mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 14:15:10 +07:00
2a6a28e792
I always go nuts when I start an MTD test on a slow device and have to wait forever until it finishes. From the debug output I already know what the issue is but I have to wait or reset the board hard. Resetting is often not an option (remote access, you don't want lose the current state, etc...). The solution is easy, check for pending signals at key positions in the code. Using that one can even stop a test by pressing CTRL-C as insmod/modprobe have SIGINT pending. Signed-off-by: Richard Weinberger <richard@nod.at> Signed-off-by: Brian Norris <computersforpeace@gmail.com>
323 lines
7.9 KiB
C
323 lines
7.9 KiB
C
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/list.h>
|
|
#include <linux/random.h>
|
|
#include <linux/string.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
|
|
#include "mtd_test.h"
|
|
|
|
/*
|
|
* Test the implementation for software ECC
|
|
*
|
|
* No actual MTD device is needed, So we don't need to warry about losing
|
|
* important data by human error.
|
|
*
|
|
* This covers possible patterns of corruption which can be reliably corrected
|
|
* or detected.
|
|
*/
|
|
|
|
#if IS_ENABLED(CONFIG_MTD_NAND)
|
|
|
|
struct nand_ecc_test {
|
|
const char *name;
|
|
void (*prepare)(void *, void *, void *, void *, const size_t);
|
|
int (*verify)(void *, void *, void *, const size_t);
|
|
};
|
|
|
|
/*
|
|
* The reason for this __change_bit_le() instead of __change_bit() is to inject
|
|
* bit error properly within the region which is not a multiple of
|
|
* sizeof(unsigned long) on big-endian systems
|
|
*/
|
|
#ifdef __LITTLE_ENDIAN
|
|
#define __change_bit_le(nr, addr) __change_bit(nr, addr)
|
|
#elif defined(__BIG_ENDIAN)
|
|
#define __change_bit_le(nr, addr) \
|
|
__change_bit((nr) ^ ((BITS_PER_LONG - 1) & ~0x7), addr)
|
|
#else
|
|
#error "Unknown byte order"
|
|
#endif
|
|
|
|
static void single_bit_error_data(void *error_data, void *correct_data,
|
|
size_t size)
|
|
{
|
|
unsigned int offset = prandom_u32() % (size * BITS_PER_BYTE);
|
|
|
|
memcpy(error_data, correct_data, size);
|
|
__change_bit_le(offset, error_data);
|
|
}
|
|
|
|
static void double_bit_error_data(void *error_data, void *correct_data,
|
|
size_t size)
|
|
{
|
|
unsigned int offset[2];
|
|
|
|
offset[0] = prandom_u32() % (size * BITS_PER_BYTE);
|
|
do {
|
|
offset[1] = prandom_u32() % (size * BITS_PER_BYTE);
|
|
} while (offset[0] == offset[1]);
|
|
|
|
memcpy(error_data, correct_data, size);
|
|
|
|
__change_bit_le(offset[0], error_data);
|
|
__change_bit_le(offset[1], error_data);
|
|
}
|
|
|
|
static unsigned int random_ecc_bit(size_t size)
|
|
{
|
|
unsigned int offset = prandom_u32() % (3 * BITS_PER_BYTE);
|
|
|
|
if (size == 256) {
|
|
/*
|
|
* Don't inject a bit error into the insignificant bits (16th
|
|
* and 17th bit) in ECC code for 256 byte data block
|
|
*/
|
|
while (offset == 16 || offset == 17)
|
|
offset = prandom_u32() % (3 * BITS_PER_BYTE);
|
|
}
|
|
|
|
return offset;
|
|
}
|
|
|
|
static void single_bit_error_ecc(void *error_ecc, void *correct_ecc,
|
|
size_t size)
|
|
{
|
|
unsigned int offset = random_ecc_bit(size);
|
|
|
|
memcpy(error_ecc, correct_ecc, 3);
|
|
__change_bit_le(offset, error_ecc);
|
|
}
|
|
|
|
static void double_bit_error_ecc(void *error_ecc, void *correct_ecc,
|
|
size_t size)
|
|
{
|
|
unsigned int offset[2];
|
|
|
|
offset[0] = random_ecc_bit(size);
|
|
do {
|
|
offset[1] = random_ecc_bit(size);
|
|
} while (offset[0] == offset[1]);
|
|
|
|
memcpy(error_ecc, correct_ecc, 3);
|
|
__change_bit_le(offset[0], error_ecc);
|
|
__change_bit_le(offset[1], error_ecc);
|
|
}
|
|
|
|
static void no_bit_error(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
memcpy(error_data, correct_data, size);
|
|
memcpy(error_ecc, correct_ecc, 3);
|
|
}
|
|
|
|
static int no_bit_error_verify(void *error_data, void *error_ecc,
|
|
void *correct_data, const size_t size)
|
|
{
|
|
unsigned char calc_ecc[3];
|
|
int ret;
|
|
|
|
__nand_calculate_ecc(error_data, size, calc_ecc);
|
|
ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
|
|
if (ret == 0 && !memcmp(correct_data, error_data, size))
|
|
return 0;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void single_bit_error_in_data(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
single_bit_error_data(error_data, correct_data, size);
|
|
memcpy(error_ecc, correct_ecc, 3);
|
|
}
|
|
|
|
static void single_bit_error_in_ecc(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
memcpy(error_data, correct_data, size);
|
|
single_bit_error_ecc(error_ecc, correct_ecc, size);
|
|
}
|
|
|
|
static int single_bit_error_correct(void *error_data, void *error_ecc,
|
|
void *correct_data, const size_t size)
|
|
{
|
|
unsigned char calc_ecc[3];
|
|
int ret;
|
|
|
|
__nand_calculate_ecc(error_data, size, calc_ecc);
|
|
ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
|
|
if (ret == 1 && !memcmp(correct_data, error_data, size))
|
|
return 0;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void double_bit_error_in_data(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
double_bit_error_data(error_data, correct_data, size);
|
|
memcpy(error_ecc, correct_ecc, 3);
|
|
}
|
|
|
|
static void single_bit_error_in_data_and_ecc(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
single_bit_error_data(error_data, correct_data, size);
|
|
single_bit_error_ecc(error_ecc, correct_ecc, size);
|
|
}
|
|
|
|
static void double_bit_error_in_ecc(void *error_data, void *error_ecc,
|
|
void *correct_data, void *correct_ecc, const size_t size)
|
|
{
|
|
memcpy(error_data, correct_data, size);
|
|
double_bit_error_ecc(error_ecc, correct_ecc, size);
|
|
}
|
|
|
|
static int double_bit_error_detect(void *error_data, void *error_ecc,
|
|
void *correct_data, const size_t size)
|
|
{
|
|
unsigned char calc_ecc[3];
|
|
int ret;
|
|
|
|
__nand_calculate_ecc(error_data, size, calc_ecc);
|
|
ret = __nand_correct_data(error_data, error_ecc, calc_ecc, size);
|
|
|
|
return (ret == -1) ? 0 : -EINVAL;
|
|
}
|
|
|
|
static const struct nand_ecc_test nand_ecc_test[] = {
|
|
{
|
|
.name = "no-bit-error",
|
|
.prepare = no_bit_error,
|
|
.verify = no_bit_error_verify,
|
|
},
|
|
{
|
|
.name = "single-bit-error-in-data-correct",
|
|
.prepare = single_bit_error_in_data,
|
|
.verify = single_bit_error_correct,
|
|
},
|
|
{
|
|
.name = "single-bit-error-in-ecc-correct",
|
|
.prepare = single_bit_error_in_ecc,
|
|
.verify = single_bit_error_correct,
|
|
},
|
|
{
|
|
.name = "double-bit-error-in-data-detect",
|
|
.prepare = double_bit_error_in_data,
|
|
.verify = double_bit_error_detect,
|
|
},
|
|
{
|
|
.name = "single-bit-error-in-data-and-ecc-detect",
|
|
.prepare = single_bit_error_in_data_and_ecc,
|
|
.verify = double_bit_error_detect,
|
|
},
|
|
{
|
|
.name = "double-bit-error-in-ecc-detect",
|
|
.prepare = double_bit_error_in_ecc,
|
|
.verify = double_bit_error_detect,
|
|
},
|
|
};
|
|
|
|
static void dump_data_ecc(void *error_data, void *error_ecc, void *correct_data,
|
|
void *correct_ecc, const size_t size)
|
|
{
|
|
pr_info("hexdump of error data:\n");
|
|
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
|
|
error_data, size, false);
|
|
print_hex_dump(KERN_INFO, "hexdump of error ecc: ",
|
|
DUMP_PREFIX_NONE, 16, 1, error_ecc, 3, false);
|
|
|
|
pr_info("hexdump of correct data:\n");
|
|
print_hex_dump(KERN_INFO, "", DUMP_PREFIX_OFFSET, 16, 4,
|
|
correct_data, size, false);
|
|
print_hex_dump(KERN_INFO, "hexdump of correct ecc: ",
|
|
DUMP_PREFIX_NONE, 16, 1, correct_ecc, 3, false);
|
|
}
|
|
|
|
static int nand_ecc_test_run(const size_t size)
|
|
{
|
|
int i;
|
|
int err = 0;
|
|
void *error_data;
|
|
void *error_ecc;
|
|
void *correct_data;
|
|
void *correct_ecc;
|
|
|
|
error_data = kmalloc(size, GFP_KERNEL);
|
|
error_ecc = kmalloc(3, GFP_KERNEL);
|
|
correct_data = kmalloc(size, GFP_KERNEL);
|
|
correct_ecc = kmalloc(3, GFP_KERNEL);
|
|
|
|
if (!error_data || !error_ecc || !correct_data || !correct_ecc) {
|
|
err = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
prandom_bytes(correct_data, size);
|
|
__nand_calculate_ecc(correct_data, size, correct_ecc);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(nand_ecc_test); i++) {
|
|
nand_ecc_test[i].prepare(error_data, error_ecc,
|
|
correct_data, correct_ecc, size);
|
|
err = nand_ecc_test[i].verify(error_data, error_ecc,
|
|
correct_data, size);
|
|
|
|
if (err) {
|
|
pr_err("not ok - %s-%zd\n",
|
|
nand_ecc_test[i].name, size);
|
|
dump_data_ecc(error_data, error_ecc,
|
|
correct_data, correct_ecc, size);
|
|
break;
|
|
}
|
|
pr_info("ok - %s-%zd\n",
|
|
nand_ecc_test[i].name, size);
|
|
|
|
err = mtdtest_relax();
|
|
if (err)
|
|
break;
|
|
}
|
|
error:
|
|
kfree(error_data);
|
|
kfree(error_ecc);
|
|
kfree(correct_data);
|
|
kfree(correct_ecc);
|
|
|
|
return err;
|
|
}
|
|
|
|
#else
|
|
|
|
static int nand_ecc_test_run(const size_t size)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
static int __init ecc_test_init(void)
|
|
{
|
|
int err;
|
|
|
|
err = nand_ecc_test_run(256);
|
|
if (err)
|
|
return err;
|
|
|
|
return nand_ecc_test_run(512);
|
|
}
|
|
|
|
static void __exit ecc_test_exit(void)
|
|
{
|
|
}
|
|
|
|
module_init(ecc_test_init);
|
|
module_exit(ecc_test_exit);
|
|
|
|
MODULE_DESCRIPTION("NAND ECC function test module");
|
|
MODULE_AUTHOR("Akinobu Mita");
|
|
MODULE_LICENSE("GPL");
|