linux_dsm_epyc7002/arch/x86/kernel/kexec-bzimage64.c
KarimAllah Ahmed a846f47962 x86/kexec: prepend elfcorehdr instead of appending it to the crash-kernel command-line.
Any parameter passed after '--' in the kernel command-line will not be
parsed by the kernel at all, instead it will be passed directly to init
process.

Currently the kernel appends elfcorehdr=<paddr> to the cmdline passed from
kexec load, and if this command-line is used to pass parameters to init
process this means that 'elfcorehdr' will not be parsed as a kernel
parameter at all which will be a problem for vmcore subsystem since it
will know nothing about the location of the ELF structure!

Prepending 'elfcorehdr' instead of appending it fixes this problem since
it ensures that it always comes before '--' and so it's always parsed as a
kernel command-line parameter.

Even with this patch things can still go wrong if 'CONFIG_CMDLINE' was
also used to embedd a command-line to the crash dump kernel and this
command-line contains '--' since the current behavior of the kernel is to
actually append the boot loader command-line to the embedded command-line.

Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: Haren Myneni <hbabu@us.ibm.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-30 19:44:57 -07:00

556 lines
15 KiB
C

/*
* Kexec bzImage loader
*
* Copyright (C) 2014 Red Hat Inc.
* Authors:
* Vivek Goyal <vgoyal@redhat.com>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#define pr_fmt(fmt) "kexec-bzImage64: " fmt
#include <linux/string.h>
#include <linux/printk.h>
#include <linux/errno.h>
#include <linux/slab.h>
#include <linux/kexec.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/efi.h>
#include <linux/verify_pefile.h>
#include <keys/system_keyring.h>
#include <asm/bootparam.h>
#include <asm/setup.h>
#include <asm/crash.h>
#include <asm/efi.h>
#include <asm/kexec-bzimage64.h>
#define MAX_ELFCOREHDR_STR_LEN 30 /* elfcorehdr=0x<64bit-value> */
/*
* Defines lowest physical address for various segments. Not sure where
* exactly these limits came from. Current bzimage64 loader in kexec-tools
* uses these so I am retaining it. It can be changed over time as we gain
* more insight.
*/
#define MIN_PURGATORY_ADDR 0x3000
#define MIN_BOOTPARAM_ADDR 0x3000
#define MIN_KERNEL_LOAD_ADDR 0x100000
#define MIN_INITRD_LOAD_ADDR 0x1000000
/*
* This is a place holder for all boot loader specific data structure which
* gets allocated in one call but gets freed much later during cleanup
* time. Right now there is only one field but it can grow as need be.
*/
struct bzimage64_data {
/*
* Temporary buffer to hold bootparams buffer. This should be
* freed once the bootparam segment has been loaded.
*/
void *bootparams_buf;
};
static int setup_initrd(struct boot_params *params,
unsigned long initrd_load_addr, unsigned long initrd_len)
{
params->hdr.ramdisk_image = initrd_load_addr & 0xffffffffUL;
params->hdr.ramdisk_size = initrd_len & 0xffffffffUL;
params->ext_ramdisk_image = initrd_load_addr >> 32;
params->ext_ramdisk_size = initrd_len >> 32;
return 0;
}
static int setup_cmdline(struct kimage *image, struct boot_params *params,
unsigned long bootparams_load_addr,
unsigned long cmdline_offset, char *cmdline,
unsigned long cmdline_len)
{
char *cmdline_ptr = ((char *)params) + cmdline_offset;
unsigned long cmdline_ptr_phys, len = 0;
uint32_t cmdline_low_32, cmdline_ext_32;
if (image->type == KEXEC_TYPE_CRASH) {
len = sprintf(cmdline_ptr,
"elfcorehdr=0x%lx ", image->arch.elf_load_addr);
}
memcpy(cmdline_ptr + len, cmdline, cmdline_len);
cmdline_len += len;
cmdline_ptr[cmdline_len - 1] = '\0';
pr_debug("Final command line is: %s\n", cmdline_ptr);
cmdline_ptr_phys = bootparams_load_addr + cmdline_offset;
cmdline_low_32 = cmdline_ptr_phys & 0xffffffffUL;
cmdline_ext_32 = cmdline_ptr_phys >> 32;
params->hdr.cmd_line_ptr = cmdline_low_32;
if (cmdline_ext_32)
params->ext_cmd_line_ptr = cmdline_ext_32;
return 0;
}
static int setup_e820_entries(struct boot_params *params)
{
unsigned int nr_e820_entries;
nr_e820_entries = e820_saved.nr_map;
/* TODO: Pass entries more than E820MAX in bootparams setup data */
if (nr_e820_entries > E820MAX)
nr_e820_entries = E820MAX;
params->e820_entries = nr_e820_entries;
memcpy(&params->e820_map, &e820_saved.map,
nr_e820_entries * sizeof(struct e820entry));
return 0;
}
#ifdef CONFIG_EFI
static int setup_efi_info_memmap(struct boot_params *params,
unsigned long params_load_addr,
unsigned int efi_map_offset,
unsigned int efi_map_sz)
{
void *efi_map = (void *)params + efi_map_offset;
unsigned long efi_map_phys_addr = params_load_addr + efi_map_offset;
struct efi_info *ei = &params->efi_info;
if (!efi_map_sz)
return 0;
efi_runtime_map_copy(efi_map, efi_map_sz);
ei->efi_memmap = efi_map_phys_addr & 0xffffffff;
ei->efi_memmap_hi = efi_map_phys_addr >> 32;
ei->efi_memmap_size = efi_map_sz;
return 0;
}
static int
prepare_add_efi_setup_data(struct boot_params *params,
unsigned long params_load_addr,
unsigned int efi_setup_data_offset)
{
unsigned long setup_data_phys;
struct setup_data *sd = (void *)params + efi_setup_data_offset;
struct efi_setup_data *esd = (void *)sd + sizeof(struct setup_data);
esd->fw_vendor = efi.fw_vendor;
esd->runtime = efi.runtime;
esd->tables = efi.config_table;
esd->smbios = efi.smbios;
sd->type = SETUP_EFI;
sd->len = sizeof(struct efi_setup_data);
/* Add setup data */
setup_data_phys = params_load_addr + efi_setup_data_offset;
sd->next = params->hdr.setup_data;
params->hdr.setup_data = setup_data_phys;
return 0;
}
static int
setup_efi_state(struct boot_params *params, unsigned long params_load_addr,
unsigned int efi_map_offset, unsigned int efi_map_sz,
unsigned int efi_setup_data_offset)
{
struct efi_info *current_ei = &boot_params.efi_info;
struct efi_info *ei = &params->efi_info;
if (!current_ei->efi_memmap_size)
return 0;
/*
* If 1:1 mapping is not enabled, second kernel can not setup EFI
* and use EFI run time services. User space will have to pass
* acpi_rsdp=<addr> on kernel command line to make second kernel boot
* without efi.
*/
if (efi_enabled(EFI_OLD_MEMMAP))
return 0;
ei->efi_loader_signature = current_ei->efi_loader_signature;
ei->efi_systab = current_ei->efi_systab;
ei->efi_systab_hi = current_ei->efi_systab_hi;
ei->efi_memdesc_version = current_ei->efi_memdesc_version;
ei->efi_memdesc_size = efi_get_runtime_map_desc_size();
setup_efi_info_memmap(params, params_load_addr, efi_map_offset,
efi_map_sz);
prepare_add_efi_setup_data(params, params_load_addr,
efi_setup_data_offset);
return 0;
}
#endif /* CONFIG_EFI */
static int
setup_boot_parameters(struct kimage *image, struct boot_params *params,
unsigned long params_load_addr,
unsigned int efi_map_offset, unsigned int efi_map_sz,
unsigned int efi_setup_data_offset)
{
unsigned int nr_e820_entries;
unsigned long long mem_k, start, end;
int i, ret = 0;
/* Get subarch from existing bootparams */
params->hdr.hardware_subarch = boot_params.hdr.hardware_subarch;
/* Copying screen_info will do? */
memcpy(&params->screen_info, &boot_params.screen_info,
sizeof(struct screen_info));
/* Fill in memsize later */
params->screen_info.ext_mem_k = 0;
params->alt_mem_k = 0;
/* Default APM info */
memset(&params->apm_bios_info, 0, sizeof(params->apm_bios_info));
/* Default drive info */
memset(&params->hd0_info, 0, sizeof(params->hd0_info));
memset(&params->hd1_info, 0, sizeof(params->hd1_info));
/* Default sysdesc table */
params->sys_desc_table.length = 0;
if (image->type == KEXEC_TYPE_CRASH) {
ret = crash_setup_memmap_entries(image, params);
if (ret)
return ret;
} else
setup_e820_entries(params);
nr_e820_entries = params->e820_entries;
for (i = 0; i < nr_e820_entries; i++) {
if (params->e820_map[i].type != E820_RAM)
continue;
start = params->e820_map[i].addr;
end = params->e820_map[i].addr + params->e820_map[i].size - 1;
if ((start <= 0x100000) && end > 0x100000) {
mem_k = (end >> 10) - (0x100000 >> 10);
params->screen_info.ext_mem_k = mem_k;
params->alt_mem_k = mem_k;
if (mem_k > 0xfc00)
params->screen_info.ext_mem_k = 0xfc00; /* 64M*/
if (mem_k > 0xffffffff)
params->alt_mem_k = 0xffffffff;
}
}
#ifdef CONFIG_EFI
/* Setup EFI state */
setup_efi_state(params, params_load_addr, efi_map_offset, efi_map_sz,
efi_setup_data_offset);
#endif
/* Setup EDD info */
memcpy(params->eddbuf, boot_params.eddbuf,
EDDMAXNR * sizeof(struct edd_info));
params->eddbuf_entries = boot_params.eddbuf_entries;
memcpy(params->edd_mbr_sig_buffer, boot_params.edd_mbr_sig_buffer,
EDD_MBR_SIG_MAX * sizeof(unsigned int));
return ret;
}
static int bzImage64_probe(const char *buf, unsigned long len)
{
int ret = -ENOEXEC;
struct setup_header *header;
/* kernel should be atleast two sectors long */
if (len < 2 * 512) {
pr_err("File is too short to be a bzImage\n");
return ret;
}
header = (struct setup_header *)(buf + offsetof(struct boot_params, hdr));
if (memcmp((char *)&header->header, "HdrS", 4) != 0) {
pr_err("Not a bzImage\n");
return ret;
}
if (header->boot_flag != 0xAA55) {
pr_err("No x86 boot sector present\n");
return ret;
}
if (header->version < 0x020C) {
pr_err("Must be at least protocol version 2.12\n");
return ret;
}
if (!(header->loadflags & LOADED_HIGH)) {
pr_err("zImage not a bzImage\n");
return ret;
}
if (!(header->xloadflags & XLF_KERNEL_64)) {
pr_err("Not a bzImage64. XLF_KERNEL_64 is not set.\n");
return ret;
}
if (!(header->xloadflags & XLF_CAN_BE_LOADED_ABOVE_4G)) {
pr_err("XLF_CAN_BE_LOADED_ABOVE_4G is not set.\n");
return ret;
}
/*
* Can't handle 32bit EFI as it does not allow loading kernel
* above 4G. This should be handled by 32bit bzImage loader
*/
if (efi_enabled(EFI_RUNTIME_SERVICES) && !efi_enabled(EFI_64BIT)) {
pr_debug("EFI is 32 bit. Can't load kernel above 4G.\n");
return ret;
}
/* I've got a bzImage */
pr_debug("It's a relocatable bzImage64\n");
ret = 0;
return ret;
}
static void *bzImage64_load(struct kimage *image, char *kernel,
unsigned long kernel_len, char *initrd,
unsigned long initrd_len, char *cmdline,
unsigned long cmdline_len)
{
struct setup_header *header;
int setup_sects, kern16_size, ret = 0;
unsigned long setup_header_size, params_cmdline_sz, params_misc_sz;
struct boot_params *params;
unsigned long bootparam_load_addr, kernel_load_addr, initrd_load_addr;
unsigned long purgatory_load_addr;
unsigned long kernel_bufsz, kernel_memsz, kernel_align;
char *kernel_buf;
struct bzimage64_data *ldata;
struct kexec_entry64_regs regs64;
void *stack;
unsigned int setup_hdr_offset = offsetof(struct boot_params, hdr);
unsigned int efi_map_offset, efi_map_sz, efi_setup_data_offset;
header = (struct setup_header *)(kernel + setup_hdr_offset);
setup_sects = header->setup_sects;
if (setup_sects == 0)
setup_sects = 4;
kern16_size = (setup_sects + 1) * 512;
if (kernel_len < kern16_size) {
pr_err("bzImage truncated\n");
return ERR_PTR(-ENOEXEC);
}
if (cmdline_len > header->cmdline_size) {
pr_err("Kernel command line too long\n");
return ERR_PTR(-EINVAL);
}
/*
* In case of crash dump, we will append elfcorehdr=<addr> to
* command line. Make sure it does not overflow
*/
if (cmdline_len + MAX_ELFCOREHDR_STR_LEN > header->cmdline_size) {
pr_debug("Appending elfcorehdr=<addr> to command line exceeds maximum allowed length\n");
return ERR_PTR(-EINVAL);
}
/* Allocate and load backup region */
if (image->type == KEXEC_TYPE_CRASH) {
ret = crash_load_segments(image);
if (ret)
return ERR_PTR(ret);
}
/*
* Load purgatory. For 64bit entry point, purgatory code can be
* anywhere.
*/
ret = kexec_load_purgatory(image, MIN_PURGATORY_ADDR, ULONG_MAX, 1,
&purgatory_load_addr);
if (ret) {
pr_err("Loading purgatory failed\n");
return ERR_PTR(ret);
}
pr_debug("Loaded purgatory at 0x%lx\n", purgatory_load_addr);
/*
* Load Bootparams and cmdline and space for efi stuff.
*
* Allocate memory together for multiple data structures so
* that they all can go in single area/segment and we don't
* have to create separate segment for each. Keeps things
* little bit simple
*/
efi_map_sz = efi_get_runtime_map_size();
efi_map_sz = ALIGN(efi_map_sz, 16);
params_cmdline_sz = sizeof(struct boot_params) + cmdline_len +
MAX_ELFCOREHDR_STR_LEN;
params_cmdline_sz = ALIGN(params_cmdline_sz, 16);
params_misc_sz = params_cmdline_sz + efi_map_sz +
sizeof(struct setup_data) +
sizeof(struct efi_setup_data);
params = kzalloc(params_misc_sz, GFP_KERNEL);
if (!params)
return ERR_PTR(-ENOMEM);
efi_map_offset = params_cmdline_sz;
efi_setup_data_offset = efi_map_offset + efi_map_sz;
/* Copy setup header onto bootparams. Documentation/x86/boot.txt */
setup_header_size = 0x0202 + kernel[0x0201] - setup_hdr_offset;
/* Is there a limit on setup header size? */
memcpy(&params->hdr, (kernel + setup_hdr_offset), setup_header_size);
ret = kexec_add_buffer(image, (char *)params, params_misc_sz,
params_misc_sz, 16, MIN_BOOTPARAM_ADDR,
ULONG_MAX, 1, &bootparam_load_addr);
if (ret)
goto out_free_params;
pr_debug("Loaded boot_param, command line and misc at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
bootparam_load_addr, params_misc_sz, params_misc_sz);
/* Load kernel */
kernel_buf = kernel + kern16_size;
kernel_bufsz = kernel_len - kern16_size;
kernel_memsz = PAGE_ALIGN(header->init_size);
kernel_align = header->kernel_alignment;
ret = kexec_add_buffer(image, kernel_buf,
kernel_bufsz, kernel_memsz, kernel_align,
MIN_KERNEL_LOAD_ADDR, ULONG_MAX, 1,
&kernel_load_addr);
if (ret)
goto out_free_params;
pr_debug("Loaded 64bit kernel at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
kernel_load_addr, kernel_memsz, kernel_memsz);
/* Load initrd high */
if (initrd) {
ret = kexec_add_buffer(image, initrd, initrd_len, initrd_len,
PAGE_SIZE, MIN_INITRD_LOAD_ADDR,
ULONG_MAX, 1, &initrd_load_addr);
if (ret)
goto out_free_params;
pr_debug("Loaded initrd at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
initrd_load_addr, initrd_len, initrd_len);
setup_initrd(params, initrd_load_addr, initrd_len);
}
setup_cmdline(image, params, bootparam_load_addr,
sizeof(struct boot_params), cmdline, cmdline_len);
/* bootloader info. Do we need a separate ID for kexec kernel loader? */
params->hdr.type_of_loader = 0x0D << 4;
params->hdr.loadflags = 0;
/* Setup purgatory regs for entry */
ret = kexec_purgatory_get_set_symbol(image, "entry64_regs", &regs64,
sizeof(regs64), 1);
if (ret)
goto out_free_params;
regs64.rbx = 0; /* Bootstrap Processor */
regs64.rsi = bootparam_load_addr;
regs64.rip = kernel_load_addr + 0x200;
stack = kexec_purgatory_get_symbol_addr(image, "stack_end");
if (IS_ERR(stack)) {
pr_err("Could not find address of symbol stack_end\n");
ret = -EINVAL;
goto out_free_params;
}
regs64.rsp = (unsigned long)stack;
ret = kexec_purgatory_get_set_symbol(image, "entry64_regs", &regs64,
sizeof(regs64), 0);
if (ret)
goto out_free_params;
ret = setup_boot_parameters(image, params, bootparam_load_addr,
efi_map_offset, efi_map_sz,
efi_setup_data_offset);
if (ret)
goto out_free_params;
/* Allocate loader specific data */
ldata = kzalloc(sizeof(struct bzimage64_data), GFP_KERNEL);
if (!ldata) {
ret = -ENOMEM;
goto out_free_params;
}
/*
* Store pointer to params so that it could be freed after loading
* params segment has been loaded and contents have been copied
* somewhere else.
*/
ldata->bootparams_buf = params;
return ldata;
out_free_params:
kfree(params);
return ERR_PTR(ret);
}
/* This cleanup function is called after various segments have been loaded */
static int bzImage64_cleanup(void *loader_data)
{
struct bzimage64_data *ldata = loader_data;
if (!ldata)
return 0;
kfree(ldata->bootparams_buf);
ldata->bootparams_buf = NULL;
return 0;
}
#ifdef CONFIG_KEXEC_BZIMAGE_VERIFY_SIG
static int bzImage64_verify_sig(const char *kernel, unsigned long kernel_len)
{
bool trusted;
int ret;
ret = verify_pefile_signature(kernel, kernel_len,
system_trusted_keyring, &trusted);
if (ret < 0)
return ret;
if (!trusted)
return -EKEYREJECTED;
return 0;
}
#endif
struct kexec_file_ops kexec_bzImage64_ops = {
.probe = bzImage64_probe,
.load = bzImage64_load,
.cleanup = bzImage64_cleanup,
#ifdef CONFIG_KEXEC_BZIMAGE_VERIFY_SIG
.verify_sig = bzImage64_verify_sig,
#endif
};