mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 08:53:18 +07:00
1835 lines
50 KiB
C
1835 lines
50 KiB
C
/****************************************************************************
|
|
* Driver for Solarflare Solarstorm network controllers and boards
|
|
* Copyright 2005-2006 Fen Systems Ltd.
|
|
* Copyright 2006-2009 Solarflare Communications Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/module.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/mii.h>
|
|
#include <linux/slab.h>
|
|
#include "net_driver.h"
|
|
#include "bitfield.h"
|
|
#include "efx.h"
|
|
#include "mac.h"
|
|
#include "spi.h"
|
|
#include "nic.h"
|
|
#include "regs.h"
|
|
#include "io.h"
|
|
#include "mdio_10g.h"
|
|
#include "phy.h"
|
|
#include "workarounds.h"
|
|
|
|
/* Hardware control for SFC4000 (aka Falcon). */
|
|
|
|
static const unsigned int
|
|
/* "Large" EEPROM device: Atmel AT25640 or similar
|
|
* 8 KB, 16-bit address, 32 B write block */
|
|
large_eeprom_type = ((13 << SPI_DEV_TYPE_SIZE_LBN)
|
|
| (2 << SPI_DEV_TYPE_ADDR_LEN_LBN)
|
|
| (5 << SPI_DEV_TYPE_BLOCK_SIZE_LBN)),
|
|
/* Default flash device: Atmel AT25F1024
|
|
* 128 KB, 24-bit address, 32 KB erase block, 256 B write block */
|
|
default_flash_type = ((17 << SPI_DEV_TYPE_SIZE_LBN)
|
|
| (3 << SPI_DEV_TYPE_ADDR_LEN_LBN)
|
|
| (0x52 << SPI_DEV_TYPE_ERASE_CMD_LBN)
|
|
| (15 << SPI_DEV_TYPE_ERASE_SIZE_LBN)
|
|
| (8 << SPI_DEV_TYPE_BLOCK_SIZE_LBN));
|
|
|
|
/**************************************************************************
|
|
*
|
|
* I2C bus - this is a bit-bashing interface using GPIO pins
|
|
* Note that it uses the output enables to tristate the outputs
|
|
* SDA is the data pin and SCL is the clock
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
static void falcon_setsda(void *data, int state)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
efx_reado(efx, ®, FR_AB_GPIO_CTL);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO3_OEN, !state);
|
|
efx_writeo(efx, ®, FR_AB_GPIO_CTL);
|
|
}
|
|
|
|
static void falcon_setscl(void *data, int state)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
efx_reado(efx, ®, FR_AB_GPIO_CTL);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AB_GPIO0_OEN, !state);
|
|
efx_writeo(efx, ®, FR_AB_GPIO_CTL);
|
|
}
|
|
|
|
static int falcon_getsda(void *data)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
efx_reado(efx, ®, FR_AB_GPIO_CTL);
|
|
return EFX_OWORD_FIELD(reg, FRF_AB_GPIO3_IN);
|
|
}
|
|
|
|
static int falcon_getscl(void *data)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)data;
|
|
efx_oword_t reg;
|
|
|
|
efx_reado(efx, ®, FR_AB_GPIO_CTL);
|
|
return EFX_OWORD_FIELD(reg, FRF_AB_GPIO0_IN);
|
|
}
|
|
|
|
static struct i2c_algo_bit_data falcon_i2c_bit_operations = {
|
|
.setsda = falcon_setsda,
|
|
.setscl = falcon_setscl,
|
|
.getsda = falcon_getsda,
|
|
.getscl = falcon_getscl,
|
|
.udelay = 5,
|
|
/* Wait up to 50 ms for slave to let us pull SCL high */
|
|
.timeout = DIV_ROUND_UP(HZ, 20),
|
|
};
|
|
|
|
static void falcon_push_irq_moderation(struct efx_channel *channel)
|
|
{
|
|
efx_dword_t timer_cmd;
|
|
struct efx_nic *efx = channel->efx;
|
|
|
|
/* Set timer register */
|
|
if (channel->irq_moderation) {
|
|
EFX_POPULATE_DWORD_2(timer_cmd,
|
|
FRF_AB_TC_TIMER_MODE,
|
|
FFE_BB_TIMER_MODE_INT_HLDOFF,
|
|
FRF_AB_TC_TIMER_VAL,
|
|
channel->irq_moderation - 1);
|
|
} else {
|
|
EFX_POPULATE_DWORD_2(timer_cmd,
|
|
FRF_AB_TC_TIMER_MODE,
|
|
FFE_BB_TIMER_MODE_DIS,
|
|
FRF_AB_TC_TIMER_VAL, 0);
|
|
}
|
|
BUILD_BUG_ON(FR_AA_TIMER_COMMAND_KER != FR_BZ_TIMER_COMMAND_P0);
|
|
efx_writed_page_locked(efx, &timer_cmd, FR_BZ_TIMER_COMMAND_P0,
|
|
channel->channel);
|
|
}
|
|
|
|
static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx);
|
|
|
|
static void falcon_prepare_flush(struct efx_nic *efx)
|
|
{
|
|
falcon_deconfigure_mac_wrapper(efx);
|
|
|
|
/* Wait for the tx and rx fifo's to get to the next packet boundary
|
|
* (~1ms without back-pressure), then to drain the remainder of the
|
|
* fifo's at data path speeds (negligible), with a healthy margin. */
|
|
msleep(10);
|
|
}
|
|
|
|
/* Acknowledge a legacy interrupt from Falcon
|
|
*
|
|
* This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG.
|
|
*
|
|
* Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the
|
|
* BIU. Interrupt acknowledge is read sensitive so must write instead
|
|
* (then read to ensure the BIU collector is flushed)
|
|
*
|
|
* NB most hardware supports MSI interrupts
|
|
*/
|
|
inline void falcon_irq_ack_a1(struct efx_nic *efx)
|
|
{
|
|
efx_dword_t reg;
|
|
|
|
EFX_POPULATE_DWORD_1(reg, FRF_AA_INT_ACK_KER_FIELD, 0xb7eb7e);
|
|
efx_writed(efx, ®, FR_AA_INT_ACK_KER);
|
|
efx_readd(efx, ®, FR_AA_WORK_AROUND_BROKEN_PCI_READS);
|
|
}
|
|
|
|
|
|
irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id)
|
|
{
|
|
struct efx_nic *efx = dev_id;
|
|
efx_oword_t *int_ker = efx->irq_status.addr;
|
|
struct efx_channel *channel;
|
|
int syserr;
|
|
int queues;
|
|
|
|
/* Check to see if this is our interrupt. If it isn't, we
|
|
* exit without having touched the hardware.
|
|
*/
|
|
if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) {
|
|
EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq,
|
|
raw_smp_processor_id());
|
|
return IRQ_NONE;
|
|
}
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
|
EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
|
|
irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
|
|
|
|
/* Determine interrupting queues, clear interrupt status
|
|
* register and acknowledge the device interrupt.
|
|
*/
|
|
BUILD_BUG_ON(FSF_AZ_NET_IVEC_INT_Q_WIDTH > EFX_MAX_CHANNELS);
|
|
queues = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_INT_Q);
|
|
|
|
/* Check to see if we have a serious error condition */
|
|
if (queues & (1U << efx->fatal_irq_level)) {
|
|
syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
|
|
if (unlikely(syserr))
|
|
return efx_nic_fatal_interrupt(efx);
|
|
}
|
|
|
|
EFX_ZERO_OWORD(*int_ker);
|
|
wmb(); /* Ensure the vector is cleared before interrupt ack */
|
|
falcon_irq_ack_a1(efx);
|
|
|
|
/* Schedule processing of any interrupting queues */
|
|
channel = &efx->channel[0];
|
|
while (queues) {
|
|
if (queues & 0x01)
|
|
efx_schedule_channel(channel);
|
|
channel++;
|
|
queues >>= 1;
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
/**************************************************************************
|
|
*
|
|
* EEPROM/flash
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
#define FALCON_SPI_MAX_LEN sizeof(efx_oword_t)
|
|
|
|
static int falcon_spi_poll(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t reg;
|
|
efx_reado(efx, ®, FR_AB_EE_SPI_HCMD);
|
|
return EFX_OWORD_FIELD(reg, FRF_AB_EE_SPI_HCMD_CMD_EN) ? -EBUSY : 0;
|
|
}
|
|
|
|
/* Wait for SPI command completion */
|
|
static int falcon_spi_wait(struct efx_nic *efx)
|
|
{
|
|
/* Most commands will finish quickly, so we start polling at
|
|
* very short intervals. Sometimes the command may have to
|
|
* wait for VPD or expansion ROM access outside of our
|
|
* control, so we allow up to 100 ms. */
|
|
unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 10);
|
|
int i;
|
|
|
|
for (i = 0; i < 10; i++) {
|
|
if (!falcon_spi_poll(efx))
|
|
return 0;
|
|
udelay(10);
|
|
}
|
|
|
|
for (;;) {
|
|
if (!falcon_spi_poll(efx))
|
|
return 0;
|
|
if (time_after_eq(jiffies, timeout)) {
|
|
EFX_ERR(efx, "timed out waiting for SPI\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
}
|
|
|
|
int falcon_spi_cmd(struct efx_nic *efx, const struct efx_spi_device *spi,
|
|
unsigned int command, int address,
|
|
const void *in, void *out, size_t len)
|
|
{
|
|
bool addressed = (address >= 0);
|
|
bool reading = (out != NULL);
|
|
efx_oword_t reg;
|
|
int rc;
|
|
|
|
/* Input validation */
|
|
if (len > FALCON_SPI_MAX_LEN)
|
|
return -EINVAL;
|
|
BUG_ON(!mutex_is_locked(&efx->spi_lock));
|
|
|
|
/* Check that previous command is not still running */
|
|
rc = falcon_spi_poll(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Program address register, if we have an address */
|
|
if (addressed) {
|
|
EFX_POPULATE_OWORD_1(reg, FRF_AB_EE_SPI_HADR_ADR, address);
|
|
efx_writeo(efx, ®, FR_AB_EE_SPI_HADR);
|
|
}
|
|
|
|
/* Program data register, if we have data */
|
|
if (in != NULL) {
|
|
memcpy(®, in, len);
|
|
efx_writeo(efx, ®, FR_AB_EE_SPI_HDATA);
|
|
}
|
|
|
|
/* Issue read/write command */
|
|
EFX_POPULATE_OWORD_7(reg,
|
|
FRF_AB_EE_SPI_HCMD_CMD_EN, 1,
|
|
FRF_AB_EE_SPI_HCMD_SF_SEL, spi->device_id,
|
|
FRF_AB_EE_SPI_HCMD_DABCNT, len,
|
|
FRF_AB_EE_SPI_HCMD_READ, reading,
|
|
FRF_AB_EE_SPI_HCMD_DUBCNT, 0,
|
|
FRF_AB_EE_SPI_HCMD_ADBCNT,
|
|
(addressed ? spi->addr_len : 0),
|
|
FRF_AB_EE_SPI_HCMD_ENC, command);
|
|
efx_writeo(efx, ®, FR_AB_EE_SPI_HCMD);
|
|
|
|
/* Wait for read/write to complete */
|
|
rc = falcon_spi_wait(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Read data */
|
|
if (out != NULL) {
|
|
efx_reado(efx, ®, FR_AB_EE_SPI_HDATA);
|
|
memcpy(out, ®, len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static size_t
|
|
falcon_spi_write_limit(const struct efx_spi_device *spi, size_t start)
|
|
{
|
|
return min(FALCON_SPI_MAX_LEN,
|
|
(spi->block_size - (start & (spi->block_size - 1))));
|
|
}
|
|
|
|
static inline u8
|
|
efx_spi_munge_command(const struct efx_spi_device *spi,
|
|
const u8 command, const unsigned int address)
|
|
{
|
|
return command | (((address >> 8) & spi->munge_address) << 3);
|
|
}
|
|
|
|
/* Wait up to 10 ms for buffered write completion */
|
|
int
|
|
falcon_spi_wait_write(struct efx_nic *efx, const struct efx_spi_device *spi)
|
|
{
|
|
unsigned long timeout = jiffies + 1 + DIV_ROUND_UP(HZ, 100);
|
|
u8 status;
|
|
int rc;
|
|
|
|
for (;;) {
|
|
rc = falcon_spi_cmd(efx, spi, SPI_RDSR, -1, NULL,
|
|
&status, sizeof(status));
|
|
if (rc)
|
|
return rc;
|
|
if (!(status & SPI_STATUS_NRDY))
|
|
return 0;
|
|
if (time_after_eq(jiffies, timeout)) {
|
|
EFX_ERR(efx, "SPI write timeout on device %d"
|
|
" last status=0x%02x\n",
|
|
spi->device_id, status);
|
|
return -ETIMEDOUT;
|
|
}
|
|
schedule_timeout_uninterruptible(1);
|
|
}
|
|
}
|
|
|
|
int falcon_spi_read(struct efx_nic *efx, const struct efx_spi_device *spi,
|
|
loff_t start, size_t len, size_t *retlen, u8 *buffer)
|
|
{
|
|
size_t block_len, pos = 0;
|
|
unsigned int command;
|
|
int rc = 0;
|
|
|
|
while (pos < len) {
|
|
block_len = min(len - pos, FALCON_SPI_MAX_LEN);
|
|
|
|
command = efx_spi_munge_command(spi, SPI_READ, start + pos);
|
|
rc = falcon_spi_cmd(efx, spi, command, start + pos, NULL,
|
|
buffer + pos, block_len);
|
|
if (rc)
|
|
break;
|
|
pos += block_len;
|
|
|
|
/* Avoid locking up the system */
|
|
cond_resched();
|
|
if (signal_pending(current)) {
|
|
rc = -EINTR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (retlen)
|
|
*retlen = pos;
|
|
return rc;
|
|
}
|
|
|
|
int
|
|
falcon_spi_write(struct efx_nic *efx, const struct efx_spi_device *spi,
|
|
loff_t start, size_t len, size_t *retlen, const u8 *buffer)
|
|
{
|
|
u8 verify_buffer[FALCON_SPI_MAX_LEN];
|
|
size_t block_len, pos = 0;
|
|
unsigned int command;
|
|
int rc = 0;
|
|
|
|
while (pos < len) {
|
|
rc = falcon_spi_cmd(efx, spi, SPI_WREN, -1, NULL, NULL, 0);
|
|
if (rc)
|
|
break;
|
|
|
|
block_len = min(len - pos,
|
|
falcon_spi_write_limit(spi, start + pos));
|
|
command = efx_spi_munge_command(spi, SPI_WRITE, start + pos);
|
|
rc = falcon_spi_cmd(efx, spi, command, start + pos,
|
|
buffer + pos, NULL, block_len);
|
|
if (rc)
|
|
break;
|
|
|
|
rc = falcon_spi_wait_write(efx, spi);
|
|
if (rc)
|
|
break;
|
|
|
|
command = efx_spi_munge_command(spi, SPI_READ, start + pos);
|
|
rc = falcon_spi_cmd(efx, spi, command, start + pos,
|
|
NULL, verify_buffer, block_len);
|
|
if (memcmp(verify_buffer, buffer + pos, block_len)) {
|
|
rc = -EIO;
|
|
break;
|
|
}
|
|
|
|
pos += block_len;
|
|
|
|
/* Avoid locking up the system */
|
|
cond_resched();
|
|
if (signal_pending(current)) {
|
|
rc = -EINTR;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (retlen)
|
|
*retlen = pos;
|
|
return rc;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* MAC wrapper
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
static void falcon_push_multicast_hash(struct efx_nic *efx)
|
|
{
|
|
union efx_multicast_hash *mc_hash = &efx->multicast_hash;
|
|
|
|
WARN_ON(!mutex_is_locked(&efx->mac_lock));
|
|
|
|
efx_writeo(efx, &mc_hash->oword[0], FR_AB_MAC_MC_HASH_REG0);
|
|
efx_writeo(efx, &mc_hash->oword[1], FR_AB_MAC_MC_HASH_REG1);
|
|
}
|
|
|
|
static void falcon_reset_macs(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
efx_oword_t reg, mac_ctrl;
|
|
int count;
|
|
|
|
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
|
|
/* It's not safe to use GLB_CTL_REG to reset the
|
|
* macs, so instead use the internal MAC resets
|
|
*/
|
|
if (!EFX_IS10G(efx)) {
|
|
EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 1);
|
|
efx_writeo(efx, ®, FR_AB_GM_CFG1);
|
|
udelay(1000);
|
|
|
|
EFX_POPULATE_OWORD_1(reg, FRF_AB_GM_SW_RST, 0);
|
|
efx_writeo(efx, ®, FR_AB_GM_CFG1);
|
|
udelay(1000);
|
|
return;
|
|
} else {
|
|
EFX_POPULATE_OWORD_1(reg, FRF_AB_XM_CORE_RST, 1);
|
|
efx_writeo(efx, ®, FR_AB_XM_GLB_CFG);
|
|
|
|
for (count = 0; count < 10000; count++) {
|
|
efx_reado(efx, ®, FR_AB_XM_GLB_CFG);
|
|
if (EFX_OWORD_FIELD(reg, FRF_AB_XM_CORE_RST) ==
|
|
0)
|
|
return;
|
|
udelay(10);
|
|
}
|
|
|
|
EFX_ERR(efx, "timed out waiting for XMAC core reset\n");
|
|
}
|
|
}
|
|
|
|
/* Mac stats will fail whist the TX fifo is draining */
|
|
WARN_ON(nic_data->stats_disable_count == 0);
|
|
|
|
efx_reado(efx, &mac_ctrl, FR_AB_MAC_CTRL);
|
|
EFX_SET_OWORD_FIELD(mac_ctrl, FRF_BB_TXFIFO_DRAIN_EN, 1);
|
|
efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
|
|
|
|
efx_reado(efx, ®, FR_AB_GLB_CTL);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGTX, 1);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_XGRX, 1);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AB_RST_EM, 1);
|
|
efx_writeo(efx, ®, FR_AB_GLB_CTL);
|
|
|
|
count = 0;
|
|
while (1) {
|
|
efx_reado(efx, ®, FR_AB_GLB_CTL);
|
|
if (!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGTX) &&
|
|
!EFX_OWORD_FIELD(reg, FRF_AB_RST_XGRX) &&
|
|
!EFX_OWORD_FIELD(reg, FRF_AB_RST_EM)) {
|
|
EFX_LOG(efx, "Completed MAC reset after %d loops\n",
|
|
count);
|
|
break;
|
|
}
|
|
if (count > 20) {
|
|
EFX_ERR(efx, "MAC reset failed\n");
|
|
break;
|
|
}
|
|
count++;
|
|
udelay(10);
|
|
}
|
|
|
|
/* Ensure the correct MAC is selected before statistics
|
|
* are re-enabled by the caller */
|
|
efx_writeo(efx, &mac_ctrl, FR_AB_MAC_CTRL);
|
|
|
|
/* This can run even when the GMAC is selected */
|
|
falcon_setup_xaui(efx);
|
|
}
|
|
|
|
void falcon_drain_tx_fifo(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t reg;
|
|
|
|
if ((efx_nic_rev(efx) < EFX_REV_FALCON_B0) ||
|
|
(efx->loopback_mode != LOOPBACK_NONE))
|
|
return;
|
|
|
|
efx_reado(efx, ®, FR_AB_MAC_CTRL);
|
|
/* There is no point in draining more than once */
|
|
if (EFX_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN))
|
|
return;
|
|
|
|
falcon_reset_macs(efx);
|
|
}
|
|
|
|
static void falcon_deconfigure_mac_wrapper(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t reg;
|
|
|
|
if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
|
|
return;
|
|
|
|
/* Isolate the MAC -> RX */
|
|
efx_reado(efx, ®, FR_AZ_RX_CFG);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 0);
|
|
efx_writeo(efx, ®, FR_AZ_RX_CFG);
|
|
|
|
/* Isolate TX -> MAC */
|
|
falcon_drain_tx_fifo(efx);
|
|
}
|
|
|
|
void falcon_reconfigure_mac_wrapper(struct efx_nic *efx)
|
|
{
|
|
struct efx_link_state *link_state = &efx->link_state;
|
|
efx_oword_t reg;
|
|
int link_speed;
|
|
|
|
switch (link_state->speed) {
|
|
case 10000: link_speed = 3; break;
|
|
case 1000: link_speed = 2; break;
|
|
case 100: link_speed = 1; break;
|
|
default: link_speed = 0; break;
|
|
}
|
|
/* MAC_LINK_STATUS controls MAC backpressure but doesn't work
|
|
* as advertised. Disable to ensure packets are not
|
|
* indefinitely held and TX queue can be flushed at any point
|
|
* while the link is down. */
|
|
EFX_POPULATE_OWORD_5(reg,
|
|
FRF_AB_MAC_XOFF_VAL, 0xffff /* max pause time */,
|
|
FRF_AB_MAC_BCAD_ACPT, 1,
|
|
FRF_AB_MAC_UC_PROM, efx->promiscuous,
|
|
FRF_AB_MAC_LINK_STATUS, 1, /* always set */
|
|
FRF_AB_MAC_SPEED, link_speed);
|
|
/* On B0, MAC backpressure can be disabled and packets get
|
|
* discarded. */
|
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BB_TXFIFO_DRAIN_EN,
|
|
!link_state->up);
|
|
}
|
|
|
|
efx_writeo(efx, ®, FR_AB_MAC_CTRL);
|
|
|
|
/* Restore the multicast hash registers. */
|
|
falcon_push_multicast_hash(efx);
|
|
|
|
efx_reado(efx, ®, FR_AZ_RX_CFG);
|
|
/* Enable XOFF signal from RX FIFO (we enabled it during NIC
|
|
* initialisation but it may read back as 0) */
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
|
|
/* Unisolate the MAC -> RX */
|
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
|
|
efx_writeo(efx, ®, FR_AZ_RX_CFG);
|
|
}
|
|
|
|
static void falcon_stats_request(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
efx_oword_t reg;
|
|
|
|
WARN_ON(nic_data->stats_pending);
|
|
WARN_ON(nic_data->stats_disable_count);
|
|
|
|
if (nic_data->stats_dma_done == NULL)
|
|
return; /* no mac selected */
|
|
|
|
*nic_data->stats_dma_done = FALCON_STATS_NOT_DONE;
|
|
nic_data->stats_pending = true;
|
|
wmb(); /* ensure done flag is clear */
|
|
|
|
/* Initiate DMA transfer of stats */
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
FRF_AB_MAC_STAT_DMA_CMD, 1,
|
|
FRF_AB_MAC_STAT_DMA_ADR,
|
|
efx->stats_buffer.dma_addr);
|
|
efx_writeo(efx, ®, FR_AB_MAC_STAT_DMA);
|
|
|
|
mod_timer(&nic_data->stats_timer, round_jiffies_up(jiffies + HZ / 2));
|
|
}
|
|
|
|
static void falcon_stats_complete(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
|
|
if (!nic_data->stats_pending)
|
|
return;
|
|
|
|
nic_data->stats_pending = 0;
|
|
if (*nic_data->stats_dma_done == FALCON_STATS_DONE) {
|
|
rmb(); /* read the done flag before the stats */
|
|
efx->mac_op->update_stats(efx);
|
|
} else {
|
|
EFX_ERR(efx, "timed out waiting for statistics\n");
|
|
}
|
|
}
|
|
|
|
static void falcon_stats_timer_func(unsigned long context)
|
|
{
|
|
struct efx_nic *efx = (struct efx_nic *)context;
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
|
|
spin_lock(&efx->stats_lock);
|
|
|
|
falcon_stats_complete(efx);
|
|
if (nic_data->stats_disable_count == 0)
|
|
falcon_stats_request(efx);
|
|
|
|
spin_unlock(&efx->stats_lock);
|
|
}
|
|
|
|
static void falcon_switch_mac(struct efx_nic *efx);
|
|
|
|
static bool falcon_loopback_link_poll(struct efx_nic *efx)
|
|
{
|
|
struct efx_link_state old_state = efx->link_state;
|
|
|
|
WARN_ON(!mutex_is_locked(&efx->mac_lock));
|
|
WARN_ON(!LOOPBACK_INTERNAL(efx));
|
|
|
|
efx->link_state.fd = true;
|
|
efx->link_state.fc = efx->wanted_fc;
|
|
efx->link_state.up = true;
|
|
|
|
if (efx->loopback_mode == LOOPBACK_GMAC)
|
|
efx->link_state.speed = 1000;
|
|
else
|
|
efx->link_state.speed = 10000;
|
|
|
|
return !efx_link_state_equal(&efx->link_state, &old_state);
|
|
}
|
|
|
|
static int falcon_reconfigure_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
WARN_ON(efx_nic_rev(efx) > EFX_REV_FALCON_B0);
|
|
|
|
/* Poll the PHY link state *before* reconfiguring it. This means we
|
|
* will pick up the correct speed (in loopback) to select the correct
|
|
* MAC.
|
|
*/
|
|
if (LOOPBACK_INTERNAL(efx))
|
|
falcon_loopback_link_poll(efx);
|
|
else
|
|
efx->phy_op->poll(efx);
|
|
|
|
falcon_stop_nic_stats(efx);
|
|
falcon_deconfigure_mac_wrapper(efx);
|
|
|
|
falcon_switch_mac(efx);
|
|
|
|
efx->phy_op->reconfigure(efx);
|
|
rc = efx->mac_op->reconfigure(efx);
|
|
BUG_ON(rc);
|
|
|
|
falcon_start_nic_stats(efx);
|
|
|
|
/* Synchronise efx->link_state with the kernel */
|
|
efx_link_status_changed(efx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* PHY access via GMII
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
/* Wait for GMII access to complete */
|
|
static int falcon_gmii_wait(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t md_stat;
|
|
int count;
|
|
|
|
/* wait upto 50ms - taken max from datasheet */
|
|
for (count = 0; count < 5000; count++) {
|
|
efx_reado(efx, &md_stat, FR_AB_MD_STAT);
|
|
if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSY) == 0) {
|
|
if (EFX_OWORD_FIELD(md_stat, FRF_AB_MD_LNFL) != 0 ||
|
|
EFX_OWORD_FIELD(md_stat, FRF_AB_MD_BSERR) != 0) {
|
|
EFX_ERR(efx, "error from GMII access "
|
|
EFX_OWORD_FMT"\n",
|
|
EFX_OWORD_VAL(md_stat));
|
|
return -EIO;
|
|
}
|
|
return 0;
|
|
}
|
|
udelay(10);
|
|
}
|
|
EFX_ERR(efx, "timed out waiting for GMII\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
/* Write an MDIO register of a PHY connected to Falcon. */
|
|
static int falcon_mdio_write(struct net_device *net_dev,
|
|
int prtad, int devad, u16 addr, u16 value)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
efx_oword_t reg;
|
|
int rc;
|
|
|
|
EFX_REGDUMP(efx, "writing MDIO %d register %d.%d with 0x%04x\n",
|
|
prtad, devad, addr, value);
|
|
|
|
mutex_lock(&efx->mdio_lock);
|
|
|
|
/* Check MDIO not currently being accessed */
|
|
rc = falcon_gmii_wait(efx);
|
|
if (rc)
|
|
goto out;
|
|
|
|
/* Write the address/ID register */
|
|
EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
|
|
efx_writeo(efx, ®, FR_AB_MD_PHY_ADR);
|
|
|
|
EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
|
|
FRF_AB_MD_DEV_ADR, devad);
|
|
efx_writeo(efx, ®, FR_AB_MD_ID);
|
|
|
|
/* Write data */
|
|
EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_TXD, value);
|
|
efx_writeo(efx, ®, FR_AB_MD_TXD);
|
|
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
FRF_AB_MD_WRC, 1,
|
|
FRF_AB_MD_GC, 0);
|
|
efx_writeo(efx, ®, FR_AB_MD_CS);
|
|
|
|
/* Wait for data to be written */
|
|
rc = falcon_gmii_wait(efx);
|
|
if (rc) {
|
|
/* Abort the write operation */
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
FRF_AB_MD_WRC, 0,
|
|
FRF_AB_MD_GC, 1);
|
|
efx_writeo(efx, ®, FR_AB_MD_CS);
|
|
udelay(10);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&efx->mdio_lock);
|
|
return rc;
|
|
}
|
|
|
|
/* Read an MDIO register of a PHY connected to Falcon. */
|
|
static int falcon_mdio_read(struct net_device *net_dev,
|
|
int prtad, int devad, u16 addr)
|
|
{
|
|
struct efx_nic *efx = netdev_priv(net_dev);
|
|
efx_oword_t reg;
|
|
int rc;
|
|
|
|
mutex_lock(&efx->mdio_lock);
|
|
|
|
/* Check MDIO not currently being accessed */
|
|
rc = falcon_gmii_wait(efx);
|
|
if (rc)
|
|
goto out;
|
|
|
|
EFX_POPULATE_OWORD_1(reg, FRF_AB_MD_PHY_ADR, addr);
|
|
efx_writeo(efx, ®, FR_AB_MD_PHY_ADR);
|
|
|
|
EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_PRT_ADR, prtad,
|
|
FRF_AB_MD_DEV_ADR, devad);
|
|
efx_writeo(efx, ®, FR_AB_MD_ID);
|
|
|
|
/* Request data to be read */
|
|
EFX_POPULATE_OWORD_2(reg, FRF_AB_MD_RDC, 1, FRF_AB_MD_GC, 0);
|
|
efx_writeo(efx, ®, FR_AB_MD_CS);
|
|
|
|
/* Wait for data to become available */
|
|
rc = falcon_gmii_wait(efx);
|
|
if (rc == 0) {
|
|
efx_reado(efx, ®, FR_AB_MD_RXD);
|
|
rc = EFX_OWORD_FIELD(reg, FRF_AB_MD_RXD);
|
|
EFX_REGDUMP(efx, "read from MDIO %d register %d.%d, got %04x\n",
|
|
prtad, devad, addr, rc);
|
|
} else {
|
|
/* Abort the read operation */
|
|
EFX_POPULATE_OWORD_2(reg,
|
|
FRF_AB_MD_RIC, 0,
|
|
FRF_AB_MD_GC, 1);
|
|
efx_writeo(efx, ®, FR_AB_MD_CS);
|
|
|
|
EFX_LOG(efx, "read from MDIO %d register %d.%d, got error %d\n",
|
|
prtad, devad, addr, rc);
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&efx->mdio_lock);
|
|
return rc;
|
|
}
|
|
|
|
static void falcon_clock_mac(struct efx_nic *efx)
|
|
{
|
|
unsigned strap_val;
|
|
efx_oword_t nic_stat;
|
|
|
|
/* Configure the NIC generated MAC clock correctly */
|
|
efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
|
|
strap_val = EFX_IS10G(efx) ? 5 : 3;
|
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
|
|
EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP_EN, 1);
|
|
EFX_SET_OWORD_FIELD(nic_stat, FRF_BB_EE_STRAP, strap_val);
|
|
efx_writeo(efx, &nic_stat, FR_AB_NIC_STAT);
|
|
} else {
|
|
/* Falcon A1 does not support 1G/10G speed switching
|
|
* and must not be used with a PHY that does. */
|
|
BUG_ON(EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_PINS) !=
|
|
strap_val);
|
|
}
|
|
}
|
|
|
|
static void falcon_switch_mac(struct efx_nic *efx)
|
|
{
|
|
struct efx_mac_operations *old_mac_op = efx->mac_op;
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
unsigned int stats_done_offset;
|
|
|
|
WARN_ON(!mutex_is_locked(&efx->mac_lock));
|
|
WARN_ON(nic_data->stats_disable_count == 0);
|
|
|
|
efx->mac_op = (EFX_IS10G(efx) ?
|
|
&falcon_xmac_operations : &falcon_gmac_operations);
|
|
|
|
if (EFX_IS10G(efx))
|
|
stats_done_offset = XgDmaDone_offset;
|
|
else
|
|
stats_done_offset = GDmaDone_offset;
|
|
nic_data->stats_dma_done = efx->stats_buffer.addr + stats_done_offset;
|
|
|
|
if (old_mac_op == efx->mac_op)
|
|
return;
|
|
|
|
falcon_clock_mac(efx);
|
|
|
|
EFX_LOG(efx, "selected %cMAC\n", EFX_IS10G(efx) ? 'X' : 'G');
|
|
/* Not all macs support a mac-level link state */
|
|
efx->xmac_poll_required = false;
|
|
falcon_reset_macs(efx);
|
|
}
|
|
|
|
/* This call is responsible for hooking in the MAC and PHY operations */
|
|
static int falcon_probe_port(struct efx_nic *efx)
|
|
{
|
|
int rc;
|
|
|
|
switch (efx->phy_type) {
|
|
case PHY_TYPE_SFX7101:
|
|
efx->phy_op = &falcon_sfx7101_phy_ops;
|
|
break;
|
|
case PHY_TYPE_SFT9001A:
|
|
case PHY_TYPE_SFT9001B:
|
|
efx->phy_op = &falcon_sft9001_phy_ops;
|
|
break;
|
|
case PHY_TYPE_QT2022C2:
|
|
case PHY_TYPE_QT2025C:
|
|
efx->phy_op = &falcon_qt202x_phy_ops;
|
|
break;
|
|
default:
|
|
EFX_ERR(efx, "Unknown PHY type %d\n",
|
|
efx->phy_type);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Fill out MDIO structure and loopback modes */
|
|
efx->mdio.mdio_read = falcon_mdio_read;
|
|
efx->mdio.mdio_write = falcon_mdio_write;
|
|
rc = efx->phy_op->probe(efx);
|
|
if (rc != 0)
|
|
return rc;
|
|
|
|
/* Initial assumption */
|
|
efx->link_state.speed = 10000;
|
|
efx->link_state.fd = true;
|
|
|
|
/* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */
|
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
|
|
efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
|
|
else
|
|
efx->wanted_fc = EFX_FC_RX;
|
|
if (efx->mdio.mmds & MDIO_DEVS_AN)
|
|
efx->wanted_fc |= EFX_FC_AUTO;
|
|
|
|
/* Allocate buffer for stats */
|
|
rc = efx_nic_alloc_buffer(efx, &efx->stats_buffer,
|
|
FALCON_MAC_STATS_SIZE);
|
|
if (rc)
|
|
return rc;
|
|
EFX_LOG(efx, "stats buffer at %llx (virt %p phys %llx)\n",
|
|
(u64)efx->stats_buffer.dma_addr,
|
|
efx->stats_buffer.addr,
|
|
(u64)virt_to_phys(efx->stats_buffer.addr));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void falcon_remove_port(struct efx_nic *efx)
|
|
{
|
|
efx->phy_op->remove(efx);
|
|
efx_nic_free_buffer(efx, &efx->stats_buffer);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Falcon test code
|
|
*
|
|
**************************************************************************/
|
|
|
|
static int
|
|
falcon_read_nvram(struct efx_nic *efx, struct falcon_nvconfig *nvconfig_out)
|
|
{
|
|
struct falcon_nvconfig *nvconfig;
|
|
struct efx_spi_device *spi;
|
|
void *region;
|
|
int rc, magic_num, struct_ver;
|
|
__le16 *word, *limit;
|
|
u32 csum;
|
|
|
|
spi = efx->spi_flash ? efx->spi_flash : efx->spi_eeprom;
|
|
if (!spi)
|
|
return -EINVAL;
|
|
|
|
region = kmalloc(FALCON_NVCONFIG_END, GFP_KERNEL);
|
|
if (!region)
|
|
return -ENOMEM;
|
|
nvconfig = region + FALCON_NVCONFIG_OFFSET;
|
|
|
|
mutex_lock(&efx->spi_lock);
|
|
rc = falcon_spi_read(efx, spi, 0, FALCON_NVCONFIG_END, NULL, region);
|
|
mutex_unlock(&efx->spi_lock);
|
|
if (rc) {
|
|
EFX_ERR(efx, "Failed to read %s\n",
|
|
efx->spi_flash ? "flash" : "EEPROM");
|
|
rc = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
magic_num = le16_to_cpu(nvconfig->board_magic_num);
|
|
struct_ver = le16_to_cpu(nvconfig->board_struct_ver);
|
|
|
|
rc = -EINVAL;
|
|
if (magic_num != FALCON_NVCONFIG_BOARD_MAGIC_NUM) {
|
|
EFX_ERR(efx, "NVRAM bad magic 0x%x\n", magic_num);
|
|
goto out;
|
|
}
|
|
if (struct_ver < 2) {
|
|
EFX_ERR(efx, "NVRAM has ancient version 0x%x\n", struct_ver);
|
|
goto out;
|
|
} else if (struct_ver < 4) {
|
|
word = &nvconfig->board_magic_num;
|
|
limit = (__le16 *) (nvconfig + 1);
|
|
} else {
|
|
word = region;
|
|
limit = region + FALCON_NVCONFIG_END;
|
|
}
|
|
for (csum = 0; word < limit; ++word)
|
|
csum += le16_to_cpu(*word);
|
|
|
|
if (~csum & 0xffff) {
|
|
EFX_ERR(efx, "NVRAM has incorrect checksum\n");
|
|
goto out;
|
|
}
|
|
|
|
rc = 0;
|
|
if (nvconfig_out)
|
|
memcpy(nvconfig_out, nvconfig, sizeof(*nvconfig));
|
|
|
|
out:
|
|
kfree(region);
|
|
return rc;
|
|
}
|
|
|
|
static int falcon_test_nvram(struct efx_nic *efx)
|
|
{
|
|
return falcon_read_nvram(efx, NULL);
|
|
}
|
|
|
|
static const struct efx_nic_register_test falcon_b0_register_tests[] = {
|
|
{ FR_AZ_ADR_REGION,
|
|
EFX_OWORD32(0x0003FFFF, 0x0003FFFF, 0x0003FFFF, 0x0003FFFF) },
|
|
{ FR_AZ_RX_CFG,
|
|
EFX_OWORD32(0xFFFFFFFE, 0x00017FFF, 0x00000000, 0x00000000) },
|
|
{ FR_AZ_TX_CFG,
|
|
EFX_OWORD32(0x7FFF0037, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AZ_TX_RESERVED,
|
|
EFX_OWORD32(0xFFFEFE80, 0x1FFFFFFF, 0x020000FE, 0x007FFFFF) },
|
|
{ FR_AB_MAC_CTRL,
|
|
EFX_OWORD32(0xFFFF0000, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AZ_SRM_TX_DC_CFG,
|
|
EFX_OWORD32(0x001FFFFF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AZ_RX_DC_CFG,
|
|
EFX_OWORD32(0x0000000F, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AZ_RX_DC_PF_WM,
|
|
EFX_OWORD32(0x000003FF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_BZ_DP_CTRL,
|
|
EFX_OWORD32(0x00000FFF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AB_GM_CFG2,
|
|
EFX_OWORD32(0x00007337, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AB_GMF_CFG0,
|
|
EFX_OWORD32(0x00001F1F, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AB_XM_GLB_CFG,
|
|
EFX_OWORD32(0x00000C68, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AB_XM_TX_CFG,
|
|
EFX_OWORD32(0x00080164, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AB_XM_RX_CFG,
|
|
EFX_OWORD32(0x07100A0C, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AB_XM_RX_PARAM,
|
|
EFX_OWORD32(0x00001FF8, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AB_XM_FC,
|
|
EFX_OWORD32(0xFFFF0001, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AB_XM_ADR_LO,
|
|
EFX_OWORD32(0xFFFFFFFF, 0x00000000, 0x00000000, 0x00000000) },
|
|
{ FR_AB_XX_SD_CTL,
|
|
EFX_OWORD32(0x0003FF0F, 0x00000000, 0x00000000, 0x00000000) },
|
|
};
|
|
|
|
static int falcon_b0_test_registers(struct efx_nic *efx)
|
|
{
|
|
return efx_nic_test_registers(efx, falcon_b0_register_tests,
|
|
ARRAY_SIZE(falcon_b0_register_tests));
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Device reset
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
/* Resets NIC to known state. This routine must be called in process
|
|
* context and is allowed to sleep. */
|
|
static int falcon_reset_hw(struct efx_nic *efx, enum reset_type method)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
efx_oword_t glb_ctl_reg_ker;
|
|
int rc;
|
|
|
|
EFX_LOG(efx, "performing %s hardware reset\n", RESET_TYPE(method));
|
|
|
|
/* Initiate device reset */
|
|
if (method == RESET_TYPE_WORLD) {
|
|
rc = pci_save_state(efx->pci_dev);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to backup PCI state of primary "
|
|
"function prior to hardware reset\n");
|
|
goto fail1;
|
|
}
|
|
if (efx_nic_is_dual_func(efx)) {
|
|
rc = pci_save_state(nic_data->pci_dev2);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to backup PCI state of "
|
|
"secondary function prior to "
|
|
"hardware reset\n");
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
EFX_POPULATE_OWORD_2(glb_ctl_reg_ker,
|
|
FRF_AB_EXT_PHY_RST_DUR,
|
|
FFE_AB_EXT_PHY_RST_DUR_10240US,
|
|
FRF_AB_SWRST, 1);
|
|
} else {
|
|
EFX_POPULATE_OWORD_7(glb_ctl_reg_ker,
|
|
/* exclude PHY from "invisible" reset */
|
|
FRF_AB_EXT_PHY_RST_CTL,
|
|
method == RESET_TYPE_INVISIBLE,
|
|
/* exclude EEPROM/flash and PCIe */
|
|
FRF_AB_PCIE_CORE_RST_CTL, 1,
|
|
FRF_AB_PCIE_NSTKY_RST_CTL, 1,
|
|
FRF_AB_PCIE_SD_RST_CTL, 1,
|
|
FRF_AB_EE_RST_CTL, 1,
|
|
FRF_AB_EXT_PHY_RST_DUR,
|
|
FFE_AB_EXT_PHY_RST_DUR_10240US,
|
|
FRF_AB_SWRST, 1);
|
|
}
|
|
efx_writeo(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
|
|
|
|
EFX_LOG(efx, "waiting for hardware reset\n");
|
|
schedule_timeout_uninterruptible(HZ / 20);
|
|
|
|
/* Restore PCI configuration if needed */
|
|
if (method == RESET_TYPE_WORLD) {
|
|
if (efx_nic_is_dual_func(efx)) {
|
|
rc = pci_restore_state(nic_data->pci_dev2);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to restore PCI config for "
|
|
"the secondary function\n");
|
|
goto fail3;
|
|
}
|
|
}
|
|
rc = pci_restore_state(efx->pci_dev);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to restore PCI config for the "
|
|
"primary function\n");
|
|
goto fail4;
|
|
}
|
|
EFX_LOG(efx, "successfully restored PCI config\n");
|
|
}
|
|
|
|
/* Assert that reset complete */
|
|
efx_reado(efx, &glb_ctl_reg_ker, FR_AB_GLB_CTL);
|
|
if (EFX_OWORD_FIELD(glb_ctl_reg_ker, FRF_AB_SWRST) != 0) {
|
|
rc = -ETIMEDOUT;
|
|
EFX_ERR(efx, "timed out waiting for hardware reset\n");
|
|
goto fail5;
|
|
}
|
|
EFX_LOG(efx, "hardware reset complete\n");
|
|
|
|
return 0;
|
|
|
|
/* pci_save_state() and pci_restore_state() MUST be called in pairs */
|
|
fail2:
|
|
fail3:
|
|
pci_restore_state(efx->pci_dev);
|
|
fail1:
|
|
fail4:
|
|
fail5:
|
|
return rc;
|
|
}
|
|
|
|
static void falcon_monitor(struct efx_nic *efx)
|
|
{
|
|
bool link_changed;
|
|
int rc;
|
|
|
|
BUG_ON(!mutex_is_locked(&efx->mac_lock));
|
|
|
|
rc = falcon_board(efx)->type->monitor(efx);
|
|
if (rc) {
|
|
EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
|
|
(rc == -ERANGE) ? "reported fault" : "failed");
|
|
efx->phy_mode |= PHY_MODE_LOW_POWER;
|
|
rc = __efx_reconfigure_port(efx);
|
|
WARN_ON(rc);
|
|
}
|
|
|
|
if (LOOPBACK_INTERNAL(efx))
|
|
link_changed = falcon_loopback_link_poll(efx);
|
|
else
|
|
link_changed = efx->phy_op->poll(efx);
|
|
|
|
if (link_changed) {
|
|
falcon_stop_nic_stats(efx);
|
|
falcon_deconfigure_mac_wrapper(efx);
|
|
|
|
falcon_switch_mac(efx);
|
|
rc = efx->mac_op->reconfigure(efx);
|
|
BUG_ON(rc);
|
|
|
|
falcon_start_nic_stats(efx);
|
|
|
|
efx_link_status_changed(efx);
|
|
}
|
|
|
|
if (EFX_IS10G(efx))
|
|
falcon_poll_xmac(efx);
|
|
}
|
|
|
|
/* Zeroes out the SRAM contents. This routine must be called in
|
|
* process context and is allowed to sleep.
|
|
*/
|
|
static int falcon_reset_sram(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker;
|
|
int count;
|
|
|
|
/* Set the SRAM wake/sleep GPIO appropriately. */
|
|
efx_reado(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
|
|
EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OEN, 1);
|
|
EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, FRF_AB_GPIO1_OUT, 1);
|
|
efx_writeo(efx, &gpio_cfg_reg_ker, FR_AB_GPIO_CTL);
|
|
|
|
/* Initiate SRAM reset */
|
|
EFX_POPULATE_OWORD_2(srm_cfg_reg_ker,
|
|
FRF_AZ_SRM_INIT_EN, 1,
|
|
FRF_AZ_SRM_NB_SZ, 0);
|
|
efx_writeo(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
|
|
|
|
/* Wait for SRAM reset to complete */
|
|
count = 0;
|
|
do {
|
|
EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count);
|
|
|
|
/* SRAM reset is slow; expect around 16ms */
|
|
schedule_timeout_uninterruptible(HZ / 50);
|
|
|
|
/* Check for reset complete */
|
|
efx_reado(efx, &srm_cfg_reg_ker, FR_AZ_SRM_CFG);
|
|
if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, FRF_AZ_SRM_INIT_EN)) {
|
|
EFX_LOG(efx, "SRAM reset complete\n");
|
|
|
|
return 0;
|
|
}
|
|
} while (++count < 20); /* wait upto 0.4 sec */
|
|
|
|
EFX_ERR(efx, "timed out waiting for SRAM reset\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
static int falcon_spi_device_init(struct efx_nic *efx,
|
|
struct efx_spi_device **spi_device_ret,
|
|
unsigned int device_id, u32 device_type)
|
|
{
|
|
struct efx_spi_device *spi_device;
|
|
|
|
if (device_type != 0) {
|
|
spi_device = kzalloc(sizeof(*spi_device), GFP_KERNEL);
|
|
if (!spi_device)
|
|
return -ENOMEM;
|
|
spi_device->device_id = device_id;
|
|
spi_device->size =
|
|
1 << SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_SIZE);
|
|
spi_device->addr_len =
|
|
SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ADDR_LEN);
|
|
spi_device->munge_address = (spi_device->size == 1 << 9 &&
|
|
spi_device->addr_len == 1);
|
|
spi_device->erase_command =
|
|
SPI_DEV_TYPE_FIELD(device_type, SPI_DEV_TYPE_ERASE_CMD);
|
|
spi_device->erase_size =
|
|
1 << SPI_DEV_TYPE_FIELD(device_type,
|
|
SPI_DEV_TYPE_ERASE_SIZE);
|
|
spi_device->block_size =
|
|
1 << SPI_DEV_TYPE_FIELD(device_type,
|
|
SPI_DEV_TYPE_BLOCK_SIZE);
|
|
} else {
|
|
spi_device = NULL;
|
|
}
|
|
|
|
kfree(*spi_device_ret);
|
|
*spi_device_ret = spi_device;
|
|
return 0;
|
|
}
|
|
|
|
static void falcon_remove_spi_devices(struct efx_nic *efx)
|
|
{
|
|
kfree(efx->spi_eeprom);
|
|
efx->spi_eeprom = NULL;
|
|
kfree(efx->spi_flash);
|
|
efx->spi_flash = NULL;
|
|
}
|
|
|
|
/* Extract non-volatile configuration */
|
|
static int falcon_probe_nvconfig(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nvconfig *nvconfig;
|
|
int board_rev;
|
|
int rc;
|
|
|
|
nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL);
|
|
if (!nvconfig)
|
|
return -ENOMEM;
|
|
|
|
rc = falcon_read_nvram(efx, nvconfig);
|
|
if (rc == -EINVAL) {
|
|
EFX_ERR(efx, "NVRAM is invalid therefore using defaults\n");
|
|
efx->phy_type = PHY_TYPE_NONE;
|
|
efx->mdio.prtad = MDIO_PRTAD_NONE;
|
|
board_rev = 0;
|
|
rc = 0;
|
|
} else if (rc) {
|
|
goto fail1;
|
|
} else {
|
|
struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2;
|
|
struct falcon_nvconfig_board_v3 *v3 = &nvconfig->board_v3;
|
|
|
|
efx->phy_type = v2->port0_phy_type;
|
|
efx->mdio.prtad = v2->port0_phy_addr;
|
|
board_rev = le16_to_cpu(v2->board_revision);
|
|
|
|
if (le16_to_cpu(nvconfig->board_struct_ver) >= 3) {
|
|
rc = falcon_spi_device_init(
|
|
efx, &efx->spi_flash, FFE_AB_SPI_DEVICE_FLASH,
|
|
le32_to_cpu(v3->spi_device_type
|
|
[FFE_AB_SPI_DEVICE_FLASH]));
|
|
if (rc)
|
|
goto fail2;
|
|
rc = falcon_spi_device_init(
|
|
efx, &efx->spi_eeprom, FFE_AB_SPI_DEVICE_EEPROM,
|
|
le32_to_cpu(v3->spi_device_type
|
|
[FFE_AB_SPI_DEVICE_EEPROM]));
|
|
if (rc)
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
/* Read the MAC addresses */
|
|
memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN);
|
|
|
|
EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mdio.prtad);
|
|
|
|
rc = falcon_probe_board(efx, board_rev);
|
|
if (rc)
|
|
goto fail2;
|
|
|
|
kfree(nvconfig);
|
|
return 0;
|
|
|
|
fail2:
|
|
falcon_remove_spi_devices(efx);
|
|
fail1:
|
|
kfree(nvconfig);
|
|
return rc;
|
|
}
|
|
|
|
/* Probe all SPI devices on the NIC */
|
|
static void falcon_probe_spi_devices(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t nic_stat, gpio_ctl, ee_vpd_cfg;
|
|
int boot_dev;
|
|
|
|
efx_reado(efx, &gpio_ctl, FR_AB_GPIO_CTL);
|
|
efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
|
|
efx_reado(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
|
|
|
|
if (EFX_OWORD_FIELD(gpio_ctl, FRF_AB_GPIO3_PWRUP_VALUE)) {
|
|
boot_dev = (EFX_OWORD_FIELD(nic_stat, FRF_AB_SF_PRST) ?
|
|
FFE_AB_SPI_DEVICE_FLASH : FFE_AB_SPI_DEVICE_EEPROM);
|
|
EFX_LOG(efx, "Booted from %s\n",
|
|
boot_dev == FFE_AB_SPI_DEVICE_FLASH ? "flash" : "EEPROM");
|
|
} else {
|
|
/* Disable VPD and set clock dividers to safe
|
|
* values for initial programming. */
|
|
boot_dev = -1;
|
|
EFX_LOG(efx, "Booted from internal ASIC settings;"
|
|
" setting SPI config\n");
|
|
EFX_POPULATE_OWORD_3(ee_vpd_cfg, FRF_AB_EE_VPD_EN, 0,
|
|
/* 125 MHz / 7 ~= 20 MHz */
|
|
FRF_AB_EE_SF_CLOCK_DIV, 7,
|
|
/* 125 MHz / 63 ~= 2 MHz */
|
|
FRF_AB_EE_EE_CLOCK_DIV, 63);
|
|
efx_writeo(efx, &ee_vpd_cfg, FR_AB_EE_VPD_CFG0);
|
|
}
|
|
|
|
if (boot_dev == FFE_AB_SPI_DEVICE_FLASH)
|
|
falcon_spi_device_init(efx, &efx->spi_flash,
|
|
FFE_AB_SPI_DEVICE_FLASH,
|
|
default_flash_type);
|
|
if (boot_dev == FFE_AB_SPI_DEVICE_EEPROM)
|
|
falcon_spi_device_init(efx, &efx->spi_eeprom,
|
|
FFE_AB_SPI_DEVICE_EEPROM,
|
|
large_eeprom_type);
|
|
}
|
|
|
|
static int falcon_probe_nic(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data;
|
|
struct falcon_board *board;
|
|
int rc;
|
|
|
|
/* Allocate storage for hardware specific data */
|
|
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
|
|
if (!nic_data)
|
|
return -ENOMEM;
|
|
efx->nic_data = nic_data;
|
|
|
|
rc = -ENODEV;
|
|
|
|
if (efx_nic_fpga_ver(efx) != 0) {
|
|
EFX_ERR(efx, "Falcon FPGA not supported\n");
|
|
goto fail1;
|
|
}
|
|
|
|
if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
|
|
efx_oword_t nic_stat;
|
|
struct pci_dev *dev;
|
|
u8 pci_rev = efx->pci_dev->revision;
|
|
|
|
if ((pci_rev == 0xff) || (pci_rev == 0)) {
|
|
EFX_ERR(efx, "Falcon rev A0 not supported\n");
|
|
goto fail1;
|
|
}
|
|
efx_reado(efx, &nic_stat, FR_AB_NIC_STAT);
|
|
if (EFX_OWORD_FIELD(nic_stat, FRF_AB_STRAP_10G) == 0) {
|
|
EFX_ERR(efx, "Falcon rev A1 1G not supported\n");
|
|
goto fail1;
|
|
}
|
|
if (EFX_OWORD_FIELD(nic_stat, FRF_AA_STRAP_PCIE) == 0) {
|
|
EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n");
|
|
goto fail1;
|
|
}
|
|
|
|
dev = pci_dev_get(efx->pci_dev);
|
|
while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID,
|
|
dev))) {
|
|
if (dev->bus == efx->pci_dev->bus &&
|
|
dev->devfn == efx->pci_dev->devfn + 1) {
|
|
nic_data->pci_dev2 = dev;
|
|
break;
|
|
}
|
|
}
|
|
if (!nic_data->pci_dev2) {
|
|
EFX_ERR(efx, "failed to find secondary function\n");
|
|
rc = -ENODEV;
|
|
goto fail2;
|
|
}
|
|
}
|
|
|
|
/* Now we can reset the NIC */
|
|
rc = falcon_reset_hw(efx, RESET_TYPE_ALL);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to reset NIC\n");
|
|
goto fail3;
|
|
}
|
|
|
|
/* Allocate memory for INT_KER */
|
|
rc = efx_nic_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t));
|
|
if (rc)
|
|
goto fail4;
|
|
BUG_ON(efx->irq_status.dma_addr & 0x0f);
|
|
|
|
EFX_LOG(efx, "INT_KER at %llx (virt %p phys %llx)\n",
|
|
(u64)efx->irq_status.dma_addr,
|
|
efx->irq_status.addr, (u64)virt_to_phys(efx->irq_status.addr));
|
|
|
|
falcon_probe_spi_devices(efx);
|
|
|
|
/* Read in the non-volatile configuration */
|
|
rc = falcon_probe_nvconfig(efx);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
/* Initialise I2C adapter */
|
|
board = falcon_board(efx);
|
|
board->i2c_adap.owner = THIS_MODULE;
|
|
board->i2c_data = falcon_i2c_bit_operations;
|
|
board->i2c_data.data = efx;
|
|
board->i2c_adap.algo_data = &board->i2c_data;
|
|
board->i2c_adap.dev.parent = &efx->pci_dev->dev;
|
|
strlcpy(board->i2c_adap.name, "SFC4000 GPIO",
|
|
sizeof(board->i2c_adap.name));
|
|
rc = i2c_bit_add_bus(&board->i2c_adap);
|
|
if (rc)
|
|
goto fail5;
|
|
|
|
rc = falcon_board(efx)->type->init(efx);
|
|
if (rc) {
|
|
EFX_ERR(efx, "failed to initialise board\n");
|
|
goto fail6;
|
|
}
|
|
|
|
nic_data->stats_disable_count = 1;
|
|
setup_timer(&nic_data->stats_timer, &falcon_stats_timer_func,
|
|
(unsigned long)efx);
|
|
|
|
return 0;
|
|
|
|
fail6:
|
|
BUG_ON(i2c_del_adapter(&board->i2c_adap));
|
|
memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
|
|
fail5:
|
|
falcon_remove_spi_devices(efx);
|
|
efx_nic_free_buffer(efx, &efx->irq_status);
|
|
fail4:
|
|
fail3:
|
|
if (nic_data->pci_dev2) {
|
|
pci_dev_put(nic_data->pci_dev2);
|
|
nic_data->pci_dev2 = NULL;
|
|
}
|
|
fail2:
|
|
fail1:
|
|
kfree(efx->nic_data);
|
|
return rc;
|
|
}
|
|
|
|
static void falcon_init_rx_cfg(struct efx_nic *efx)
|
|
{
|
|
/* Prior to Siena the RX DMA engine will split each frame at
|
|
* intervals of RX_USR_BUF_SIZE (32-byte units). We set it to
|
|
* be so large that that never happens. */
|
|
const unsigned huge_buf_size = (3 * 4096) >> 5;
|
|
/* RX control FIFO thresholds (32 entries) */
|
|
const unsigned ctrl_xon_thr = 20;
|
|
const unsigned ctrl_xoff_thr = 25;
|
|
/* RX data FIFO thresholds (256-byte units; size varies) */
|
|
int data_xon_thr = efx_nic_rx_xon_thresh >> 8;
|
|
int data_xoff_thr = efx_nic_rx_xoff_thresh >> 8;
|
|
efx_oword_t reg;
|
|
|
|
efx_reado(efx, ®, FR_AZ_RX_CFG);
|
|
if (efx_nic_rev(efx) <= EFX_REV_FALCON_A1) {
|
|
/* Data FIFO size is 5.5K */
|
|
if (data_xon_thr < 0)
|
|
data_xon_thr = 512 >> 8;
|
|
if (data_xoff_thr < 0)
|
|
data_xoff_thr = 2048 >> 8;
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_DESC_PUSH_EN, 0);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_USR_BUF_SIZE,
|
|
huge_buf_size);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_MAC_TH, data_xon_thr);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_MAC_TH, data_xoff_thr);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XON_TX_TH, ctrl_xon_thr);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AA_RX_XOFF_TX_TH, ctrl_xoff_thr);
|
|
} else {
|
|
/* Data FIFO size is 80K; register fields moved */
|
|
if (data_xon_thr < 0)
|
|
data_xon_thr = 27648 >> 8; /* ~3*max MTU */
|
|
if (data_xoff_thr < 0)
|
|
data_xoff_thr = 54272 >> 8; /* ~80Kb - 3*max MTU */
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_DESC_PUSH_EN, 0);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_USR_BUF_SIZE,
|
|
huge_buf_size);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_MAC_TH, data_xon_thr);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_MAC_TH, data_xoff_thr);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XON_TX_TH, ctrl_xon_thr);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_XOFF_TX_TH, ctrl_xoff_thr);
|
|
EFX_SET_OWORD_FIELD(reg, FRF_BZ_RX_INGR_EN, 1);
|
|
}
|
|
/* Always enable XOFF signal from RX FIFO. We enable
|
|
* or disable transmission of pause frames at the MAC. */
|
|
EFX_SET_OWORD_FIELD(reg, FRF_AZ_RX_XOFF_MAC_EN, 1);
|
|
efx_writeo(efx, ®, FR_AZ_RX_CFG);
|
|
}
|
|
|
|
/* This call performs hardware-specific global initialisation, such as
|
|
* defining the descriptor cache sizes and number of RSS channels.
|
|
* It does not set up any buffers, descriptor rings or event queues.
|
|
*/
|
|
static int falcon_init_nic(struct efx_nic *efx)
|
|
{
|
|
efx_oword_t temp;
|
|
int rc;
|
|
|
|
/* Use on-chip SRAM */
|
|
efx_reado(efx, &temp, FR_AB_NIC_STAT);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AB_ONCHIP_SRAM, 1);
|
|
efx_writeo(efx, &temp, FR_AB_NIC_STAT);
|
|
|
|
/* Set the source of the GMAC clock */
|
|
if (efx_nic_rev(efx) == EFX_REV_FALCON_B0) {
|
|
efx_reado(efx, &temp, FR_AB_GPIO_CTL);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AB_USE_NIC_CLK, true);
|
|
efx_writeo(efx, &temp, FR_AB_GPIO_CTL);
|
|
}
|
|
|
|
/* Select the correct MAC */
|
|
falcon_clock_mac(efx);
|
|
|
|
rc = falcon_reset_sram(efx);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Clear the parity enables on the TX data fifos as
|
|
* they produce false parity errors because of timing issues
|
|
*/
|
|
if (EFX_WORKAROUND_5129(efx)) {
|
|
efx_reado(efx, &temp, FR_AZ_CSR_SPARE);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AB_MEM_PERR_EN_TX_DATA, 0);
|
|
efx_writeo(efx, &temp, FR_AZ_CSR_SPARE);
|
|
}
|
|
|
|
if (EFX_WORKAROUND_7244(efx)) {
|
|
efx_reado(efx, &temp, FR_BZ_RX_FILTER_CTL);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_FULL_SRCH_LIMIT, 8);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_UDP_WILD_SRCH_LIMIT, 8);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_FULL_SRCH_LIMIT, 8);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_BZ_TCP_WILD_SRCH_LIMIT, 8);
|
|
efx_writeo(efx, &temp, FR_BZ_RX_FILTER_CTL);
|
|
}
|
|
|
|
/* XXX This is documented only for Falcon A0/A1 */
|
|
/* Setup RX. Wait for descriptor is broken and must
|
|
* be disabled. RXDP recovery shouldn't be needed, but is.
|
|
*/
|
|
efx_reado(efx, &temp, FR_AA_RX_SELF_RST);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_NODESC_WAIT_DIS, 1);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_SELF_RST_EN, 1);
|
|
if (EFX_WORKAROUND_5583(efx))
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AA_RX_ISCSI_DIS, 1);
|
|
efx_writeo(efx, &temp, FR_AA_RX_SELF_RST);
|
|
|
|
/* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16
|
|
* descriptors (which is bad).
|
|
*/
|
|
efx_reado(efx, &temp, FR_AZ_TX_CFG);
|
|
EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_NO_EOP_DISC_EN, 0);
|
|
efx_writeo(efx, &temp, FR_AZ_TX_CFG);
|
|
|
|
falcon_init_rx_cfg(efx);
|
|
|
|
/* Set destination of both TX and RX Flush events */
|
|
if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
|
|
EFX_POPULATE_OWORD_1(temp, FRF_BZ_FLS_EVQ_ID, 0);
|
|
efx_writeo(efx, &temp, FR_BZ_DP_CTRL);
|
|
}
|
|
|
|
efx_nic_init_common(efx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void falcon_remove_nic(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
struct falcon_board *board = falcon_board(efx);
|
|
int rc;
|
|
|
|
board->type->fini(efx);
|
|
|
|
/* Remove I2C adapter and clear it in preparation for a retry */
|
|
rc = i2c_del_adapter(&board->i2c_adap);
|
|
BUG_ON(rc);
|
|
memset(&board->i2c_adap, 0, sizeof(board->i2c_adap));
|
|
|
|
falcon_remove_spi_devices(efx);
|
|
efx_nic_free_buffer(efx, &efx->irq_status);
|
|
|
|
falcon_reset_hw(efx, RESET_TYPE_ALL);
|
|
|
|
/* Release the second function after the reset */
|
|
if (nic_data->pci_dev2) {
|
|
pci_dev_put(nic_data->pci_dev2);
|
|
nic_data->pci_dev2 = NULL;
|
|
}
|
|
|
|
/* Tear down the private nic state */
|
|
kfree(efx->nic_data);
|
|
efx->nic_data = NULL;
|
|
}
|
|
|
|
static void falcon_update_nic_stats(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
efx_oword_t cnt;
|
|
|
|
if (nic_data->stats_disable_count)
|
|
return;
|
|
|
|
efx_reado(efx, &cnt, FR_AZ_RX_NODESC_DROP);
|
|
efx->n_rx_nodesc_drop_cnt +=
|
|
EFX_OWORD_FIELD(cnt, FRF_AB_RX_NODESC_DROP_CNT);
|
|
|
|
if (nic_data->stats_pending &&
|
|
*nic_data->stats_dma_done == FALCON_STATS_DONE) {
|
|
nic_data->stats_pending = false;
|
|
rmb(); /* read the done flag before the stats */
|
|
efx->mac_op->update_stats(efx);
|
|
}
|
|
}
|
|
|
|
void falcon_start_nic_stats(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
|
|
spin_lock_bh(&efx->stats_lock);
|
|
if (--nic_data->stats_disable_count == 0)
|
|
falcon_stats_request(efx);
|
|
spin_unlock_bh(&efx->stats_lock);
|
|
}
|
|
|
|
void falcon_stop_nic_stats(struct efx_nic *efx)
|
|
{
|
|
struct falcon_nic_data *nic_data = efx->nic_data;
|
|
int i;
|
|
|
|
might_sleep();
|
|
|
|
spin_lock_bh(&efx->stats_lock);
|
|
++nic_data->stats_disable_count;
|
|
spin_unlock_bh(&efx->stats_lock);
|
|
|
|
del_timer_sync(&nic_data->stats_timer);
|
|
|
|
/* Wait enough time for the most recent transfer to
|
|
* complete. */
|
|
for (i = 0; i < 4 && nic_data->stats_pending; i++) {
|
|
if (*nic_data->stats_dma_done == FALCON_STATS_DONE)
|
|
break;
|
|
msleep(1);
|
|
}
|
|
|
|
spin_lock_bh(&efx->stats_lock);
|
|
falcon_stats_complete(efx);
|
|
spin_unlock_bh(&efx->stats_lock);
|
|
}
|
|
|
|
static void falcon_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
|
|
{
|
|
falcon_board(efx)->type->set_id_led(efx, mode);
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Wake on LAN
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
static void falcon_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
|
|
{
|
|
wol->supported = 0;
|
|
wol->wolopts = 0;
|
|
memset(&wol->sopass, 0, sizeof(wol->sopass));
|
|
}
|
|
|
|
static int falcon_set_wol(struct efx_nic *efx, u32 type)
|
|
{
|
|
if (type != 0)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/**************************************************************************
|
|
*
|
|
* Revision-dependent attributes used by efx.c and nic.c
|
|
*
|
|
**************************************************************************
|
|
*/
|
|
|
|
struct efx_nic_type falcon_a1_nic_type = {
|
|
.probe = falcon_probe_nic,
|
|
.remove = falcon_remove_nic,
|
|
.init = falcon_init_nic,
|
|
.fini = efx_port_dummy_op_void,
|
|
.monitor = falcon_monitor,
|
|
.reset = falcon_reset_hw,
|
|
.probe_port = falcon_probe_port,
|
|
.remove_port = falcon_remove_port,
|
|
.prepare_flush = falcon_prepare_flush,
|
|
.update_stats = falcon_update_nic_stats,
|
|
.start_stats = falcon_start_nic_stats,
|
|
.stop_stats = falcon_stop_nic_stats,
|
|
.set_id_led = falcon_set_id_led,
|
|
.push_irq_moderation = falcon_push_irq_moderation,
|
|
.push_multicast_hash = falcon_push_multicast_hash,
|
|
.reconfigure_port = falcon_reconfigure_port,
|
|
.get_wol = falcon_get_wol,
|
|
.set_wol = falcon_set_wol,
|
|
.resume_wol = efx_port_dummy_op_void,
|
|
.test_nvram = falcon_test_nvram,
|
|
.default_mac_ops = &falcon_xmac_operations,
|
|
|
|
.revision = EFX_REV_FALCON_A1,
|
|
.mem_map_size = 0x20000,
|
|
.txd_ptr_tbl_base = FR_AA_TX_DESC_PTR_TBL_KER,
|
|
.rxd_ptr_tbl_base = FR_AA_RX_DESC_PTR_TBL_KER,
|
|
.buf_tbl_base = FR_AA_BUF_FULL_TBL_KER,
|
|
.evq_ptr_tbl_base = FR_AA_EVQ_PTR_TBL_KER,
|
|
.evq_rptr_tbl_base = FR_AA_EVQ_RPTR_KER,
|
|
.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
|
|
.rx_buffer_padding = 0x24,
|
|
.max_interrupt_mode = EFX_INT_MODE_MSI,
|
|
.phys_addr_channels = 4,
|
|
.tx_dc_base = 0x130000,
|
|
.rx_dc_base = 0x100000,
|
|
.offload_features = NETIF_F_IP_CSUM,
|
|
.reset_world_flags = ETH_RESET_IRQ,
|
|
};
|
|
|
|
struct efx_nic_type falcon_b0_nic_type = {
|
|
.probe = falcon_probe_nic,
|
|
.remove = falcon_remove_nic,
|
|
.init = falcon_init_nic,
|
|
.fini = efx_port_dummy_op_void,
|
|
.monitor = falcon_monitor,
|
|
.reset = falcon_reset_hw,
|
|
.probe_port = falcon_probe_port,
|
|
.remove_port = falcon_remove_port,
|
|
.prepare_flush = falcon_prepare_flush,
|
|
.update_stats = falcon_update_nic_stats,
|
|
.start_stats = falcon_start_nic_stats,
|
|
.stop_stats = falcon_stop_nic_stats,
|
|
.set_id_led = falcon_set_id_led,
|
|
.push_irq_moderation = falcon_push_irq_moderation,
|
|
.push_multicast_hash = falcon_push_multicast_hash,
|
|
.reconfigure_port = falcon_reconfigure_port,
|
|
.get_wol = falcon_get_wol,
|
|
.set_wol = falcon_set_wol,
|
|
.resume_wol = efx_port_dummy_op_void,
|
|
.test_registers = falcon_b0_test_registers,
|
|
.test_nvram = falcon_test_nvram,
|
|
.default_mac_ops = &falcon_xmac_operations,
|
|
|
|
.revision = EFX_REV_FALCON_B0,
|
|
/* Map everything up to and including the RSS indirection
|
|
* table. Don't map MSI-X table, MSI-X PBA since Linux
|
|
* requires that they not be mapped. */
|
|
.mem_map_size = (FR_BZ_RX_INDIRECTION_TBL +
|
|
FR_BZ_RX_INDIRECTION_TBL_STEP *
|
|
FR_BZ_RX_INDIRECTION_TBL_ROWS),
|
|
.txd_ptr_tbl_base = FR_BZ_TX_DESC_PTR_TBL,
|
|
.rxd_ptr_tbl_base = FR_BZ_RX_DESC_PTR_TBL,
|
|
.buf_tbl_base = FR_BZ_BUF_FULL_TBL,
|
|
.evq_ptr_tbl_base = FR_BZ_EVQ_PTR_TBL,
|
|
.evq_rptr_tbl_base = FR_BZ_EVQ_RPTR,
|
|
.max_dma_mask = DMA_BIT_MASK(FSF_AZ_TX_KER_BUF_ADDR_WIDTH),
|
|
.rx_buffer_padding = 0,
|
|
.max_interrupt_mode = EFX_INT_MODE_MSIX,
|
|
.phys_addr_channels = 32, /* Hardware limit is 64, but the legacy
|
|
* interrupt handler only supports 32
|
|
* channels */
|
|
.tx_dc_base = 0x130000,
|
|
.rx_dc_base = 0x100000,
|
|
.offload_features = NETIF_F_IP_CSUM,
|
|
.reset_world_flags = ETH_RESET_IRQ,
|
|
};
|
|
|