains the permitted capability set.
* Return 0 if permission is granted.
* @capset_set:
* Set the @effective, @inheritable, and @permitted capability sets for
* the @target process. Since capset_check cannot always check permission
* to the real @target process, this hook may also perform permission
* checking to determine if the current process is allowed to set the
* capability sets of the @target process. However, this hook has no way
* of returning an error due to the structure of the sys_capset code.
* @target contains the task_struct structure for target process.
* @effective contains the effective capability set.
* @inheritable contains the inheritable capability set.
* @permitted contains the permitted capability set.
* @capable:
* Check whether the @tsk process has the @cap capability.
* @tsk contains the task_struct for the process.
* @cap contains the capability <include/linux/capability.h>.
* Return 0 if the capability is granted for @tsk.
* @acct:
* Check permission before enabling or disabling process accounting. If
* accounting is being enabled, then @file refers to the open file used to
* store accounting records. If accounting is being disabled, then @file
* is NULL.
* @file contains the file structure for the accounting file (may be NULL).
* Return 0 if permission is granted.
* @sysctl:
* Check permission before accessing the @table sysctl variable in the
* manner specified by @op.
* @table contains the ctl_table structure for the sysctl variable.
* @op contains the operation (001 = search, 002 = write, 004 = read).
* Return 0 if permission is granted.
* @syslog:
* Check permission before accessing the kernel message ring or changing
* logging to the console.
* See the syslog(2) manual page for an explanation of the @type values.
* @type contains the type of action.
* Return 0 if permission is granted.
* @settime:
* Check permission to change the system time.
* struct timespec and timezone are defined in include/linux/time.h
* @ts contains new time
* @tz contains new timezone
* Return 0 if permission is granted.
* @vm_enough_memory:
* Check permissions for allocating a new virtual mapping.
* @pages contains the number of pages.
* Return 0 if permission is granted.
*
* @register_security:
* allow module stacking.
* @name contains the name of the security module being stacked.
* @ops contains a pointer to the struct security_operations of the module to stack.
* @unregister_security:
* remove a stacked module.
* @name contains the name of the security module being unstacked.
* @ops contains a pointer to the struct security_operations of the module to unstack.
*
* @secid_to_secctx:
* Convert secid to security context.
* @secid contains the security ID.
* @secdata contains the pointer that stores the converted security context.
*
* @release_secctx:
* Release the security context.
* @secdata contains the security context.
* @seclen contains the length of the security context.
*
* This is the main security structure.
*/
struct security_operations {
int (*ptrace) (struct task_struct * parent, struct task_struct * child);
int (*capget) (struct task_struct * target,
kernel_cap_t * effective,
kernel_cap_t * inheritable, kernel_cap_t * permitted);
int (*capset_check) (struct task_struct * target,
kernel_cap_t * effective,
kernel_cap_t * inheritable,
kernel_cap_t * permitted);
void (*capset_set) (struct task_struct * target,
kernel_cap_t * effective,
kernel_cap_t * inheritable,
kernel_cap_t * permitted);
int (*capable) (struct task_struct * tsk, int cap);
int (*acct) (struct file * file);
int (*sysctl) (struct ctl_table * table, int op);
int (*quotactl) (int cmds, int type, int id, struct super_block * sb);
int (*quota_on) (struct dentry * dentry);
int (*syslog) (int type);
int (*settime) (struct timespec *ts, struct timezone *tz);
int (*vm_enough_memory) (long pages);
int (*bprm_alloc_security) (struct linux_binprm * bprm);
void (*bprm_free_security) (struct linux_binprm * bprm);
void (*bprm_apply_creds) (struct linux_binprm * bprm, int unsafe);
void (*bprm_post_apply_creds) (struct linux_binprm * bprm);
int (*bprm_set_security) (struct linux_binprm * bprm);
int (*bprm_check_security) (struct linux_binprm * bprm);
int (*bprm_secureexec) (struct linux_binprm * bprm);
int (*sb_alloc_security) (struct super_block * sb);
void (*sb_free_security) (struct super_block * sb);
int (*sb_copy_data)(struct file_system_type *type,
void *orig, void *copy);
int (*sb_kern_mount) (struct super_block *sb, void *data);
int (*sb_statfs) (struct dentry *dentry);
int (*sb_mount) (char *dev_name, struct nameidata * nd,
char *type, unsigned long flags, void *data);
int (*sb_check_sb) (struct vfsmount * mnt, struct nameidata * nd);
int (*sb_umount) (struct vfsmount * mnt, int flags);
void (*sb_umount_close) (struct vfsmount * mnt);
void (*sb_umount_busy) (struct vfsmount * mnt);
void (*sb_post_remount) (struct vfsmount * mnt,
unsigned long flags, void *data);
void (*sb_post_mountroot) (void);
void (*sb_post_addmount) (struct vfsmount * mnt,
struct nameidata * mountpoint_nd);
int (*sb_pivotroot) (struct nameidata * old_nd,
struct nameidata * new_nd);
void (*sb_post_pivotroot) (struct nameidata * old_nd,
struct nameidata * new_nd);
int (*inode_alloc_security) (struct inode *inode);
void (*inode_free_security) (struct inode *inode);
int (*inode_init_security) (struct inode *inode, struct inode *dir,
char **name, void **value, size_t *len);
int (*inode_create) (struct inode *dir,
struct dentry *dentry, int mode);
int (*inode_link) (struct dentry *old_dentry,
struct inode *dir, struct dentry *new_dentry);
int (*inode_unlink) (struct inode *dir, struct dentry *dentry);
int (*inode_symlink) (struct inode *dir,
struct dentry *dentry, const char *old_name);
int (*inode_mkdir) (struct inode *dir, struct dentry *dentry, int mode);
int (*inode_rmdir) (struct inode *dir, struct dentry *dentry);
int (*inode_mknod) (struct inode *dir, struct dentry *dentry,
int mode, dev_t dev);
int (*inode_rename) (struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry);
int (*inode_readlink) (struct dentry *dentry);
int (*inode_follow_link) (struct dentry *dentry, struct nameidata *nd);
int (*inode_permission) (struct inode *inode, int mask, struct nameidata *nd);
int (*inode_setattr) (struct dentry *dentry, struct iattr *attr);
int (*inode_getattr) (struct vfsmount *mnt, struct dentry *dentry);
void (*inode_delete) (struct inode *inode);
int (*inode_setxattr) (struct dentry *dentry, char *name, void *value,
size_t size, int flags);
void (*inode_post_setxattr) (struct dentry *dentry, char *name, void *value,
size_t size, int flags);
int (*inode_getxattr) (struct dentry *dentry, char *name);
int (*inode_listxattr) (struct dentry *dentry);
int (*inode_removexattr) (struct dentry *dentry, char *name);
const char *(*inode_xattr_getsuffix) (void);
int (*inode_getsecurity)(const struct inode *inode, const char *name, void *buffer, size_t size, int err);
int (*inode_setsecurity)(struct inode *inode, const char *name, const void *value, size_t size, int flags);
int (*inode_listsecurity)(struct inode *inode, char *buffer, size_t buffer_size);
int (*file_permission) (struct file * file, int mask);
int (*file_alloc_security) (struct file * file);
void (*file_free_security) (struct file * file);
int (*file_ioctl) (struct file * file, unsigned int cmd,
unsigned long arg);
int (*file_mmap) (struct file * file,
unsigned long reqprot,
unsigned long prot, unsigned long flags);
int (*file_mprotect) (struct vm_area_struct * vma,
unsigned long reqprot,
unsigned long prot);
int (*file_lock) (struct file * file, unsigned int cmd);
int (*file_fcntl) (struct file * file, unsigned int cmd,
unsigned long arg);
int (*file_set_fowner) (struct file * file);
int (*file_send_sigiotask) (struct task_struct * tsk,
struct fown_struct * fown, int sig);
int (*file_receive) (struct file * file);
int (*task_create) (unsigned long clone_flags);
int (*task_alloc_security) (struct task_struct * p);
void (*task_free_security) (struct task_struct * p);
int (*task_setuid) (uid_t id0, uid_t id1, uid_t id2, int flags);
int (*task_post_setuid) (uid_t old_ruid /* or fsuid */ ,
uid_t old_euid, uid_t old_suid, int flags);
int (*task_setgid) (gid_t id0, gid_t id1, gid_t id2, int flags);
int (*task_setpgid) (struct task_struct * p, pid_t pgid);
int (*task_getpgid) (struct task_struct * p);
int (*task_getsid) (struct task_struct * p);
void (*task_getsecid) (struct task_struct * p, u32 * secid);
int (*task_setgroups) (struct group_info *group_info);
int (*task_setnice) (struct task_struct * p, int nice);
int (*task_setioprio) (struct task_struct * p, int ioprio);
int (*task_getioprio) (struct task_struct * p);
int (*task_setrlimit) (unsigned int resource, struct rlimit * new_rlim);
int (*task_setscheduler) (struct task_struct * p, int policy,
struct sched_param * lp);
int (*task_getscheduler) (struct task_struct * p);
int (*task_movememory) (struct task_struct * p);
int (*task_kill) (struct task_struct * p,
struct siginfo * info, int sig, u32 secid);
int (*task_wait) (struct task_struct * p);
int (*task_prctl) (int option, unsigned long arg2,
unsigned long arg3, unsigned long arg4,
unsigned long arg5);
void (*task_reparent_to_init) (struct task_struct * p);
void (*task_to_inode)(struct task_struct *p, struct inode *inode);
int (*ipc_permission) (struct kern_ipc_perm * ipcp, short flag);
int (*msg_msg_alloc_security) (struct msg_msg * msg);
void (*msg_msg_free_security) (struct msg_msg * msg);
int (*msg_queue_alloc_security) (struct msg_queue * msq);
void (*msg_queue_free_security) (struct msg_queue * msq);
int (*msg_queue_associate) (struct msg_queue * msq, int msqflg);
int (*msg_queue_msgctl) (struct msg_queue * msq, int cmd);
int (*msg_queue_msgsnd) (struct msg_queue * msq,
struct msg_msg * msg, int msqflg);
int (*msg_queue_msgrcv) (struct msg_queue * msq,
struct msg_msg * msg,
struct task_struct * target,
long type, int mode);
int (*shm_alloc_security) (struct shmid_kernel * shp);
void (*shm_free_security) (struct shmid_kernel * shp);
int (*shm_associate) (struct shmid_kernel * shp, int shmflg);
int (*shm_shmctl) (struct shmid_kernel * shp, int cmd);
int (*shm_shmat) (struct shmid_kernel * shp,
char __user *shmaddr, int shmflg);
int (*sem_alloc_security) (struct sem_array * sma);
void (*sem_free_security) (struct sem_array * sma);
int (*sem_associate) (struct sem_array * sma, int semflg);
int (*sem_semctl) (struct sem_array * sma, int cmd);
int (*sem_semop) (struct sem_array * sma,
struct sembuf * sops, unsigned nsops, int alter);
int (*netlink_send) (struct sock * sk, struct sk_buff * skb);
int (*netlink_recv) (struct sk_buff * skb, int cap);
/* allow module stacking */
int (*register_security) (const char *name,
struct security_operations *ops);
int (*unregister_security) (const char *name,
struct security_operations *ops);
void (*d_instantiate) (struct dentry *dentry, struct inode *inode);
int (*getprocattr)(struct task_struct *p, char *name, void *value, size_t size);
int (*setprocattr)(struct task_struct *p, char *name, void *value, size_t size);
int (*secid_to_secctx)(u32 secid, char **secdata, u32 *seclen);
void (*release_secctx)(char *secdata, u32 seclen);
#ifdef CONFIG_SECURITY_NETWORK
int (*unix_stream_connect) (struct socket * sock,
struct socket * other, struct sock * newsk);
int (*unix_may_send) (struct socket * sock, struct socket * other);
int (*socket_create) (int family, int type, int protocol, int kern);
int (*socket_post_create) (struct socket * sock, int family,
int type, int protocol, int kern);
int (*socket_bind) (struct socket * sock,
struct sockaddr * address, int addrlen);
int (*socket_connect) (struct socket * sock,
struct sockaddr * address, int addrlen);
int (*socket_listen) (struct socket * sock, int backlog);
int (*socket_accept) (struct socket * sock, struct socket * newsock);
void (*socket_post_accept) (struct socket * sock,
struct socket * newsock);
int (*socket_sendmsg) (struct socket * sock,
struct msghdr * msg, int size);
int (*socket_recvmsg) (struct socket * sock,
struct msghdr * msg, int size, int flags);
int (*socket_getsockname) (struct socket * sock);
int (*socket_getpeername) (struct socket * sock);
int (*socket_getsockopt) (struct socket * sock, int level, int optname);
int (*socket_setsockopt) (struct socket * sock, int level, int optname);
int (*socket_shutdown) (struct socket * sock, int how);
int (*socket_sock_rcv_skb) (struct sock * sk, struct sk_buff * skb);
int (*socket_getpeersec_stream) (struct socket *sock, char __user *optval, int __user *optlen, unsigned len);
int (*socket_getpeersec_dgram) (struct socket *sock, struct sk_buff *skb, u32 *secid);
int (*sk_alloc_security) (struct sock *sk, int family, gfp_t priority);
void (*sk_free_security) (struct sock *sk);
void (*sk_clone_security) (const struct sock *sk, struct sock *newsk);
void (*sk_getsecid) (struct sock *sk, u32 *secid);
void (*sock_graft)(struct sock* sk, struct socket *parent);
int (*inet_conn_request)(struct sock *sk, struct sk_buff *skb,
struct request_sock *req);
void (*inet_csk_clone)(struct sock *newsk, const struct request_sock *req);
void (*req_classify_flow)(const struct request_sock *req, struct flowi *fl);
#endif /* CONFIG_SECURITY_NETWORK */
#ifdef CONFIG_SECURITY_NETWORK_XFRM
int (*xfrm_policy_alloc_security) (struct xfrm_policy *xp,
struct xfrm_user_sec_ctx *sec_ctx, struct sock *sk);
int (*xfrm_policy_clone_security) (struct xfrm_policy *old, struct xfrm_policy *new);
void (*xfrm_policy_free_security) (struct xfrm_policy *xp);
int (*xfrm_policy_delete_security) (struct xfrm_policy *xp);
int (*xfrm_state_alloc_security) (struct xfrm_state *x,
struct xfrm_user_sec_ctx *sec_ctx, struct xfrm_sec_ctx *polsec,
u32 secid);
void (*xfrm_state_free_security) (struct xfrm_state *x);
int (*xfrm_state_delete_security) (struct xfrm_state *x);
int (*xfrm_policy_lookup)(struct xfrm_policy *xp, u32 fl_secid, u8 dir);
int (*xfrm_state_pol_flow_match)(struct xfrm_state *x,
struct xfrm_policy *xp, struct flowi *fl);
int (*xfrm_flow_state_match)(struct flowi *fl, struct xfrm_state *xfrm);
int (*xfrm_decode_session)(struct sk_buff *skb, u32 *secid, int ckall);
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
/* key management security hooks */
#ifdef CONFIG_KEYS
int (*key_alloc)(struct key *key, struct task_struct *tsk, unsigned long flags);
void (*key_free)(struct key *key);
int (*key_permission)(key_ref_t key_ref,
struct task_struct *context,
key_perm_t perm);
#endif /* CONFIG_KEYS */
};
/* global variables */
extern struct security_operations *security_ops;
/* inline stuff */
static inline int security_ptrace (struct task_struct * parent, struct task_struct * child)
{
return security_ops->ptrace (parent, child);
}
static inline int security_capget (struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return security_ops->capget (target, effective, inheritable, permitted);
}
static inline int security_capset_check (struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return security_ops->capset_check (target, effective, inheritable, permitted);
}
static inline void security_capset_set (struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
security_ops->capset_set (target, effective, inheritable, permitted);
}
static inline int security_capable(struct task_struct *tsk, int cap)
{
return security_ops->capable(tsk, cap);
}
static inline int security_acct (struct file *file)
{
return security_ops->acct (file);
}
static inline int security_sysctl(struct ctl_table *table, int op)
{
return security_ops->sysctl(table, op);
}
static inline int security_quotactl (int cmds, int type, int id,
struct super_block *sb)
{
return security_ops->quotactl (cmds, type, id, sb);
}
static inline int security_quota_on (struct dentry * dentry)
{
return security_ops->quota_on (dentry);
}
static inline int security_syslog(int type)
{
return security_ops->syslog(type);
}
static inline int security_settime(struct timespec *ts, struct timezone *tz)
{
return security_ops->settime(ts, tz);
}
static inline int security_vm_enough_memory(long pages)
{
return security_ops->vm_enough_memory(pages);
}
static inline int security_bprm_alloc (struct linux_binprm *bprm)
{
return security_ops->bprm_alloc_security (bprm);
}
static inline void security_bprm_free (struct linux_binprm *bprm)
{
security_ops->bprm_free_security (bprm);
}
static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
{
security_ops->bprm_apply_creds (bprm, unsafe);
}
static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
{
security_ops->bprm_post_apply_creds (bprm);
}
static inline int security_bprm_set (struct linux_binprm *bprm)
{
return security_ops->bprm_set_security (bprm);
}
static inline int security_bprm_check (struct linux_binprm *bprm)
{
return security_ops->bprm_check_security (bprm);
}
static inline int security_bprm_secureexec (struct linux_binprm *bprm)
{
return security_ops->bprm_secureexec (bprm);
}
static inline int security_sb_alloc (struct super_block *sb)
{
return security_ops->sb_alloc_security (sb);
}
static inline void security_sb_free (struct super_block *sb)
{
security_ops->sb_free_security (sb);
}
static inline int security_sb_copy_data (struct file_system_type *type,
void *orig, void *copy)
{
return security_ops->sb_copy_data (type, orig, copy);
}
static inline int security_sb_kern_mount (struct super_block *sb, void *data)
{
return security_ops->sb_kern_mount (sb, data);
}
static inline int security_sb_statfs (struct dentry *dentry)
{
return security_ops->sb_statfs (dentry);
}
static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
char *type, unsigned long flags,
void *data)
{
return security_ops->sb_mount (dev_name, nd, type, flags, data);
}
static inline int security_sb_check_sb (struct vfsmount *mnt,
struct nameidata *nd)
{
return security_ops->sb_check_sb (mnt, nd);
}
static inline int security_sb_umount (struct vfsmount *mnt, int flags)
{
return security_ops->sb_umount (mnt, flags);
}
static inline void security_sb_umount_close (struct vfsmount *mnt)
{
security_ops->sb_umount_close (mnt);
}
static inline void security_sb_umount_busy (struct vfsmount *mnt)
{
security_ops->sb_umount_busy (mnt);
}
static inline void security_sb_post_remount (struct vfsmount *mnt,
unsigned long flags, void *data)
{
security_ops->sb_post_remount (mnt, flags, data);
}
static inline void security_sb_post_mountroot (void)
{
security_ops->sb_post_mountroot ();
}
static inline void security_sb_post_addmount (struct vfsmount *mnt,
struct nameidata *mountpoint_nd)
{
security_ops->sb_post_addmount (mnt, mountpoint_nd);
}
static inline int security_sb_pivotroot (struct nameidata *old_nd,
struct nameidata *new_nd)
{
return security_ops->sb_pivotroot (old_nd, new_nd);
}
static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
struct nameidata *new_nd)
{
security_ops->sb_post_pivotroot (old_nd, new_nd);
}
static inline int security_inode_alloc (struct inode *inode)
{
inode->i_security = NULL;
return security_ops->inode_alloc_security (inode);
}
static inline void security_inode_free (struct inode *inode)
{
security_ops->inode_free_security (inode);
}
static inline int security_inode_init_security (struct inode *inode,
struct inode *dir,
char **name,
void **value,
size_t *len)
{
if (unlikely (IS_PRIVATE (inode)))
return -EOPNOTSUPP;
return security_ops->inode_init_security (inode, dir, name, value, len);
}
static inline int security_inode_create (struct inode *dir,
struct dentry *dentry,
int mode)
{
if (unlikely (IS_PRIVATE (dir)))
return 0;
return security_ops->inode_create (dir, dentry, mode);
}
static inline int security_inode_link (struct dentry *old_dentry,
struct inode *dir,
struct dentry *new_dentry)
{
if (unlikely (IS_PRIVATE (old_dentry->d_inode)))
return 0;
return security_ops->inode_link (old_dentry, dir, new_dentry);
}
static inline int security_inode_unlink (struct inode *dir,
struct dentry *dentry)
{
if (unlikely (IS_PRIVATE (dentry->d_inode)))
return 0;
return security_ops->inode_unlink (dir, dentry);
}
static inline int security_inode_symlink (struct inode *dir,
struct dentry *dentry,
const char *old_name)
{
if (unlikely (IS_PRIVATE (dir)))
return 0;
return security_ops->inode_symlink (dir, dentry, old_name);
}
static inline int security_inode_mkdir (struct inode *dir,
struct dentry *dentry,
int mode)
{
if (unlikely (IS_PRIVATE (dir)))
return 0;
return security_ops->inode_mkdir (dir, dentry, mode);
}
static inline int security_inode_rmdir (struct inode *dir,
struct dentry *dentry)
{
if (unlikely (IS_PRIVATE (dentry->d_inode)))
return 0;
return security_ops->inode_rmdir (dir, dentry);
}
static inline int security_inode_mknod (struct inode *dir,
struct dentry *dentry,
int mode, dev_t dev)
{
if (unlikely (IS_PRIVATE (dir)))
return 0;
return security_ops->inode_mknod (dir, dentry, mode, dev);
}
static inline int security_inode_rename (struct inode *old_dir,
struct dentry *old_dentry,
struct inode *new_dir,
struct dentry *new_dentry)
{
if (unlikely (IS_PRIVATE (old_dentry->d_inode) ||
(new_dentry->d_inode && IS_PRIVATE (new_dentry->d_inode))))
return 0;
return security_ops->inode_rename (old_dir, old_dentry,
new_dir, new_dentry);
}
static inline int security_inode_readlink (struct dentry *dentry)
{
if (unlikely (IS_PRIVATE (dentry->d_inode)))
return 0;
return security_ops->inode_readlink (dentry);
}
static inline int security_inode_follow_link (struct dentry *dentry,
struct nameidata *nd)
{
if (unlikely (IS_PRIVATE (dentry->d_inode)))
return 0;
return security_ops->inode_follow_link (dentry, nd);
}
static inline int security_inode_permission (struct inode *inode, int mask,
struct nameidata *nd)
{
if (unlikely (IS_PRIVATE (inode)))
return 0;
return security_ops->inode_permission (inode, mask, nd);
}
static inline int security_inode_setattr (struct dentry *dentry,
struct iattr *attr)
{
if (unlikely (IS_PRIVATE (dentry->d_inode)))
return 0;
return security_ops->inode_setattr (dentry, attr);
}
static inline int security_inode_getattr (struct vfsmount *mnt,
struct dentry *dentry)
{
if (unlikely (IS_PRIVATE (dentry->d_inode)))
return 0;
return security_ops->inode_getattr (mnt, dentry);
}
static inline void security_inode_delete (struct inode *inode)
{
if (unlikely (IS_PRIVATE (inode)))
return;
security_ops->inode_delete (inode);
}
static inline int security_inode_setxattr (struct dentry *dentry, char *name,
void *value, size_t size, int flags)
{
if (unlikely (IS_PRIVATE (dentry->d_inode)))
return 0;
return security_ops->inode_setxattr (dentry, name, value, size, flags);
}
static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
void *value, size_t size, int flags)
{
if (unlikely (IS_PRIVATE (dentry->d_inode)))
return;
security_ops->inode_post_setxattr (dentry, name, value, size, flags);
}
static inline int security_inode_getxattr (struct dentry *dentry, char *name)
{
if (unlikely (IS_PRIVATE (dentry->d_inode)))
return 0;
return security_ops->inode_getxattr (dentry, name);
}
static inline int security_inode_listxattr (struct dentry *dentry)
{
if (unlikely (IS_PRIVATE (dentry->d_inode)))
return 0;
return security_ops->inode_listxattr (dentry);
}
static inline int security_inode_removexattr (struct dentry *dentry, char *name)
{
if (unlikely (IS_PRIVATE (dentry->d_inode)))
return 0;
return security_ops->inode_removexattr (dentry, name);
}
static inline const char *security_inode_xattr_getsuffix(void)
{
return security_ops->inode_xattr_getsuffix();
}
static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
{
if (unlikely (IS_PRIVATE (inode)))
return 0;
return security_ops->inode_getsecurity(inode, name, buffer, size, err);
}
static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
{
if (unlikely (IS_PRIVATE (inode)))
return 0;
return security_ops->inode_setsecurity(inode, name, value, size, flags);
}
static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
if (unlikely (IS_PRIVATE (inode)))
return 0;
return security_ops->inode_listsecurity(inode, buffer, buffer_size);
}
static inline int security_file_permission (struct file *file, int mask)
{
return security_ops->file_permission (file, mask);
}
static inline int security_file_alloc (struct file *file)
{
return security_ops->file_alloc_security (file);
}
static inline void security_file_free (struct file *file)
{
security_ops->file_free_security (file);
}
static inline int security_file_ioctl (struct file *file, unsigned int cmd,
unsigned long arg)
{
return security_ops->file_ioctl (file, cmd, arg);
}
static inline int security_file_mmap (struct file *file, unsigned long reqprot,
unsigned long prot,
unsigned long flags)
{
return security_ops->file_mmap (file, reqprot, prot, flags);
}
static inline int security_file_mprotect (struct vm_area_struct *vma,
unsigned long reqprot,
unsigned long prot)
{
return security_ops->file_mprotect (vma, reqprot, prot);
}
static inline int security_file_lock (struct file *file, unsigned int cmd)
{
return security_ops->file_lock (file, cmd);
}
static inline int security_file_fcntl (struct file *file, unsigned int cmd,
unsigned long arg)
{
return security_ops->file_fcntl (file, cmd, arg);
}
static inline int security_file_set_fowner (struct file *file)
{
return security_ops->file_set_fowner (file);
}
static inline int security_file_send_sigiotask (struct task_struct *tsk,
struct fown_struct *fown,
int sig)
{
return security_ops->file_send_sigiotask (tsk, fown, sig);
}
static inline int security_file_receive (struct file *file)
{
return security_ops->file_receive (file);
}
static inline int security_task_create (unsigned long clone_flags)
{
return security_ops->task_create (clone_flags);
}
static inline int security_task_alloc (struct task_struct *p)
{
return security_ops->task_alloc_security (p);
}
static inline void security_task_free (struct task_struct *p)
{
security_ops->task_free_security (p);
}
static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
int flags)
{
return security_ops->task_setuid (id0, id1, id2, flags);
}
static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
uid_t old_suid, int flags)
{
return security_ops->task_post_setuid (old_ruid, old_euid, old_suid, flags);
}
static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
int flags)
{
return security_ops->task_setgid (id0, id1, id2, flags);
}
static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
{
return security_ops->task_setpgid (p, pgid);
}
static inline int security_task_getpgid (struct task_struct *p)
{
return security_ops->task_getpgid (p);
}
static inline int security_task_getsid (struct task_struct *p)
{
return security_ops->task_getsid (p);
}
static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
{
security_ops->task_getsecid (p, secid);
}
static inline int security_task_setgroups (struct group_info *group_info)
{
return security_ops->task_setgroups (group_info);
}
static inline int security_task_setnice (struct task_struct *p, int nice)
{
return security_ops->task_setnice (p, nice);
}
static inline int security_task_setioprio (struct task_struct *p, int ioprio)
{
return security_ops->task_setioprio (p, ioprio);
}
static inline int security_task_getioprio (struct task_struct *p)
{
return security_ops->task_getioprio (p);
}
static inline int security_task_setrlimit (unsigned int resource,
struct rlimit *new_rlim)
{
return security_ops->task_setrlimit (resource, new_rlim);
}
static inline int security_task_setscheduler (struct task_struct *p,
int policy,
struct sched_param *lp)
{
return security_ops->task_setscheduler (p, policy, lp);
}
static inline int security_task_getscheduler (struct task_struct *p)
{
return security_ops->task_getscheduler (p);
}
static inline int security_task_movememory (struct task_struct *p)
{
return security_ops->task_movememory (p);
}
static inline int security_task_kill (struct task_struct *p,
struct siginfo *info, int sig,
u32 secid)
{
return security_ops->task_kill (p, info, sig, secid);
}
static inline int security_task_wait (struct task_struct *p)
{
return security_ops->task_wait (p);
}
static inline int security_task_prctl (int option, unsigned long arg2,
unsigned long arg3,
unsigned long arg4,
unsigned long arg5)
{
return security_ops->task_prctl (option, arg2, arg3, arg4, arg5);
}
static inline void security_task_reparent_to_init (struct task_struct *p)
{
security_ops->task_reparent_to_init (p);
}
static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
{
security_ops->task_to_inode(p, inode);
}
static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
short flag)
{
return security_ops->ipc_permission (ipcp, flag);
}
static inline int security_msg_msg_alloc (struct msg_msg * msg)
{
return security_ops->msg_msg_alloc_security (msg);
}
static inline void security_msg_msg_free (struct msg_msg * msg)
{
security_ops->msg_msg_free_security(msg);
}
static inline int security_msg_queue_alloc (struct msg_queue *msq)
{
return security_ops->msg_queue_alloc_security (msq);
}
static inline void security_msg_queue_free (struct msg_queue *msq)
{
security_ops->msg_queue_free_security (msq);
}
static inline int security_msg_queue_associate (struct msg_queue * msq,
int msqflg)
{
return security_ops->msg_queue_associate (msq, msqflg);
}
static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
{
return security_ops->msg_queue_msgctl (msq, cmd);
}
static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
struct msg_msg * msg, int msqflg)
{
return security_ops->msg_queue_msgsnd (msq, msg, msqflg);
}
static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
struct msg_msg * msg,
struct task_struct * target,
long type, int mode)
{
return security_ops->msg_queue_msgrcv (msq, msg, target, type, mode);
}
static inline int security_shm_alloc (struct shmid_kernel *shp)
{
return security_ops->shm_alloc_security (shp);
}
static inline void security_shm_free (struct shmid_kernel *shp)
{
security_ops->shm_free_security (shp);
}
static inline int security_shm_associate (struct shmid_kernel * shp,
int shmflg)
{
return security_ops->shm_associate(shp, shmflg);
}
static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
{
return security_ops->shm_shmctl (shp, cmd);
}
static inline int security_shm_shmat (struct shmid_kernel * shp,
char __user *shmaddr, int shmflg)
{
return security_ops->shm_shmat(shp, shmaddr, shmflg);
}
static inline int security_sem_alloc (struct sem_array *sma)
{
return security_ops->sem_alloc_security (sma);
}
static inline void security_sem_free (struct sem_array *sma)
{
security_ops->sem_free_security (sma);
}
static inline int security_sem_associate (struct sem_array * sma, int semflg)
{
return security_ops->sem_associate (sma, semflg);
}
static inline int security_sem_semctl (struct sem_array * sma, int cmd)
{
return security_ops->sem_semctl(sma, cmd);
}
static inline int security_sem_semop (struct sem_array * sma,
struct sembuf * sops, unsigned nsops,
int alter)
{
return security_ops->sem_semop(sma, sops, nsops, alter);
}
static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
{
if (unlikely (inode && IS_PRIVATE (inode)))
return;
security_ops->d_instantiate (dentry, inode);
}
static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
{
return security_ops->getprocattr(p, name, value, size);
}
static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
{
return security_ops->setprocattr(p, name, value, size);
}
static inline int security_netlink_send(struct sock *sk, struct sk_buff * skb)
{
return security_ops->netlink_send(sk, skb);
}
static inline int security_netlink_recv(struct sk_buff * skb, int cap)
{
return security_ops->netlink_recv(skb, cap);
}
static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
return security_ops->secid_to_secctx(secid, secdata, seclen);
}
static inline void security_release_secctx(char *secdata, u32 seclen)
{
return security_ops->release_secctx(secdata, seclen);
}
/* prototypes */
extern int security_init (void);
extern int register_security (struct security_operations *ops);
extern int unregister_security (struct security_operations *ops);
extern int mod_reg_security (const char *name, struct security_operations *ops);
extern int mod_unreg_security (const char *name, struct security_operations *ops);
extern struct dentry *securityfs_create_file(const char *name, mode_t mode,
struct dentry *parent, void *data,
struct file_operations *fops);
extern struct dentry *securityfs_create_dir(const char *name, struct dentry *parent);
extern void securityfs_remove(struct dentry *dentry);
#else /* CONFIG_SECURITY */
/*
* This is the default capabilities functionality. Most of these functions
* are just stubbed out, but a few must call the proper capable code.
*/
static inline int security_init(void)
{
return 0;
}
static inline int security_ptrace (struct task_struct *parent, struct task_struct * child)
{
return cap_ptrace (parent, child);
}
static inline int security_capget (struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return cap_capget (target, effective, inheritable, permitted);
}
static inline int security_capset_check (struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return cap_capset_check (target, effective, inheritable, permitted);
}
static inline void security_capset_set (struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
cap_capset_set (target, effective, inheritable, permitted);
}
static inline int security_capable(struct task_struct *tsk, int cap)
{
return cap_capable(tsk, cap);
}
static inline int security_acct (struct file *file)
{
return 0;
}
static inline int security_sysctl(struct ctl_table *table, int op)
{
return 0;
}
static inline int security_quotactl (int cmds, int type, int id,
struct super_block * sb)
{
return 0;
}
static inline int security_quota_on (struct dentry * dentry)
{
return 0;
}
static inline int security_syslog(int type)
{
return cap_syslog(type);
}
static inline int security_settime(struct timespec *ts, struct timezone *tz)
{
return cap_settime(ts, tz);
}
static inline int security_vm_enough_memory(long pages)
{
return cap_vm_enough_memory(pages);
}
static inline int security_bprm_alloc (struct linux_binprm *bprm)
{
return 0;
}
static inline void security_bprm_free (struct linux_binprm *bprm)
{ }
static inline void security_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
{
cap_bprm_apply_creds (bprm, unsafe);
}
static inline void security_bprm_post_apply_creds (struct linux_binprm *bprm)
{
return;
}
static inline int security_bprm_set (struct linux_binprm *bprm)
{
return cap_bprm_set_security (bprm);
}
static inline int security_bprm_check (struct linux_binprm *bprm)
{
return 0;
}
static inline int security_bprm_secureexec (struct linux_binprm *bprm)
{
return cap_bprm_secureexec(bprm);
}
static inline int security_sb_alloc (struct super_block *sb)
{
return 0;
}
static inline void security_sb_free (struct super_block *sb)
{ }
static inline int security_sb_copy_data (struct file_system_type *type,
void *orig, void *copy)
{
return 0;
}
static inline int security_sb_kern_mount (struct super_block *sb, void *data)
{
return 0;
}
static inline int security_sb_statfs (struct dentry *dentry)
{
return 0;
}
static inline int security_sb_mount (char *dev_name, struct nameidata *nd,
char *type, unsigned long flags,
void *data)
{
return 0;
}
static inline int security_sb_check_sb (struct vfsmount *mnt,
struct nameidata *nd)
{
return 0;
}
static inline int security_sb_umount (struct vfsmount *mnt, int flags)
{
return 0;
}
static inline void security_sb_umount_close (struct vfsmount *mnt)
{ }
static inline void security_sb_umount_busy (struct vfsmount *mnt)
{ }
static inline void security_sb_post_remount (struct vfsmount *mnt,
unsigned long flags, void *data)
{ }
static inline void security_sb_post_mountroot (void)
{ }
static inline void security_sb_post_addmount (struct vfsmount *mnt,
struct nameidata *mountpoint_nd)
{ }
static inline int security_sb_pivotroot (struct nameidata *old_nd,
struct nameidata *new_nd)
{
return 0;
}
static inline void security_sb_post_pivotroot (struct nameidata *old_nd,
struct nameidata *new_nd)
{ }
static inline int security_inode_alloc (struct inode *inode)
{
return 0;
}
static inline void security_inode_free (struct inode *inode)
{ }
static inline int security_inode_init_security (struct inode *inode,
struct inode *dir,
char **name,
void **value,
size_t *len)
{
return -EOPNOTSUPP;
}
static inline int security_inode_create (struct inode *dir,
struct dentry *dentry,
int mode)
{
return 0;
}
static inline int security_inode_link (struct dentry *old_dentry,
struct inode *dir,
struct dentry *new_dentry)
{
return 0;
}
static inline int security_inode_unlink (struct inode *dir,
struct dentry *dentry)
{
return 0;
}
static inline int security_inode_symlink (struct inode *dir,
struct dentry *dentry,
const char *old_name)
{
return 0;
}
static inline int security_inode_mkdir (struct inode *dir,
struct dentry *dentry,
int mode)
{
return 0;
}
static inline int security_inode_rmdir (struct inode *dir,
struct dentry *dentry)
{
return 0;
}
static inline int security_inode_mknod (struct inode *dir,
struct dentry *dentry,
int mode, dev_t dev)
{
return 0;
}
static inline int security_inode_rename (struct inode *old_dir,
struct dentry *old_dentry,
struct inode *new_dir,
struct dentry *new_dentry)
{
return 0;
}
static inline int security_inode_readlink (struct dentry *dentry)
{
return 0;
}
static inline int security_inode_follow_link (struct dentry *dentry,
struct nameidata *nd)
{
return 0;
}
static inline int security_inode_permission (struct inode *inode, int mask,
struct nameidata *nd)
{
return 0;
}
static inline int security_inode_setattr (struct dentry *dentry,
struct iattr *attr)
{
return 0;
}
static inline int security_inode_getattr (struct vfsmount *mnt,
struct dentry *dentry)
{
return 0;
}
static inline void security_inode_delete (struct inode *inode)
{ }
static inline int security_inode_setxattr (struct dentry *dentry, char *name,
void *value, size_t size, int flags)
{
return cap_inode_setxattr(dentry, name, value, size, flags);
}
static inline void security_inode_post_setxattr (struct dentry *dentry, char *name,
void *value, size_t size, int flags)
{ }
static inline int security_inode_getxattr (struct dentry *dentry, char *name)
{
return 0;
}
static inline int security_inode_listxattr (struct dentry *dentry)
{
return 0;
}
static inline int security_inode_removexattr (struct dentry *dentry, char *name)
{
return cap_inode_removexattr(dentry, name);
}
static inline const char *security_inode_xattr_getsuffix (void)
{
return NULL ;
}
static inline int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
{
return -EOPNOTSUPP;
}
static inline int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
{
return -EOPNOTSUPP;
}
static inline int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
return 0;
}
static inline int security_file_permission (struct file *file, int mask)
{
return 0;
}
static inline int security_file_alloc (struct file *file)
{
return 0;
}
static inline void security_file_free (struct file *file)
{ }
static inline int security_file_ioctl (struct file *file, unsigned int cmd,
unsigned long arg)
{
return 0;
}
static inline int security_file_mmap (struct file *file, unsigned long reqprot,
unsigned long prot,
unsigned long flags)
{
return 0;
}
static inline int security_file_mprotect (struct vm_area_struct *vma,
unsigned long reqprot,
unsigned long prot)
{
return 0;
}
static inline int security_file_lock (struct file *file, unsigned int cmd)
{
return 0;
}
static inline int security_file_fcntl (struct file *file, unsigned int cmd,
unsigned long arg)
{
return 0;
}
static inline int security_file_set_fowner (struct file *file)
{
return 0;
}
static inline int security_file_send_sigiotask (struct task_struct *tsk,
struct fown_struct *fown,
int sig)
{
return 0;
}
static inline int security_file_receive (struct file *file)
{
return 0;
}
static inline int security_task_create (unsigned long clone_flags)
{
return 0;
}
static inline int security_task_alloc (struct task_struct *p)
{
return 0;
}
static inline void security_task_free (struct task_struct *p)
{ }
static inline int security_task_setuid (uid_t id0, uid_t id1, uid_t id2,
int flags)
{
return 0;
}
static inline int security_task_post_setuid (uid_t old_ruid, uid_t old_euid,
uid_t old_suid, int flags)
{
return cap_task_post_setuid (old_ruid, old_euid, old_suid, flags);
}
static inline int security_task_setgid (gid_t id0, gid_t id1, gid_t id2,
int flags)
{
return 0;
}
static inline int security_task_setpgid (struct task_struct *p, pid_t pgid)
{
return 0;
}
static inline int security_task_getpgid (struct task_struct *p)
{
return 0;
}
static inline int security_task_getsid (struct task_struct *p)
{
return 0;
}
static inline void security_task_getsecid (struct task_struct *p, u32 *secid)
{ }
static inline int security_task_setgroups (struct group_info *group_info)
{
return 0;
}
static inline int security_task_setnice (struct task_struct *p, int nice)
{
return 0;
}
static inline int security_task_setioprio (struct task_struct *p, int ioprio)
{
return 0;
}
static inline int security_task_getioprio (struct task_struct *p)
{
return 0;
}
static inline int security_task_setrlimit (unsigned int resource,
struct rlimit *new_rlim)
{
return 0;
}
static inline int security_task_setscheduler (struct task_struct *p,
int policy,
struct sched_param *lp)
{
return 0;
}
static inline int security_task_getscheduler (struct task_struct *p)
{
return 0;
}
static inline int security_task_movememory (struct task_struct *p)
{
return 0;
}
static inline int security_task_kill (struct task_struct *p,
struct siginfo *info, int sig,
u32 secid)
{
return 0;
}
static inline int security_task_wait (struct task_struct *p)
{
return 0;
}
static inline int security_task_prctl (int option, unsigned long arg2,
unsigned long arg3,
unsigned long arg4,
unsigned long arg5)
{
return 0;
}
static inline void security_task_reparent_to_init (struct task_struct *p)
{
cap_task_reparent_to_init (p);
}
static inline void security_task_to_inode(struct task_struct *p, struct inode *inode)
{ }
static inline int security_ipc_permission (struct kern_ipc_perm *ipcp,
short flag)
{
return 0;
}
static inline int security_msg_msg_alloc (struct msg_msg * msg)
{
return 0;
}
static inline void security_msg_msg_free (struct msg_msg * msg)
{ }
static inline int security_msg_queue_alloc (struct msg_queue *msq)
{
return 0;
}
static inline void security_msg_queue_free (struct msg_queue *msq)
{ }
static inline int security_msg_queue_associate (struct msg_queue * msq,
int msqflg)
{
return 0;
}
static inline int security_msg_queue_msgctl (struct msg_queue * msq, int cmd)
{
return 0;
}
static inline int security_msg_queue_msgsnd (struct msg_queue * msq,
struct msg_msg * msg, int msqflg)
{
return 0;
}
static inline int security_msg_queue_msgrcv (struct msg_queue * msq,
struct msg_msg * msg,
struct task_struct * target,
long type, int mode)
{
return 0;
}
static inline int security_shm_alloc (struct shmid_kernel *shp)
{
return 0;
}
static inline void security_shm_free (struct shmid_kernel *shp)
{ }
static inline int security_shm_associate (struct shmid_kernel * shp,
int shmflg)
{
return 0;
}
static inline int security_shm_shmctl (struct shmid_kernel * shp, int cmd)
{
return 0;
}
static inline int security_shm_shmat (struct shmid_kernel * shp,
char __user *shmaddr, int shmflg)
{
return 0;
}
static inline int security_sem_alloc (struct sem_array *sma)
{
return 0;
}
static inline void security_sem_free (struct sem_array *sma)
{ }
static inline int security_sem_associate (struct sem_array * sma, int semflg)
{
return 0;
}
static inline int security_sem_semctl (struct sem_array * sma, int cmd)
{
return 0;
}
static inline int security_sem_semop (struct sem_array * sma,
struct sembuf * sops, unsigned nsops,
int alter)
{
return 0;
}
static inline void security_d_instantiate (struct dentry *dentry, struct inode *inode)
{ }
static inline int security_getprocattr(struct task_struct *p, char *name, void *value, size_t size)
{
return -EINVAL;
}
static inline int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
{
return -EINVAL;
}
static inline int security_netlink_send (struct sock *sk, struct sk_buff *skb)
{
return cap_netlink_send (sk, skb);
}
static inline int security_netlink_recv (struct sk_buff *skb, int cap)
{
return cap_netlink_recv (skb, cap);
}
static inline struct dentry *securityfs_create_dir(const char *name,
struct dentry *parent)
{
return ERR_PTR(-ENODEV);
}
static inline struct dentry *securityfs_create_file(const char *name,
mode_t mode,
struct dentry *parent,
void *data,
struct file_operations *fops)
{
return ERR_PTR(-ENODEV);
}
static inline void securityfs_remove(struct dentry *dentry)
{
}
static inline int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
return -EOPNOTSUPP;
}
static inline void security_release_secctx(char *secdata, u32 seclen)
{
}
#endif /* CONFIG_SECURITY */
#ifdef CONFIG_SECURITY_NETWORK
static inline int security_unix_stream_connect(struct socket * sock,
struct socket * other,
struct sock * newsk)
{
return security_ops->unix_stream_connect(sock, other, newsk);
}
static inline int security_unix_may_send(struct socket * sock,
struct socket * other)
{
return security_ops->unix_may_send(sock, other);
}
static inline int security_socket_create (int family, int type,
int protocol, int kern)
{
return security_ops->socket_create(family, type, protocol, kern);
}
static inline int security_socket_post_create(struct socket * sock,
int family,
int type,
int protocol, int kern)
{
return security_ops->socket_post_create(sock, family, type,
protocol, kern);
}
static inline int security_socket_bind(struct socket * sock,
struct sockaddr * address,
int addrlen)
{
return security_ops->socket_bind(sock, address, addrlen);
}
static inline int security_socket_connect(struct socket * sock,
struct sockaddr * address,
int addrlen)
{
return security_ops->socket_connect(sock, address, addrlen);
}
static inline int security_socket_listen(struct socket * sock, int backlog)
{
return security_ops->socket_listen(sock, backlog);
}
static inline int security_socket_accept(struct socket * sock,
struct socket * newsock)
{
return security_ops->socket_accept(sock, newsock);
}
static inline void security_socket_post_accept(struct socket * sock,
struct socket * newsock)
{
security_ops->socket_post_accept(sock, newsock);
}
static inline int security_socket_sendmsg(struct socket * sock,
struct msghdr * msg, int size)
{
return security_ops->socket_sendmsg(sock, msg, size);
}
static inline int security_socket_recvmsg(struct socket * sock,
struct msghdr * msg, int size,
int flags)
{
return security_ops->socket_recvmsg(sock, msg, size, flags);
}
static inline int security_socket_getsockname(struct socket * sock)
{
return security_ops->socket_getsockname(sock);
}
static inline int security_socket_getpeername(struct socket * sock)
{
return security_ops->socket_getpeername(sock);
}
static inline int security_socket_getsockopt(struct socket * sock,
int level, int optname)
{
return security_ops->socket_getsockopt(sock, level, optname);
}
static inline int security_socket_setsockopt(struct socket * sock,
int level, int optname)
{
return security_ops->socket_setsockopt(sock, level, optname);
}
static inline int security_socket_shutdown(struct socket * sock, int how)
{
return security_ops->socket_shutdown(sock, how);
}
static inline int security_sock_rcv_skb (struct sock * sk,
struct sk_buff * skb)
{
return security_ops->socket_sock_rcv_skb (sk, skb);
}
static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
int __user *optlen, unsigned len)
{
return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
}
static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
{
return security_ops->socket_getpeersec_dgram(sock, skb, secid);
}
static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
{
return security_ops->sk_alloc_security(sk, family, priority);
}
static inline void security_sk_free(struct sock *sk)
{
return security_ops->sk_free_security(sk);
}
static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
{
return security_ops->sk_clone_security(sk, newsk);
}
static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
{
security_ops->sk_getsecid(sk, &fl->secid);
}
static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
{
security_ops->req_classify_flow(req, fl);
}
static inline void security_sock_graft(struct sock* sk, struct socket *parent)
{
security_ops->sock_graft(sk, parent);
}
static inline int security_inet_conn_request(struct sock *sk,
struct sk_buff *skb, struct request_sock *req)
{
return security_ops->inet_conn_request(sk, skb, req);
}
static inline void security_inet_csk_clone(struct sock *newsk,
const struct request_sock *req)
{
security_ops->inet_csk_clone(newsk, req);
}
#else /* CONFIG_SECURITY_NETWORK */
static inline int security_unix_stream_connect(struct socket * sock,
struct socket * other,
struct sock * newsk)
{
return 0;
}
static inline int security_unix_may_send(struct socket * sock,
struct socket * other)
{
return 0;
}
static inline int security_socket_create (int family, int type,
int protocol, int kern)
{
return 0;
}
static inline int security_socket_post_create(struct socket * sock,
int family,
int type,
int protocol, int kern)
{
return 0;
}
static inline int security_socket_bind(struct socket * sock,
struct sockaddr * address,
int addrlen)
{
return 0;
}
static inline int security_socket_connect(struct socket * sock,
struct sockaddr * address,
int addrlen)
{
return 0;
}
static inline int security_socket_listen(struct socket * sock, int backlog)
{
return 0;
}
static inline int security_socket_accept(struct socket * sock,
struct socket * newsock)
{
return 0;
}
static inline void security_socket_post_accept(struct socket * sock,
struct socket * newsock)
{
}
static inline int security_socket_sendmsg(struct socket * sock,
struct msghdr * msg, int size)
{
return 0;
}
static inline int security_socket_recvmsg(struct socket * sock,
struct msghdr * msg, int size,
int flags)
{
return 0;
}
static inline int security_socket_getsockname(struct socket * sock)
{
return 0;
}
static inline int security_socket_getpeername(struct socket * sock)
{
return 0;
}
static inline int security_socket_getsockopt(struct socket * sock,
int level, int optname)
{
return 0;
}
static inline int security_socket_setsockopt(struct socket * sock,
int level, int optname)
{
return 0;
}
static inline int security_socket_shutdown(struct socket * sock, int how)
{
return 0;
}
static inline int security_sock_rcv_skb (struct sock * sk,
struct sk_buff * skb)
{
return 0;
}
static inline int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
int __user *optlen, unsigned len)
{
return -ENOPROTOOPT;
}
static inline int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
{
return -ENOPROTOOPT;
}
static inline int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
{
return 0;
}
static inline void security_sk_free(struct sock *sk)
{
}
static inline void security_sk_clone(const struct sock *sk, struct sock *newsk)
{
}
static inline void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
{
}
static inline void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
{
}
static inline void security_sock_graft(struct sock* sk, struct socket *parent)
{
}
static inline int security_inet_conn_request(struct sock *sk,
struct sk_buff *skb, struct request_sock *req)
{
return 0;
}
static inline void security_inet_csk_clone(struct sock *newsk,
const struct request_sock *req)
{
}
#endif /* CONFIG_SECURITY_NETWORK */
#ifdef CONFIG_SECURITY_NETWORK_XFRM
static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
{
return security_ops->xfrm_policy_alloc_security(xp, sec_ctx, NULL);
}
static inline int security_xfrm_sock_policy_alloc(struct xfrm_policy *xp, struct sock *sk)
{
return security_ops->xfrm_policy_alloc_security(xp, NULL, sk);
}
static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
{
return security_ops->xfrm_policy_clone_security(old, new);
}
static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
{
security_ops->xfrm_policy_free_security(xp);
}
static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
{
return security_ops->xfrm_policy_delete_security(xp);
}
static inline int security_xfrm_state_alloc(struct xfrm_state *x,
struct xfrm_user_sec_ctx *sec_ctx)
{
return security_ops->xfrm_state_alloc_security(x, sec_ctx, NULL, 0);
}
static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
struct xfrm_sec_ctx *polsec, u32 secid)
{
if (!polsec)
return 0;
return security_ops->xfrm_state_alloc_security(x, NULL, polsec, secid);
}
static inline int security_xfrm_state_delete(struct xfrm_state *x)
{
return security_ops->xfrm_state_delete_security(x);
}
static inline void security_xfrm_state_free(struct xfrm_state *x)
{
security_ops->xfrm_state_free_security(x);
}
static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
{
return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
}
static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
struct xfrm_policy *xp, struct flowi *fl)
{
return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
}
static inline int security_xfrm_flow_state_match(struct flowi *fl, struct xfrm_state *xfrm)
{
return security_ops->xfrm_flow_state_match(fl, xfrm);
}
static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
{
return security_ops->xfrm_decode_session(skb, secid, 1);
}
static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
{
int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
BUG_ON(rc);
}
#else /* CONFIG_SECURITY_NETWORK_XFRM */
static inline int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
{
return 0;
}
static inline int security_xfrm_sock_policy_alloc(struct xfrm_policy *xp, struct sock *sk)
{
return 0;
}
static inline int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
{
return 0;
}
static inline void security_xfrm_policy_free(struct xfrm_policy *xp)
{
}
static inline int security_xfrm_policy_delete(struct xfrm_policy *xp)
{
return 0;
}
static inline int security_xfrm_state_alloc(struct xfrm_state *x,
struct xfrm_user_sec_ctx *sec_ctx)
{
return 0;
}
static inline int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
struct xfrm_sec_ctx *polsec, u32 secid)
{
return 0;
}
static inline void security_xfrm_state_free(struct xfrm_state *x)
{
}
static inline int security_xfrm_state_delete(struct xfrm_state *x)
{
return 0;
}
static inline int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
{
return 0;
}
static inline int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
struct xfrm_policy *xp, struct flowi *fl)
{
return 1;
}
static inline int security_xfrm_flow_state_match(struct flowi *fl,
struct xfrm_state *xfrm)
{
return 1;
}
static inline int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
{
return 0;
}
static inline void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
{
}
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
#ifdef CONFIG_KEYS
#ifdef CONFIG_SECURITY
static inline int security_key_alloc(struct key *key,
struct task_struct *tsk,
unsigned long flags)
{
return security_ops->key_alloc(key, tsk, flags);
}
static inline void security_key_free(struct key *key)
{
security_ops->key_free(key);
}
static inline int security_key_permission(key_ref_t key_ref,
struct task_struct *context,
key_perm_t perm)
{
return security_ops->key_permission(key_ref, context, perm);
}
#else
static inline int security_key_alloc(struct key *key,
struct task_struct *tsk,
unsigned long flags)
{
return 0;
}
static inline void security_key_free(struct key *key)
{
}
static inline int security_key_permission(key_ref_t key_ref,
struct task_struct *context,
key_perm_t perm)
{
return 0;
}
#endif
#endif /* CONFIG_KEYS */
#endif /* ! __LINUX_SECURITY_H */