mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 00:59:55 +07:00
ce9426d190
If buffer is to be accessed by cpu after dma is over, but between dma mapping and dma unmapping, we should use dma_sync_single_for_cpu to sync the buffer between cpu with device. And dma_sync_single_for_device is used to let device gain the buffer again. v2: Felix pointed out dma_sync_single_for_device is needed to return buffer to device if an unsuccessful status bit check is found. Signed-off-by: Ming Lei <tom.leiming@gmail.com> Acked-by: Felix Fietkau <nbd@openwrt.org> Signed-off-by: John W. Linville <linville@tuxdriver.com>
1221 lines
32 KiB
C
1221 lines
32 KiB
C
/*
|
|
* Copyright (c) 2008-2009 Atheros Communications Inc.
|
|
*
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
#include "ath9k.h"
|
|
#include "ar9003_mac.h"
|
|
|
|
#define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb))
|
|
|
|
static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
|
|
{
|
|
return sc->ps_enabled &&
|
|
(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
|
|
}
|
|
|
|
static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc,
|
|
struct ieee80211_hdr *hdr)
|
|
{
|
|
struct ieee80211_hw *hw = sc->pri_wiphy->hw;
|
|
int i;
|
|
|
|
spin_lock_bh(&sc->wiphy_lock);
|
|
for (i = 0; i < sc->num_sec_wiphy; i++) {
|
|
struct ath_wiphy *aphy = sc->sec_wiphy[i];
|
|
if (aphy == NULL)
|
|
continue;
|
|
if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr)
|
|
== 0) {
|
|
hw = aphy->hw;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock_bh(&sc->wiphy_lock);
|
|
return hw;
|
|
}
|
|
|
|
/*
|
|
* Setup and link descriptors.
|
|
*
|
|
* 11N: we can no longer afford to self link the last descriptor.
|
|
* MAC acknowledges BA status as long as it copies frames to host
|
|
* buffer (or rx fifo). This can incorrectly acknowledge packets
|
|
* to a sender if last desc is self-linked.
|
|
*/
|
|
static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath_desc *ds;
|
|
struct sk_buff *skb;
|
|
|
|
ATH_RXBUF_RESET(bf);
|
|
|
|
ds = bf->bf_desc;
|
|
ds->ds_link = 0; /* link to null */
|
|
ds->ds_data = bf->bf_buf_addr;
|
|
|
|
/* virtual addr of the beginning of the buffer. */
|
|
skb = bf->bf_mpdu;
|
|
BUG_ON(skb == NULL);
|
|
ds->ds_vdata = skb->data;
|
|
|
|
/*
|
|
* setup rx descriptors. The rx_bufsize here tells the hardware
|
|
* how much data it can DMA to us and that we are prepared
|
|
* to process
|
|
*/
|
|
ath9k_hw_setuprxdesc(ah, ds,
|
|
common->rx_bufsize,
|
|
0);
|
|
|
|
if (sc->rx.rxlink == NULL)
|
|
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
|
|
else
|
|
*sc->rx.rxlink = bf->bf_daddr;
|
|
|
|
sc->rx.rxlink = &ds->ds_link;
|
|
ath9k_hw_rxena(ah);
|
|
}
|
|
|
|
static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
|
|
{
|
|
/* XXX block beacon interrupts */
|
|
ath9k_hw_setantenna(sc->sc_ah, antenna);
|
|
sc->rx.defant = antenna;
|
|
sc->rx.rxotherant = 0;
|
|
}
|
|
|
|
static void ath_opmode_init(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
|
|
u32 rfilt, mfilt[2];
|
|
|
|
/* configure rx filter */
|
|
rfilt = ath_calcrxfilter(sc);
|
|
ath9k_hw_setrxfilter(ah, rfilt);
|
|
|
|
/* configure bssid mask */
|
|
if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
|
|
ath_hw_setbssidmask(common);
|
|
|
|
/* configure operational mode */
|
|
ath9k_hw_setopmode(ah);
|
|
|
|
/* Handle any link-level address change. */
|
|
ath9k_hw_setmac(ah, common->macaddr);
|
|
|
|
/* calculate and install multicast filter */
|
|
mfilt[0] = mfilt[1] = ~0;
|
|
ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
|
|
}
|
|
|
|
static bool ath_rx_edma_buf_link(struct ath_softc *sc,
|
|
enum ath9k_rx_qtype qtype)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_rx_edma *rx_edma;
|
|
struct sk_buff *skb;
|
|
struct ath_buf *bf;
|
|
|
|
rx_edma = &sc->rx.rx_edma[qtype];
|
|
if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
|
|
return false;
|
|
|
|
bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
|
|
list_del_init(&bf->list);
|
|
|
|
skb = bf->bf_mpdu;
|
|
|
|
ATH_RXBUF_RESET(bf);
|
|
memset(skb->data, 0, ah->caps.rx_status_len);
|
|
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
|
|
ah->caps.rx_status_len, DMA_TO_DEVICE);
|
|
|
|
SKB_CB_ATHBUF(skb) = bf;
|
|
ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
|
|
skb_queue_tail(&rx_edma->rx_fifo, skb);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void ath_rx_addbuffer_edma(struct ath_softc *sc,
|
|
enum ath9k_rx_qtype qtype, int size)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
u32 nbuf = 0;
|
|
|
|
if (list_empty(&sc->rx.rxbuf)) {
|
|
ath_print(common, ATH_DBG_QUEUE, "No free rx buf available\n");
|
|
return;
|
|
}
|
|
|
|
while (!list_empty(&sc->rx.rxbuf)) {
|
|
nbuf++;
|
|
|
|
if (!ath_rx_edma_buf_link(sc, qtype))
|
|
break;
|
|
|
|
if (nbuf >= size)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void ath_rx_remove_buffer(struct ath_softc *sc,
|
|
enum ath9k_rx_qtype qtype)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct ath_rx_edma *rx_edma;
|
|
struct sk_buff *skb;
|
|
|
|
rx_edma = &sc->rx.rx_edma[qtype];
|
|
|
|
while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
|
|
bf = SKB_CB_ATHBUF(skb);
|
|
BUG_ON(!bf);
|
|
list_add_tail(&bf->list, &sc->rx.rxbuf);
|
|
}
|
|
}
|
|
|
|
static void ath_rx_edma_cleanup(struct ath_softc *sc)
|
|
{
|
|
struct ath_buf *bf;
|
|
|
|
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
|
|
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
|
|
|
|
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
|
|
if (bf->bf_mpdu)
|
|
dev_kfree_skb_any(bf->bf_mpdu);
|
|
}
|
|
|
|
INIT_LIST_HEAD(&sc->rx.rxbuf);
|
|
|
|
kfree(sc->rx.rx_bufptr);
|
|
sc->rx.rx_bufptr = NULL;
|
|
}
|
|
|
|
static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
|
|
{
|
|
skb_queue_head_init(&rx_edma->rx_fifo);
|
|
skb_queue_head_init(&rx_edma->rx_buffers);
|
|
rx_edma->rx_fifo_hwsize = size;
|
|
}
|
|
|
|
static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct sk_buff *skb;
|
|
struct ath_buf *bf;
|
|
int error = 0, i;
|
|
u32 size;
|
|
|
|
|
|
common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN +
|
|
ah->caps.rx_status_len,
|
|
min(common->cachelsz, (u16)64));
|
|
|
|
ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
|
|
ah->caps.rx_status_len);
|
|
|
|
ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
|
|
ah->caps.rx_lp_qdepth);
|
|
ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
|
|
ah->caps.rx_hp_qdepth);
|
|
|
|
size = sizeof(struct ath_buf) * nbufs;
|
|
bf = kzalloc(size, GFP_KERNEL);
|
|
if (!bf)
|
|
return -ENOMEM;
|
|
|
|
INIT_LIST_HEAD(&sc->rx.rxbuf);
|
|
sc->rx.rx_bufptr = bf;
|
|
|
|
for (i = 0; i < nbufs; i++, bf++) {
|
|
skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
|
|
if (!skb) {
|
|
error = -ENOMEM;
|
|
goto rx_init_fail;
|
|
}
|
|
|
|
memset(skb->data, 0, common->rx_bufsize);
|
|
bf->bf_mpdu = skb;
|
|
|
|
bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
|
|
common->rx_bufsize,
|
|
DMA_BIDIRECTIONAL);
|
|
if (unlikely(dma_mapping_error(sc->dev,
|
|
bf->bf_buf_addr))) {
|
|
dev_kfree_skb_any(skb);
|
|
bf->bf_mpdu = NULL;
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"dma_mapping_error() on RX init\n");
|
|
error = -ENOMEM;
|
|
goto rx_init_fail;
|
|
}
|
|
|
|
list_add_tail(&bf->list, &sc->rx.rxbuf);
|
|
}
|
|
|
|
return 0;
|
|
|
|
rx_init_fail:
|
|
ath_rx_edma_cleanup(sc);
|
|
return error;
|
|
}
|
|
|
|
static void ath_edma_start_recv(struct ath_softc *sc)
|
|
{
|
|
spin_lock_bh(&sc->rx.rxbuflock);
|
|
|
|
ath9k_hw_rxena(sc->sc_ah);
|
|
|
|
ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
|
|
sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
|
|
|
|
ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
|
|
sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
|
|
|
|
spin_unlock_bh(&sc->rx.rxbuflock);
|
|
|
|
ath_opmode_init(sc);
|
|
|
|
ath9k_hw_startpcureceive(sc->sc_ah);
|
|
}
|
|
|
|
static void ath_edma_stop_recv(struct ath_softc *sc)
|
|
{
|
|
spin_lock_bh(&sc->rx.rxbuflock);
|
|
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
|
|
ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
|
|
spin_unlock_bh(&sc->rx.rxbuflock);
|
|
}
|
|
|
|
int ath_rx_init(struct ath_softc *sc, int nbufs)
|
|
{
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
struct sk_buff *skb;
|
|
struct ath_buf *bf;
|
|
int error = 0;
|
|
|
|
spin_lock_init(&sc->rx.rxflushlock);
|
|
sc->sc_flags &= ~SC_OP_RXFLUSH;
|
|
spin_lock_init(&sc->rx.rxbuflock);
|
|
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
|
|
return ath_rx_edma_init(sc, nbufs);
|
|
} else {
|
|
common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN,
|
|
min(common->cachelsz, (u16)64));
|
|
|
|
ath_print(common, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n",
|
|
common->cachelsz, common->rx_bufsize);
|
|
|
|
/* Initialize rx descriptors */
|
|
|
|
error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
|
|
"rx", nbufs, 1, 0);
|
|
if (error != 0) {
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"failed to allocate rx descriptors: %d\n",
|
|
error);
|
|
goto err;
|
|
}
|
|
|
|
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
|
|
skb = ath_rxbuf_alloc(common, common->rx_bufsize,
|
|
GFP_KERNEL);
|
|
if (skb == NULL) {
|
|
error = -ENOMEM;
|
|
goto err;
|
|
}
|
|
|
|
bf->bf_mpdu = skb;
|
|
bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
|
|
common->rx_bufsize,
|
|
DMA_FROM_DEVICE);
|
|
if (unlikely(dma_mapping_error(sc->dev,
|
|
bf->bf_buf_addr))) {
|
|
dev_kfree_skb_any(skb);
|
|
bf->bf_mpdu = NULL;
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"dma_mapping_error() on RX init\n");
|
|
error = -ENOMEM;
|
|
goto err;
|
|
}
|
|
bf->bf_dmacontext = bf->bf_buf_addr;
|
|
}
|
|
sc->rx.rxlink = NULL;
|
|
}
|
|
|
|
err:
|
|
if (error)
|
|
ath_rx_cleanup(sc);
|
|
|
|
return error;
|
|
}
|
|
|
|
void ath_rx_cleanup(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct sk_buff *skb;
|
|
struct ath_buf *bf;
|
|
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
|
|
ath_rx_edma_cleanup(sc);
|
|
return;
|
|
} else {
|
|
list_for_each_entry(bf, &sc->rx.rxbuf, list) {
|
|
skb = bf->bf_mpdu;
|
|
if (skb) {
|
|
dma_unmap_single(sc->dev, bf->bf_buf_addr,
|
|
common->rx_bufsize,
|
|
DMA_FROM_DEVICE);
|
|
dev_kfree_skb(skb);
|
|
}
|
|
}
|
|
|
|
if (sc->rx.rxdma.dd_desc_len != 0)
|
|
ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Calculate the receive filter according to the
|
|
* operating mode and state:
|
|
*
|
|
* o always accept unicast, broadcast, and multicast traffic
|
|
* o maintain current state of phy error reception (the hal
|
|
* may enable phy error frames for noise immunity work)
|
|
* o probe request frames are accepted only when operating in
|
|
* hostap, adhoc, or monitor modes
|
|
* o enable promiscuous mode according to the interface state
|
|
* o accept beacons:
|
|
* - when operating in adhoc mode so the 802.11 layer creates
|
|
* node table entries for peers,
|
|
* - when operating in station mode for collecting rssi data when
|
|
* the station is otherwise quiet, or
|
|
* - when operating as a repeater so we see repeater-sta beacons
|
|
* - when scanning
|
|
*/
|
|
|
|
u32 ath_calcrxfilter(struct ath_softc *sc)
|
|
{
|
|
#define RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
|
|
|
|
u32 rfilt;
|
|
|
|
rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
|
|
| ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
|
|
| ATH9K_RX_FILTER_MCAST;
|
|
|
|
/* If not a STA, enable processing of Probe Requests */
|
|
if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
|
|
rfilt |= ATH9K_RX_FILTER_PROBEREQ;
|
|
|
|
/*
|
|
* Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
|
|
* mode interface or when in monitor mode. AP mode does not need this
|
|
* since it receives all in-BSS frames anyway.
|
|
*/
|
|
if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) &&
|
|
(sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) ||
|
|
(sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR))
|
|
rfilt |= ATH9K_RX_FILTER_PROM;
|
|
|
|
if (sc->rx.rxfilter & FIF_CONTROL)
|
|
rfilt |= ATH9K_RX_FILTER_CONTROL;
|
|
|
|
if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
|
|
!(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
|
|
rfilt |= ATH9K_RX_FILTER_MYBEACON;
|
|
else
|
|
rfilt |= ATH9K_RX_FILTER_BEACON;
|
|
|
|
if ((AR_SREV_9280_10_OR_LATER(sc->sc_ah) ||
|
|
AR_SREV_9285_10_OR_LATER(sc->sc_ah)) &&
|
|
(sc->sc_ah->opmode == NL80211_IFTYPE_AP) &&
|
|
(sc->rx.rxfilter & FIF_PSPOLL))
|
|
rfilt |= ATH9K_RX_FILTER_PSPOLL;
|
|
|
|
if (conf_is_ht(&sc->hw->conf))
|
|
rfilt |= ATH9K_RX_FILTER_COMP_BAR;
|
|
|
|
if (sc->sec_wiphy || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
|
|
/* TODO: only needed if more than one BSSID is in use in
|
|
* station/adhoc mode */
|
|
/* The following may also be needed for other older chips */
|
|
if (sc->sc_ah->hw_version.macVersion == AR_SREV_VERSION_9160)
|
|
rfilt |= ATH9K_RX_FILTER_PROM;
|
|
rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
|
|
}
|
|
|
|
return rfilt;
|
|
|
|
#undef RX_FILTER_PRESERVE
|
|
}
|
|
|
|
int ath_startrecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_buf *bf, *tbf;
|
|
|
|
if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
|
|
ath_edma_start_recv(sc);
|
|
return 0;
|
|
}
|
|
|
|
spin_lock_bh(&sc->rx.rxbuflock);
|
|
if (list_empty(&sc->rx.rxbuf))
|
|
goto start_recv;
|
|
|
|
sc->rx.rxlink = NULL;
|
|
list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
|
|
ath_rx_buf_link(sc, bf);
|
|
}
|
|
|
|
/* We could have deleted elements so the list may be empty now */
|
|
if (list_empty(&sc->rx.rxbuf))
|
|
goto start_recv;
|
|
|
|
bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
|
|
ath9k_hw_putrxbuf(ah, bf->bf_daddr);
|
|
ath9k_hw_rxena(ah);
|
|
|
|
start_recv:
|
|
spin_unlock_bh(&sc->rx.rxbuflock);
|
|
ath_opmode_init(sc);
|
|
ath9k_hw_startpcureceive(ah);
|
|
|
|
return 0;
|
|
}
|
|
|
|
bool ath_stoprecv(struct ath_softc *sc)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
bool stopped;
|
|
|
|
ath9k_hw_stoppcurecv(ah);
|
|
ath9k_hw_setrxfilter(ah, 0);
|
|
stopped = ath9k_hw_stopdmarecv(ah);
|
|
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
|
|
ath_edma_stop_recv(sc);
|
|
else
|
|
sc->rx.rxlink = NULL;
|
|
|
|
return stopped;
|
|
}
|
|
|
|
void ath_flushrecv(struct ath_softc *sc)
|
|
{
|
|
spin_lock_bh(&sc->rx.rxflushlock);
|
|
sc->sc_flags |= SC_OP_RXFLUSH;
|
|
if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
|
|
ath_rx_tasklet(sc, 1, true);
|
|
ath_rx_tasklet(sc, 1, false);
|
|
sc->sc_flags &= ~SC_OP_RXFLUSH;
|
|
spin_unlock_bh(&sc->rx.rxflushlock);
|
|
}
|
|
|
|
static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
|
|
{
|
|
/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
|
|
struct ieee80211_mgmt *mgmt;
|
|
u8 *pos, *end, id, elen;
|
|
struct ieee80211_tim_ie *tim;
|
|
|
|
mgmt = (struct ieee80211_mgmt *)skb->data;
|
|
pos = mgmt->u.beacon.variable;
|
|
end = skb->data + skb->len;
|
|
|
|
while (pos + 2 < end) {
|
|
id = *pos++;
|
|
elen = *pos++;
|
|
if (pos + elen > end)
|
|
break;
|
|
|
|
if (id == WLAN_EID_TIM) {
|
|
if (elen < sizeof(*tim))
|
|
break;
|
|
tim = (struct ieee80211_tim_ie *) pos;
|
|
if (tim->dtim_count != 0)
|
|
break;
|
|
return tim->bitmap_ctrl & 0x01;
|
|
}
|
|
|
|
pos += elen;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_mgmt *mgmt;
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
|
|
if (skb->len < 24 + 8 + 2 + 2)
|
|
return;
|
|
|
|
mgmt = (struct ieee80211_mgmt *)skb->data;
|
|
if (memcmp(common->curbssid, mgmt->bssid, ETH_ALEN) != 0)
|
|
return; /* not from our current AP */
|
|
|
|
sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
|
|
|
|
if (sc->ps_flags & PS_BEACON_SYNC) {
|
|
sc->ps_flags &= ~PS_BEACON_SYNC;
|
|
ath_print(common, ATH_DBG_PS,
|
|
"Reconfigure Beacon timers based on "
|
|
"timestamp from the AP\n");
|
|
ath_beacon_config(sc, NULL);
|
|
}
|
|
|
|
if (ath_beacon_dtim_pending_cab(skb)) {
|
|
/*
|
|
* Remain awake waiting for buffered broadcast/multicast
|
|
* frames. If the last broadcast/multicast frame is not
|
|
* received properly, the next beacon frame will work as
|
|
* a backup trigger for returning into NETWORK SLEEP state,
|
|
* so we are waiting for it as well.
|
|
*/
|
|
ath_print(common, ATH_DBG_PS, "Received DTIM beacon indicating "
|
|
"buffered broadcast/multicast frame(s)\n");
|
|
sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
|
|
return;
|
|
}
|
|
|
|
if (sc->ps_flags & PS_WAIT_FOR_CAB) {
|
|
/*
|
|
* This can happen if a broadcast frame is dropped or the AP
|
|
* fails to send a frame indicating that all CAB frames have
|
|
* been delivered.
|
|
*/
|
|
sc->ps_flags &= ~PS_WAIT_FOR_CAB;
|
|
ath_print(common, ATH_DBG_PS,
|
|
"PS wait for CAB frames timed out\n");
|
|
}
|
|
}
|
|
|
|
static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
struct ath_common *common = ath9k_hw_common(sc->sc_ah);
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
|
|
/* Process Beacon and CAB receive in PS state */
|
|
if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
|
|
&& ieee80211_is_beacon(hdr->frame_control))
|
|
ath_rx_ps_beacon(sc, skb);
|
|
else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
|
|
(ieee80211_is_data(hdr->frame_control) ||
|
|
ieee80211_is_action(hdr->frame_control)) &&
|
|
is_multicast_ether_addr(hdr->addr1) &&
|
|
!ieee80211_has_moredata(hdr->frame_control)) {
|
|
/*
|
|
* No more broadcast/multicast frames to be received at this
|
|
* point.
|
|
*/
|
|
sc->ps_flags &= ~PS_WAIT_FOR_CAB;
|
|
ath_print(common, ATH_DBG_PS,
|
|
"All PS CAB frames received, back to sleep\n");
|
|
} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
|
|
!is_multicast_ether_addr(hdr->addr1) &&
|
|
!ieee80211_has_morefrags(hdr->frame_control)) {
|
|
sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
|
|
ath_print(common, ATH_DBG_PS,
|
|
"Going back to sleep after having received "
|
|
"PS-Poll data (0x%lx)\n",
|
|
sc->ps_flags & (PS_WAIT_FOR_BEACON |
|
|
PS_WAIT_FOR_CAB |
|
|
PS_WAIT_FOR_PSPOLL_DATA |
|
|
PS_WAIT_FOR_TX_ACK));
|
|
}
|
|
}
|
|
|
|
static void ath_rx_send_to_mac80211(struct ieee80211_hw *hw,
|
|
struct ath_softc *sc, struct sk_buff *skb,
|
|
struct ieee80211_rx_status *rxs)
|
|
{
|
|
struct ieee80211_hdr *hdr;
|
|
|
|
hdr = (struct ieee80211_hdr *)skb->data;
|
|
|
|
/* Send the frame to mac80211 */
|
|
if (is_multicast_ether_addr(hdr->addr1)) {
|
|
int i;
|
|
/*
|
|
* Deliver broadcast/multicast frames to all suitable
|
|
* virtual wiphys.
|
|
*/
|
|
/* TODO: filter based on channel configuration */
|
|
for (i = 0; i < sc->num_sec_wiphy; i++) {
|
|
struct ath_wiphy *aphy = sc->sec_wiphy[i];
|
|
struct sk_buff *nskb;
|
|
if (aphy == NULL)
|
|
continue;
|
|
nskb = skb_copy(skb, GFP_ATOMIC);
|
|
if (!nskb)
|
|
continue;
|
|
ieee80211_rx(aphy->hw, nskb);
|
|
}
|
|
ieee80211_rx(sc->hw, skb);
|
|
} else
|
|
/* Deliver unicast frames based on receiver address */
|
|
ieee80211_rx(hw, skb);
|
|
}
|
|
|
|
static bool ath_edma_get_buffers(struct ath_softc *sc,
|
|
enum ath9k_rx_qtype qtype)
|
|
{
|
|
struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct sk_buff *skb;
|
|
struct ath_buf *bf;
|
|
int ret;
|
|
|
|
skb = skb_peek(&rx_edma->rx_fifo);
|
|
if (!skb)
|
|
return false;
|
|
|
|
bf = SKB_CB_ATHBUF(skb);
|
|
BUG_ON(!bf);
|
|
|
|
dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
|
|
common->rx_bufsize, DMA_FROM_DEVICE);
|
|
|
|
ret = ath9k_hw_process_rxdesc_edma(ah, NULL, skb->data);
|
|
if (ret == -EINPROGRESS) {
|
|
/*let device gain the buffer again*/
|
|
dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
|
|
common->rx_bufsize, DMA_FROM_DEVICE);
|
|
return false;
|
|
}
|
|
|
|
__skb_unlink(skb, &rx_edma->rx_fifo);
|
|
if (ret == -EINVAL) {
|
|
/* corrupt descriptor, skip this one and the following one */
|
|
list_add_tail(&bf->list, &sc->rx.rxbuf);
|
|
ath_rx_edma_buf_link(sc, qtype);
|
|
skb = skb_peek(&rx_edma->rx_fifo);
|
|
if (!skb)
|
|
return true;
|
|
|
|
bf = SKB_CB_ATHBUF(skb);
|
|
BUG_ON(!bf);
|
|
|
|
__skb_unlink(skb, &rx_edma->rx_fifo);
|
|
list_add_tail(&bf->list, &sc->rx.rxbuf);
|
|
ath_rx_edma_buf_link(sc, qtype);
|
|
return true;
|
|
}
|
|
skb_queue_tail(&rx_edma->rx_buffers, skb);
|
|
|
|
return true;
|
|
}
|
|
|
|
static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
|
|
struct ath_rx_status *rs,
|
|
enum ath9k_rx_qtype qtype)
|
|
{
|
|
struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
|
|
struct sk_buff *skb;
|
|
struct ath_buf *bf;
|
|
|
|
while (ath_edma_get_buffers(sc, qtype));
|
|
skb = __skb_dequeue(&rx_edma->rx_buffers);
|
|
if (!skb)
|
|
return NULL;
|
|
|
|
bf = SKB_CB_ATHBUF(skb);
|
|
ath9k_hw_process_rxdesc_edma(sc->sc_ah, rs, skb->data);
|
|
return bf;
|
|
}
|
|
|
|
static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
|
|
struct ath_rx_status *rs)
|
|
{
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
struct ath_desc *ds;
|
|
struct ath_buf *bf;
|
|
int ret;
|
|
|
|
if (list_empty(&sc->rx.rxbuf)) {
|
|
sc->rx.rxlink = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
|
|
ds = bf->bf_desc;
|
|
|
|
/*
|
|
* Must provide the virtual address of the current
|
|
* descriptor, the physical address, and the virtual
|
|
* address of the next descriptor in the h/w chain.
|
|
* This allows the HAL to look ahead to see if the
|
|
* hardware is done with a descriptor by checking the
|
|
* done bit in the following descriptor and the address
|
|
* of the current descriptor the DMA engine is working
|
|
* on. All this is necessary because of our use of
|
|
* a self-linked list to avoid rx overruns.
|
|
*/
|
|
ret = ath9k_hw_rxprocdesc(ah, ds, rs, 0);
|
|
if (ret == -EINPROGRESS) {
|
|
struct ath_rx_status trs;
|
|
struct ath_buf *tbf;
|
|
struct ath_desc *tds;
|
|
|
|
memset(&trs, 0, sizeof(trs));
|
|
if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
|
|
sc->rx.rxlink = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
tbf = list_entry(bf->list.next, struct ath_buf, list);
|
|
|
|
/*
|
|
* On some hardware the descriptor status words could
|
|
* get corrupted, including the done bit. Because of
|
|
* this, check if the next descriptor's done bit is
|
|
* set or not.
|
|
*
|
|
* If the next descriptor's done bit is set, the current
|
|
* descriptor has been corrupted. Force s/w to discard
|
|
* this descriptor and continue...
|
|
*/
|
|
|
|
tds = tbf->bf_desc;
|
|
ret = ath9k_hw_rxprocdesc(ah, tds, &trs, 0);
|
|
if (ret == -EINPROGRESS)
|
|
return NULL;
|
|
}
|
|
|
|
if (!bf->bf_mpdu)
|
|
return bf;
|
|
|
|
/*
|
|
* Synchronize the DMA transfer with CPU before
|
|
* 1. accessing the frame
|
|
* 2. requeueing the same buffer to h/w
|
|
*/
|
|
dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
|
|
common->rx_bufsize,
|
|
DMA_FROM_DEVICE);
|
|
|
|
return bf;
|
|
}
|
|
|
|
/* Assumes you've already done the endian to CPU conversion */
|
|
static bool ath9k_rx_accept(struct ath_common *common,
|
|
struct ieee80211_hdr *hdr,
|
|
struct ieee80211_rx_status *rxs,
|
|
struct ath_rx_status *rx_stats,
|
|
bool *decrypt_error)
|
|
{
|
|
struct ath_hw *ah = common->ah;
|
|
__le16 fc;
|
|
u8 rx_status_len = ah->caps.rx_status_len;
|
|
|
|
fc = hdr->frame_control;
|
|
|
|
if (!rx_stats->rs_datalen)
|
|
return false;
|
|
/*
|
|
* rs_status follows rs_datalen so if rs_datalen is too large
|
|
* we can take a hint that hardware corrupted it, so ignore
|
|
* those frames.
|
|
*/
|
|
if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len))
|
|
return false;
|
|
|
|
/*
|
|
* rs_more indicates chained descriptors which can be used
|
|
* to link buffers together for a sort of scatter-gather
|
|
* operation.
|
|
* reject the frame, we don't support scatter-gather yet and
|
|
* the frame is probably corrupt anyway
|
|
*/
|
|
if (rx_stats->rs_more)
|
|
return false;
|
|
|
|
/*
|
|
* The rx_stats->rs_status will not be set until the end of the
|
|
* chained descriptors so it can be ignored if rs_more is set. The
|
|
* rs_more will be false at the last element of the chained
|
|
* descriptors.
|
|
*/
|
|
if (rx_stats->rs_status != 0) {
|
|
if (rx_stats->rs_status & ATH9K_RXERR_CRC)
|
|
rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
|
|
if (rx_stats->rs_status & ATH9K_RXERR_PHY)
|
|
return false;
|
|
|
|
if (rx_stats->rs_status & ATH9K_RXERR_DECRYPT) {
|
|
*decrypt_error = true;
|
|
} else if (rx_stats->rs_status & ATH9K_RXERR_MIC) {
|
|
if (ieee80211_is_ctl(fc))
|
|
/*
|
|
* Sometimes, we get invalid
|
|
* MIC failures on valid control frames.
|
|
* Remove these mic errors.
|
|
*/
|
|
rx_stats->rs_status &= ~ATH9K_RXERR_MIC;
|
|
else
|
|
rxs->flag |= RX_FLAG_MMIC_ERROR;
|
|
}
|
|
/*
|
|
* Reject error frames with the exception of
|
|
* decryption and MIC failures. For monitor mode,
|
|
* we also ignore the CRC error.
|
|
*/
|
|
if (ah->opmode == NL80211_IFTYPE_MONITOR) {
|
|
if (rx_stats->rs_status &
|
|
~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
|
|
ATH9K_RXERR_CRC))
|
|
return false;
|
|
} else {
|
|
if (rx_stats->rs_status &
|
|
~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static int ath9k_process_rate(struct ath_common *common,
|
|
struct ieee80211_hw *hw,
|
|
struct ath_rx_status *rx_stats,
|
|
struct ieee80211_rx_status *rxs)
|
|
{
|
|
struct ieee80211_supported_band *sband;
|
|
enum ieee80211_band band;
|
|
unsigned int i = 0;
|
|
|
|
band = hw->conf.channel->band;
|
|
sband = hw->wiphy->bands[band];
|
|
|
|
if (rx_stats->rs_rate & 0x80) {
|
|
/* HT rate */
|
|
rxs->flag |= RX_FLAG_HT;
|
|
if (rx_stats->rs_flags & ATH9K_RX_2040)
|
|
rxs->flag |= RX_FLAG_40MHZ;
|
|
if (rx_stats->rs_flags & ATH9K_RX_GI)
|
|
rxs->flag |= RX_FLAG_SHORT_GI;
|
|
rxs->rate_idx = rx_stats->rs_rate & 0x7f;
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < sband->n_bitrates; i++) {
|
|
if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
|
|
rxs->rate_idx = i;
|
|
return 0;
|
|
}
|
|
if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
|
|
rxs->flag |= RX_FLAG_SHORTPRE;
|
|
rxs->rate_idx = i;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* No valid hardware bitrate found -- we should not get here
|
|
* because hardware has already validated this frame as OK.
|
|
*/
|
|
ath_print(common, ATH_DBG_XMIT, "unsupported hw bitrate detected "
|
|
"0x%02x using 1 Mbit\n", rx_stats->rs_rate);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void ath9k_process_rssi(struct ath_common *common,
|
|
struct ieee80211_hw *hw,
|
|
struct ieee80211_hdr *hdr,
|
|
struct ath_rx_status *rx_stats)
|
|
{
|
|
struct ath_hw *ah = common->ah;
|
|
struct ieee80211_sta *sta;
|
|
struct ath_node *an;
|
|
int last_rssi = ATH_RSSI_DUMMY_MARKER;
|
|
__le16 fc;
|
|
|
|
fc = hdr->frame_control;
|
|
|
|
rcu_read_lock();
|
|
/*
|
|
* XXX: use ieee80211_find_sta! This requires quite a bit of work
|
|
* under the current ath9k virtual wiphy implementation as we have
|
|
* no way of tying a vif to wiphy. Typically vifs are attached to
|
|
* at least one sdata of a wiphy on mac80211 but with ath9k virtual
|
|
* wiphy you'd have to iterate over every wiphy and each sdata.
|
|
*/
|
|
sta = ieee80211_find_sta_by_hw(hw, hdr->addr2);
|
|
if (sta) {
|
|
an = (struct ath_node *) sta->drv_priv;
|
|
if (rx_stats->rs_rssi != ATH9K_RSSI_BAD &&
|
|
!rx_stats->rs_moreaggr)
|
|
ATH_RSSI_LPF(an->last_rssi, rx_stats->rs_rssi);
|
|
last_rssi = an->last_rssi;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
|
|
rx_stats->rs_rssi = ATH_EP_RND(last_rssi,
|
|
ATH_RSSI_EP_MULTIPLIER);
|
|
if (rx_stats->rs_rssi < 0)
|
|
rx_stats->rs_rssi = 0;
|
|
|
|
/* Update Beacon RSSI, this is used by ANI. */
|
|
if (ieee80211_is_beacon(fc))
|
|
ah->stats.avgbrssi = rx_stats->rs_rssi;
|
|
}
|
|
|
|
/*
|
|
* For Decrypt or Demic errors, we only mark packet status here and always push
|
|
* up the frame up to let mac80211 handle the actual error case, be it no
|
|
* decryption key or real decryption error. This let us keep statistics there.
|
|
*/
|
|
static int ath9k_rx_skb_preprocess(struct ath_common *common,
|
|
struct ieee80211_hw *hw,
|
|
struct ieee80211_hdr *hdr,
|
|
struct ath_rx_status *rx_stats,
|
|
struct ieee80211_rx_status *rx_status,
|
|
bool *decrypt_error)
|
|
{
|
|
struct ath_hw *ah = common->ah;
|
|
|
|
memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
|
|
|
|
/*
|
|
* everything but the rate is checked here, the rate check is done
|
|
* separately to avoid doing two lookups for a rate for each frame.
|
|
*/
|
|
if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
|
|
return -EINVAL;
|
|
|
|
ath9k_process_rssi(common, hw, hdr, rx_stats);
|
|
|
|
if (ath9k_process_rate(common, hw, rx_stats, rx_status))
|
|
return -EINVAL;
|
|
|
|
rx_status->mactime = ath9k_hw_extend_tsf(ah, rx_stats->rs_tstamp);
|
|
rx_status->band = hw->conf.channel->band;
|
|
rx_status->freq = hw->conf.channel->center_freq;
|
|
rx_status->signal = ATH_DEFAULT_NOISE_FLOOR + rx_stats->rs_rssi;
|
|
rx_status->antenna = rx_stats->rs_antenna;
|
|
rx_status->flag |= RX_FLAG_TSFT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ath9k_rx_skb_postprocess(struct ath_common *common,
|
|
struct sk_buff *skb,
|
|
struct ath_rx_status *rx_stats,
|
|
struct ieee80211_rx_status *rxs,
|
|
bool decrypt_error)
|
|
{
|
|
struct ath_hw *ah = common->ah;
|
|
struct ieee80211_hdr *hdr;
|
|
int hdrlen, padpos, padsize;
|
|
u8 keyix;
|
|
__le16 fc;
|
|
|
|
/* see if any padding is done by the hw and remove it */
|
|
hdr = (struct ieee80211_hdr *) skb->data;
|
|
hdrlen = ieee80211_get_hdrlen_from_skb(skb);
|
|
fc = hdr->frame_control;
|
|
padpos = ath9k_cmn_padpos(hdr->frame_control);
|
|
|
|
/* The MAC header is padded to have 32-bit boundary if the
|
|
* packet payload is non-zero. The general calculation for
|
|
* padsize would take into account odd header lengths:
|
|
* padsize = (4 - padpos % 4) % 4; However, since only
|
|
* even-length headers are used, padding can only be 0 or 2
|
|
* bytes and we can optimize this a bit. In addition, we must
|
|
* not try to remove padding from short control frames that do
|
|
* not have payload. */
|
|
padsize = padpos & 3;
|
|
if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
|
|
memmove(skb->data + padsize, skb->data, padpos);
|
|
skb_pull(skb, padsize);
|
|
}
|
|
|
|
keyix = rx_stats->rs_keyix;
|
|
|
|
if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
|
|
ieee80211_has_protected(fc)) {
|
|
rxs->flag |= RX_FLAG_DECRYPTED;
|
|
} else if (ieee80211_has_protected(fc)
|
|
&& !decrypt_error && skb->len >= hdrlen + 4) {
|
|
keyix = skb->data[hdrlen + 3] >> 6;
|
|
|
|
if (test_bit(keyix, common->keymap))
|
|
rxs->flag |= RX_FLAG_DECRYPTED;
|
|
}
|
|
if (ah->sw_mgmt_crypto &&
|
|
(rxs->flag & RX_FLAG_DECRYPTED) &&
|
|
ieee80211_is_mgmt(fc))
|
|
/* Use software decrypt for management frames. */
|
|
rxs->flag &= ~RX_FLAG_DECRYPTED;
|
|
}
|
|
|
|
int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
|
|
{
|
|
struct ath_buf *bf;
|
|
struct sk_buff *skb = NULL, *requeue_skb;
|
|
struct ieee80211_rx_status *rxs;
|
|
struct ath_hw *ah = sc->sc_ah;
|
|
struct ath_common *common = ath9k_hw_common(ah);
|
|
/*
|
|
* The hw can techncically differ from common->hw when using ath9k
|
|
* virtual wiphy so to account for that we iterate over the active
|
|
* wiphys and find the appropriate wiphy and therefore hw.
|
|
*/
|
|
struct ieee80211_hw *hw = NULL;
|
|
struct ieee80211_hdr *hdr;
|
|
int retval;
|
|
bool decrypt_error = false;
|
|
struct ath_rx_status rs;
|
|
enum ath9k_rx_qtype qtype;
|
|
bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
|
|
int dma_type;
|
|
u8 rx_status_len = ah->caps.rx_status_len;
|
|
|
|
if (edma)
|
|
dma_type = DMA_BIDIRECTIONAL;
|
|
else
|
|
dma_type = DMA_FROM_DEVICE;
|
|
|
|
qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
|
|
spin_lock_bh(&sc->rx.rxbuflock);
|
|
|
|
do {
|
|
/* If handling rx interrupt and flush is in progress => exit */
|
|
if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
|
|
break;
|
|
|
|
memset(&rs, 0, sizeof(rs));
|
|
if (edma)
|
|
bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
|
|
else
|
|
bf = ath_get_next_rx_buf(sc, &rs);
|
|
|
|
if (!bf)
|
|
break;
|
|
|
|
skb = bf->bf_mpdu;
|
|
if (!skb)
|
|
continue;
|
|
|
|
hdr = (struct ieee80211_hdr *) (skb->data + rx_status_len);
|
|
rxs = IEEE80211_SKB_RXCB(skb);
|
|
|
|
hw = ath_get_virt_hw(sc, hdr);
|
|
|
|
ath_debug_stat_rx(sc, &rs);
|
|
|
|
/*
|
|
* If we're asked to flush receive queue, directly
|
|
* chain it back at the queue without processing it.
|
|
*/
|
|
if (flush)
|
|
goto requeue;
|
|
|
|
retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
|
|
rxs, &decrypt_error);
|
|
if (retval)
|
|
goto requeue;
|
|
|
|
/* Ensure we always have an skb to requeue once we are done
|
|
* processing the current buffer's skb */
|
|
requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
|
|
|
|
/* If there is no memory we ignore the current RX'd frame,
|
|
* tell hardware it can give us a new frame using the old
|
|
* skb and put it at the tail of the sc->rx.rxbuf list for
|
|
* processing. */
|
|
if (!requeue_skb)
|
|
goto requeue;
|
|
|
|
/* Unmap the frame */
|
|
dma_unmap_single(sc->dev, bf->bf_buf_addr,
|
|
common->rx_bufsize,
|
|
dma_type);
|
|
|
|
skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
|
|
if (ah->caps.rx_status_len)
|
|
skb_pull(skb, ah->caps.rx_status_len);
|
|
|
|
ath9k_rx_skb_postprocess(common, skb, &rs,
|
|
rxs, decrypt_error);
|
|
|
|
/* We will now give hardware our shiny new allocated skb */
|
|
bf->bf_mpdu = requeue_skb;
|
|
bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
|
|
common->rx_bufsize,
|
|
dma_type);
|
|
if (unlikely(dma_mapping_error(sc->dev,
|
|
bf->bf_buf_addr))) {
|
|
dev_kfree_skb_any(requeue_skb);
|
|
bf->bf_mpdu = NULL;
|
|
ath_print(common, ATH_DBG_FATAL,
|
|
"dma_mapping_error() on RX\n");
|
|
ath_rx_send_to_mac80211(hw, sc, skb, rxs);
|
|
break;
|
|
}
|
|
bf->bf_dmacontext = bf->bf_buf_addr;
|
|
|
|
/*
|
|
* change the default rx antenna if rx diversity chooses the
|
|
* other antenna 3 times in a row.
|
|
*/
|
|
if (sc->rx.defant != rs.rs_antenna) {
|
|
if (++sc->rx.rxotherant >= 3)
|
|
ath_setdefantenna(sc, rs.rs_antenna);
|
|
} else {
|
|
sc->rx.rxotherant = 0;
|
|
}
|
|
|
|
if (unlikely(ath9k_check_auto_sleep(sc) ||
|
|
(sc->ps_flags & (PS_WAIT_FOR_BEACON |
|
|
PS_WAIT_FOR_CAB |
|
|
PS_WAIT_FOR_PSPOLL_DATA))))
|
|
ath_rx_ps(sc, skb);
|
|
|
|
ath_rx_send_to_mac80211(hw, sc, skb, rxs);
|
|
|
|
requeue:
|
|
if (edma) {
|
|
list_add_tail(&bf->list, &sc->rx.rxbuf);
|
|
ath_rx_edma_buf_link(sc, qtype);
|
|
} else {
|
|
list_move_tail(&bf->list, &sc->rx.rxbuf);
|
|
ath_rx_buf_link(sc, bf);
|
|
}
|
|
} while (1);
|
|
|
|
spin_unlock_bh(&sc->rx.rxbuflock);
|
|
|
|
return 0;
|
|
}
|