linux_dsm_epyc7002/drivers/ata/pata_arasan_cf.c
Viresh Kumar 26fdaa7453 pata_arasan: add Device Tree probing capability
SPEAr platforms now support DT and so must convert all drivers to support DT.
This patch adds DT probing support for Arasan Compact Flash controller and
updates its documentation too.

Signed-off-by: Viresh Kumar <viresh.kumar@linaro.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
2012-09-13 01:09:56 -04:00

964 lines
26 KiB
C

/*
* drivers/ata/pata_arasan_cf.c
*
* Arasan Compact Flash host controller source file
*
* Copyright (C) 2011 ST Microelectronics
* Viresh Kumar <viresh.linux@gmail.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
/*
* The Arasan CompactFlash Device Controller IP core has three basic modes of
* operation: PC card ATA using I/O mode, PC card ATA using memory mode, PC card
* ATA using true IDE modes. This driver supports only True IDE mode currently.
*
* Arasan CF Controller shares global irq register with Arasan XD Controller.
*
* Tested on arch/arm/mach-spear13xx
*/
#include <linux/ata.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/libata.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/pata_arasan_cf_data.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/types.h>
#include <linux/workqueue.h>
#define DRIVER_NAME "arasan_cf"
#define TIMEOUT msecs_to_jiffies(3000)
/* Registers */
/* CompactFlash Interface Status */
#define CFI_STS 0x000
#define STS_CHG (1)
#define BIN_AUDIO_OUT (1 << 1)
#define CARD_DETECT1 (1 << 2)
#define CARD_DETECT2 (1 << 3)
#define INP_ACK (1 << 4)
#define CARD_READY (1 << 5)
#define IO_READY (1 << 6)
#define B16_IO_PORT_SEL (1 << 7)
/* IRQ */
#define IRQ_STS 0x004
/* Interrupt Enable */
#define IRQ_EN 0x008
#define CARD_DETECT_IRQ (1)
#define STATUS_CHNG_IRQ (1 << 1)
#define MEM_MODE_IRQ (1 << 2)
#define IO_MODE_IRQ (1 << 3)
#define TRUE_IDE_MODE_IRQ (1 << 8)
#define PIO_XFER_ERR_IRQ (1 << 9)
#define BUF_AVAIL_IRQ (1 << 10)
#define XFER_DONE_IRQ (1 << 11)
#define IGNORED_IRQS (STATUS_CHNG_IRQ | MEM_MODE_IRQ | IO_MODE_IRQ |\
TRUE_IDE_MODE_IRQ)
#define TRUE_IDE_IRQS (CARD_DETECT_IRQ | PIO_XFER_ERR_IRQ |\
BUF_AVAIL_IRQ | XFER_DONE_IRQ)
/* Operation Mode */
#define OP_MODE 0x00C
#define CARD_MODE_MASK (0x3)
#define MEM_MODE (0x0)
#define IO_MODE (0x1)
#define TRUE_IDE_MODE (0x2)
#define CARD_TYPE_MASK (1 << 2)
#define CF_CARD (0)
#define CF_PLUS_CARD (1 << 2)
#define CARD_RESET (1 << 3)
#define CFHOST_ENB (1 << 4)
#define OUTPUTS_TRISTATE (1 << 5)
#define ULTRA_DMA_ENB (1 << 8)
#define MULTI_WORD_DMA_ENB (1 << 9)
#define DRQ_BLOCK_SIZE_MASK (0x3 << 11)
#define DRQ_BLOCK_SIZE_512 (0)
#define DRQ_BLOCK_SIZE_1024 (1 << 11)
#define DRQ_BLOCK_SIZE_2048 (2 << 11)
#define DRQ_BLOCK_SIZE_4096 (3 << 11)
/* CF Interface Clock Configuration */
#define CLK_CFG 0x010
#define CF_IF_CLK_MASK (0XF)
/* CF Timing Mode Configuration */
#define TM_CFG 0x014
#define MEM_MODE_TIMING_MASK (0x3)
#define MEM_MODE_TIMING_250NS (0x0)
#define MEM_MODE_TIMING_120NS (0x1)
#define MEM_MODE_TIMING_100NS (0x2)
#define MEM_MODE_TIMING_80NS (0x3)
#define IO_MODE_TIMING_MASK (0x3 << 2)
#define IO_MODE_TIMING_250NS (0x0 << 2)
#define IO_MODE_TIMING_120NS (0x1 << 2)
#define IO_MODE_TIMING_100NS (0x2 << 2)
#define IO_MODE_TIMING_80NS (0x3 << 2)
#define TRUEIDE_PIO_TIMING_MASK (0x7 << 4)
#define TRUEIDE_PIO_TIMING_SHIFT 4
#define TRUEIDE_MWORD_DMA_TIMING_MASK (0x7 << 7)
#define TRUEIDE_MWORD_DMA_TIMING_SHIFT 7
#define ULTRA_DMA_TIMING_MASK (0x7 << 10)
#define ULTRA_DMA_TIMING_SHIFT 10
/* CF Transfer Address */
#define XFER_ADDR 0x014
#define XFER_ADDR_MASK (0x7FF)
#define MAX_XFER_COUNT 0x20000u
/* Transfer Control */
#define XFER_CTR 0x01C
#define XFER_COUNT_MASK (0x3FFFF)
#define ADDR_INC_DISABLE (1 << 24)
#define XFER_WIDTH_MASK (1 << 25)
#define XFER_WIDTH_8B (0)
#define XFER_WIDTH_16B (1 << 25)
#define MEM_TYPE_MASK (1 << 26)
#define MEM_TYPE_COMMON (0)
#define MEM_TYPE_ATTRIBUTE (1 << 26)
#define MEM_IO_XFER_MASK (1 << 27)
#define MEM_XFER (0)
#define IO_XFER (1 << 27)
#define DMA_XFER_MODE (1 << 28)
#define AHB_BUS_NORMAL_PIO_OPRTN (~(1 << 29))
#define XFER_DIR_MASK (1 << 30)
#define XFER_READ (0)
#define XFER_WRITE (1 << 30)
#define XFER_START (1 << 31)
/* Write Data Port */
#define WRITE_PORT 0x024
/* Read Data Port */
#define READ_PORT 0x028
/* ATA Data Port */
#define ATA_DATA_PORT 0x030
#define ATA_DATA_PORT_MASK (0xFFFF)
/* ATA Error/Features */
#define ATA_ERR_FTR 0x034
/* ATA Sector Count */
#define ATA_SC 0x038
/* ATA Sector Number */
#define ATA_SN 0x03C
/* ATA Cylinder Low */
#define ATA_CL 0x040
/* ATA Cylinder High */
#define ATA_CH 0x044
/* ATA Select Card/Head */
#define ATA_SH 0x048
/* ATA Status-Command */
#define ATA_STS_CMD 0x04C
/* ATA Alternate Status/Device Control */
#define ATA_ASTS_DCTR 0x050
/* Extended Write Data Port 0x200-0x3FC */
#define EXT_WRITE_PORT 0x200
/* Extended Read Data Port 0x400-0x5FC */
#define EXT_READ_PORT 0x400
#define FIFO_SIZE 0x200u
/* Global Interrupt Status */
#define GIRQ_STS 0x800
/* Global Interrupt Status enable */
#define GIRQ_STS_EN 0x804
/* Global Interrupt Signal enable */
#define GIRQ_SGN_EN 0x808
#define GIRQ_CF (1)
#define GIRQ_XD (1 << 1)
/* Compact Flash Controller Dev Structure */
struct arasan_cf_dev {
/* pointer to ata_host structure */
struct ata_host *host;
/* clk structure */
struct clk *clk;
/* physical base address of controller */
dma_addr_t pbase;
/* virtual base address of controller */
void __iomem *vbase;
/* irq number*/
int irq;
/* status to be updated to framework regarding DMA transfer */
u8 dma_status;
/* Card is present or Not */
u8 card_present;
/* dma specific */
/* Completion for transfer complete interrupt from controller */
struct completion cf_completion;
/* Completion for DMA transfer complete. */
struct completion dma_completion;
/* Dma channel allocated */
struct dma_chan *dma_chan;
/* Mask for DMA transfers */
dma_cap_mask_t mask;
/* dma channel private data */
void *dma_priv;
/* DMA transfer work */
struct work_struct work;
/* DMA delayed finish work */
struct delayed_work dwork;
/* qc to be transferred using DMA */
struct ata_queued_cmd *qc;
};
static struct scsi_host_template arasan_cf_sht = {
ATA_BASE_SHT(DRIVER_NAME),
.sg_tablesize = SG_NONE,
.dma_boundary = 0xFFFFFFFFUL,
};
static void cf_dumpregs(struct arasan_cf_dev *acdev)
{
struct device *dev = acdev->host->dev;
dev_dbg(dev, ": =========== REGISTER DUMP ===========");
dev_dbg(dev, ": CFI_STS: %x", readl(acdev->vbase + CFI_STS));
dev_dbg(dev, ": IRQ_STS: %x", readl(acdev->vbase + IRQ_STS));
dev_dbg(dev, ": IRQ_EN: %x", readl(acdev->vbase + IRQ_EN));
dev_dbg(dev, ": OP_MODE: %x", readl(acdev->vbase + OP_MODE));
dev_dbg(dev, ": CLK_CFG: %x", readl(acdev->vbase + CLK_CFG));
dev_dbg(dev, ": TM_CFG: %x", readl(acdev->vbase + TM_CFG));
dev_dbg(dev, ": XFER_CTR: %x", readl(acdev->vbase + XFER_CTR));
dev_dbg(dev, ": GIRQ_STS: %x", readl(acdev->vbase + GIRQ_STS));
dev_dbg(dev, ": GIRQ_STS_EN: %x", readl(acdev->vbase + GIRQ_STS_EN));
dev_dbg(dev, ": GIRQ_SGN_EN: %x", readl(acdev->vbase + GIRQ_SGN_EN));
dev_dbg(dev, ": =====================================");
}
/* Enable/Disable global interrupts shared between CF and XD ctrlr. */
static void cf_ginterrupt_enable(struct arasan_cf_dev *acdev, bool enable)
{
/* enable should be 0 or 1 */
writel(enable, acdev->vbase + GIRQ_STS_EN);
writel(enable, acdev->vbase + GIRQ_SGN_EN);
}
/* Enable/Disable CF interrupts */
static inline void
cf_interrupt_enable(struct arasan_cf_dev *acdev, u32 mask, bool enable)
{
u32 val = readl(acdev->vbase + IRQ_EN);
/* clear & enable/disable irqs */
if (enable) {
writel(mask, acdev->vbase + IRQ_STS);
writel(val | mask, acdev->vbase + IRQ_EN);
} else
writel(val & ~mask, acdev->vbase + IRQ_EN);
}
static inline void cf_card_reset(struct arasan_cf_dev *acdev)
{
u32 val = readl(acdev->vbase + OP_MODE);
writel(val | CARD_RESET, acdev->vbase + OP_MODE);
udelay(200);
writel(val & ~CARD_RESET, acdev->vbase + OP_MODE);
}
static inline void cf_ctrl_reset(struct arasan_cf_dev *acdev)
{
writel(readl(acdev->vbase + OP_MODE) & ~CFHOST_ENB,
acdev->vbase + OP_MODE);
writel(readl(acdev->vbase + OP_MODE) | CFHOST_ENB,
acdev->vbase + OP_MODE);
}
static void cf_card_detect(struct arasan_cf_dev *acdev, bool hotplugged)
{
struct ata_port *ap = acdev->host->ports[0];
struct ata_eh_info *ehi = &ap->link.eh_info;
u32 val = readl(acdev->vbase + CFI_STS);
/* Both CD1 & CD2 should be low if card inserted completely */
if (!(val & (CARD_DETECT1 | CARD_DETECT2))) {
if (acdev->card_present)
return;
acdev->card_present = 1;
cf_card_reset(acdev);
} else {
if (!acdev->card_present)
return;
acdev->card_present = 0;
}
if (hotplugged) {
ata_ehi_hotplugged(ehi);
ata_port_freeze(ap);
}
}
static int cf_init(struct arasan_cf_dev *acdev)
{
struct arasan_cf_pdata *pdata = dev_get_platdata(acdev->host->dev);
unsigned long flags;
int ret = 0;
ret = clk_prepare_enable(acdev->clk);
if (ret) {
dev_dbg(acdev->host->dev, "clock enable failed");
return ret;
}
spin_lock_irqsave(&acdev->host->lock, flags);
/* configure CF interface clock */
writel((pdata->cf_if_clk <= CF_IF_CLK_200M) ? pdata->cf_if_clk :
CF_IF_CLK_166M, acdev->vbase + CLK_CFG);
writel(TRUE_IDE_MODE | CFHOST_ENB, acdev->vbase + OP_MODE);
cf_interrupt_enable(acdev, CARD_DETECT_IRQ, 1);
cf_ginterrupt_enable(acdev, 1);
spin_unlock_irqrestore(&acdev->host->lock, flags);
return ret;
}
static void cf_exit(struct arasan_cf_dev *acdev)
{
unsigned long flags;
spin_lock_irqsave(&acdev->host->lock, flags);
cf_ginterrupt_enable(acdev, 0);
cf_interrupt_enable(acdev, TRUE_IDE_IRQS, 0);
cf_card_reset(acdev);
writel(readl(acdev->vbase + OP_MODE) & ~CFHOST_ENB,
acdev->vbase + OP_MODE);
spin_unlock_irqrestore(&acdev->host->lock, flags);
clk_disable_unprepare(acdev->clk);
}
static void dma_callback(void *dev)
{
struct arasan_cf_dev *acdev = (struct arasan_cf_dev *) dev;
complete(&acdev->dma_completion);
}
static bool filter(struct dma_chan *chan, void *slave)
{
chan->private = slave;
return true;
}
static inline void dma_complete(struct arasan_cf_dev *acdev)
{
struct ata_queued_cmd *qc = acdev->qc;
unsigned long flags;
acdev->qc = NULL;
ata_sff_interrupt(acdev->irq, acdev->host);
spin_lock_irqsave(&acdev->host->lock, flags);
if (unlikely(qc->err_mask) && ata_is_dma(qc->tf.protocol))
ata_ehi_push_desc(&qc->ap->link.eh_info, "DMA Failed: Timeout");
spin_unlock_irqrestore(&acdev->host->lock, flags);
}
static inline int wait4buf(struct arasan_cf_dev *acdev)
{
if (!wait_for_completion_timeout(&acdev->cf_completion, TIMEOUT)) {
u32 rw = acdev->qc->tf.flags & ATA_TFLAG_WRITE;
dev_err(acdev->host->dev, "%s TimeOut", rw ? "write" : "read");
return -ETIMEDOUT;
}
/* Check if PIO Error interrupt has occurred */
if (acdev->dma_status & ATA_DMA_ERR)
return -EAGAIN;
return 0;
}
static int
dma_xfer(struct arasan_cf_dev *acdev, dma_addr_t src, dma_addr_t dest, u32 len)
{
struct dma_async_tx_descriptor *tx;
struct dma_chan *chan = acdev->dma_chan;
dma_cookie_t cookie;
unsigned long flags = DMA_PREP_INTERRUPT | DMA_COMPL_SKIP_SRC_UNMAP |
DMA_COMPL_SKIP_DEST_UNMAP;
int ret = 0;
tx = chan->device->device_prep_dma_memcpy(chan, dest, src, len, flags);
if (!tx) {
dev_err(acdev->host->dev, "device_prep_dma_memcpy failed\n");
return -EAGAIN;
}
tx->callback = dma_callback;
tx->callback_param = acdev;
cookie = tx->tx_submit(tx);
ret = dma_submit_error(cookie);
if (ret) {
dev_err(acdev->host->dev, "dma_submit_error\n");
return ret;
}
chan->device->device_issue_pending(chan);
/* Wait for DMA to complete */
if (!wait_for_completion_timeout(&acdev->dma_completion, TIMEOUT)) {
chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
dev_err(acdev->host->dev, "wait_for_completion_timeout\n");
return -ETIMEDOUT;
}
return ret;
}
static int sg_xfer(struct arasan_cf_dev *acdev, struct scatterlist *sg)
{
dma_addr_t dest = 0, src = 0;
u32 xfer_cnt, sglen, dma_len, xfer_ctr;
u32 write = acdev->qc->tf.flags & ATA_TFLAG_WRITE;
unsigned long flags;
int ret = 0;
sglen = sg_dma_len(sg);
if (write) {
src = sg_dma_address(sg);
dest = acdev->pbase + EXT_WRITE_PORT;
} else {
dest = sg_dma_address(sg);
src = acdev->pbase + EXT_READ_PORT;
}
/*
* For each sg:
* MAX_XFER_COUNT data will be transferred before we get transfer
* complete interrupt. Between after FIFO_SIZE data
* buffer available interrupt will be generated. At this time we will
* fill FIFO again: max FIFO_SIZE data.
*/
while (sglen) {
xfer_cnt = min(sglen, MAX_XFER_COUNT);
spin_lock_irqsave(&acdev->host->lock, flags);
xfer_ctr = readl(acdev->vbase + XFER_CTR) &
~XFER_COUNT_MASK;
writel(xfer_ctr | xfer_cnt | XFER_START,
acdev->vbase + XFER_CTR);
spin_unlock_irqrestore(&acdev->host->lock, flags);
/* continue dma xfers until current sg is completed */
while (xfer_cnt) {
/* wait for read to complete */
if (!write) {
ret = wait4buf(acdev);
if (ret)
goto fail;
}
/* read/write FIFO in chunk of FIFO_SIZE */
dma_len = min(xfer_cnt, FIFO_SIZE);
ret = dma_xfer(acdev, src, dest, dma_len);
if (ret) {
dev_err(acdev->host->dev, "dma failed");
goto fail;
}
if (write)
src += dma_len;
else
dest += dma_len;
sglen -= dma_len;
xfer_cnt -= dma_len;
/* wait for write to complete */
if (write) {
ret = wait4buf(acdev);
if (ret)
goto fail;
}
}
}
fail:
spin_lock_irqsave(&acdev->host->lock, flags);
writel(readl(acdev->vbase + XFER_CTR) & ~XFER_START,
acdev->vbase + XFER_CTR);
spin_unlock_irqrestore(&acdev->host->lock, flags);
return ret;
}
/*
* This routine uses External DMA controller to read/write data to FIFO of CF
* controller. There are two xfer related interrupt supported by CF controller:
* - buf_avail: This interrupt is generated as soon as we have buffer of 512
* bytes available for reading or empty buffer available for writing.
* - xfer_done: This interrupt is generated on transfer of "xfer_size" amount of
* data to/from FIFO. xfer_size is programmed in XFER_CTR register.
*
* Max buffer size = FIFO_SIZE = 512 Bytes.
* Max xfer_size = MAX_XFER_COUNT = 256 KB.
*/
static void data_xfer(struct work_struct *work)
{
struct arasan_cf_dev *acdev = container_of(work, struct arasan_cf_dev,
work);
struct ata_queued_cmd *qc = acdev->qc;
struct scatterlist *sg;
unsigned long flags;
u32 temp;
int ret = 0;
/* request dma channels */
/* dma_request_channel may sleep, so calling from process context */
acdev->dma_chan = dma_request_channel(acdev->mask, filter,
acdev->dma_priv);
if (!acdev->dma_chan) {
dev_err(acdev->host->dev, "Unable to get dma_chan\n");
goto chan_request_fail;
}
for_each_sg(qc->sg, sg, qc->n_elem, temp) {
ret = sg_xfer(acdev, sg);
if (ret)
break;
}
dma_release_channel(acdev->dma_chan);
/* data xferred successfully */
if (!ret) {
u32 status;
spin_lock_irqsave(&acdev->host->lock, flags);
status = ioread8(qc->ap->ioaddr.altstatus_addr);
spin_unlock_irqrestore(&acdev->host->lock, flags);
if (status & (ATA_BUSY | ATA_DRQ)) {
ata_sff_queue_delayed_work(&acdev->dwork, 1);
return;
}
goto sff_intr;
}
cf_dumpregs(acdev);
chan_request_fail:
spin_lock_irqsave(&acdev->host->lock, flags);
/* error when transferring data to/from memory */
qc->err_mask |= AC_ERR_HOST_BUS;
qc->ap->hsm_task_state = HSM_ST_ERR;
cf_ctrl_reset(acdev);
spin_unlock_irqrestore(qc->ap->lock, flags);
sff_intr:
dma_complete(acdev);
}
static void delayed_finish(struct work_struct *work)
{
struct arasan_cf_dev *acdev = container_of(work, struct arasan_cf_dev,
dwork.work);
struct ata_queued_cmd *qc = acdev->qc;
unsigned long flags;
u8 status;
spin_lock_irqsave(&acdev->host->lock, flags);
status = ioread8(qc->ap->ioaddr.altstatus_addr);
spin_unlock_irqrestore(&acdev->host->lock, flags);
if (status & (ATA_BUSY | ATA_DRQ))
ata_sff_queue_delayed_work(&acdev->dwork, 1);
else
dma_complete(acdev);
}
static irqreturn_t arasan_cf_interrupt(int irq, void *dev)
{
struct arasan_cf_dev *acdev = ((struct ata_host *)dev)->private_data;
unsigned long flags;
u32 irqsts;
irqsts = readl(acdev->vbase + GIRQ_STS);
if (!(irqsts & GIRQ_CF))
return IRQ_NONE;
spin_lock_irqsave(&acdev->host->lock, flags);
irqsts = readl(acdev->vbase + IRQ_STS);
writel(irqsts, acdev->vbase + IRQ_STS); /* clear irqs */
writel(GIRQ_CF, acdev->vbase + GIRQ_STS); /* clear girqs */
/* handle only relevant interrupts */
irqsts &= ~IGNORED_IRQS;
if (irqsts & CARD_DETECT_IRQ) {
cf_card_detect(acdev, 1);
spin_unlock_irqrestore(&acdev->host->lock, flags);
return IRQ_HANDLED;
}
if (irqsts & PIO_XFER_ERR_IRQ) {
acdev->dma_status = ATA_DMA_ERR;
writel(readl(acdev->vbase + XFER_CTR) & ~XFER_START,
acdev->vbase + XFER_CTR);
spin_unlock_irqrestore(&acdev->host->lock, flags);
complete(&acdev->cf_completion);
dev_err(acdev->host->dev, "pio xfer err irq\n");
return IRQ_HANDLED;
}
spin_unlock_irqrestore(&acdev->host->lock, flags);
if (irqsts & BUF_AVAIL_IRQ) {
complete(&acdev->cf_completion);
return IRQ_HANDLED;
}
if (irqsts & XFER_DONE_IRQ) {
struct ata_queued_cmd *qc = acdev->qc;
/* Send Complete only for write */
if (qc->tf.flags & ATA_TFLAG_WRITE)
complete(&acdev->cf_completion);
}
return IRQ_HANDLED;
}
static void arasan_cf_freeze(struct ata_port *ap)
{
struct arasan_cf_dev *acdev = ap->host->private_data;
/* stop transfer and reset controller */
writel(readl(acdev->vbase + XFER_CTR) & ~XFER_START,
acdev->vbase + XFER_CTR);
cf_ctrl_reset(acdev);
acdev->dma_status = ATA_DMA_ERR;
ata_sff_dma_pause(ap);
ata_sff_freeze(ap);
}
void arasan_cf_error_handler(struct ata_port *ap)
{
struct arasan_cf_dev *acdev = ap->host->private_data;
/*
* DMA transfers using an external DMA controller may be scheduled.
* Abort them before handling error. Refer data_xfer() for further
* details.
*/
cancel_work_sync(&acdev->work);
cancel_delayed_work_sync(&acdev->dwork);
return ata_sff_error_handler(ap);
}
static void arasan_cf_dma_start(struct arasan_cf_dev *acdev)
{
u32 xfer_ctr = readl(acdev->vbase + XFER_CTR) & ~XFER_DIR_MASK;
u32 write = acdev->qc->tf.flags & ATA_TFLAG_WRITE;
xfer_ctr |= write ? XFER_WRITE : XFER_READ;
writel(xfer_ctr, acdev->vbase + XFER_CTR);
acdev->qc->ap->ops->sff_exec_command(acdev->qc->ap, &acdev->qc->tf);
ata_sff_queue_work(&acdev->work);
}
unsigned int arasan_cf_qc_issue(struct ata_queued_cmd *qc)
{
struct ata_port *ap = qc->ap;
struct arasan_cf_dev *acdev = ap->host->private_data;
/* defer PIO handling to sff_qc_issue */
if (!ata_is_dma(qc->tf.protocol))
return ata_sff_qc_issue(qc);
/* select the device */
ata_wait_idle(ap);
ata_sff_dev_select(ap, qc->dev->devno);
ata_wait_idle(ap);
/* start the command */
switch (qc->tf.protocol) {
case ATA_PROT_DMA:
WARN_ON_ONCE(qc->tf.flags & ATA_TFLAG_POLLING);
ap->ops->sff_tf_load(ap, &qc->tf);
acdev->dma_status = 0;
acdev->qc = qc;
arasan_cf_dma_start(acdev);
ap->hsm_task_state = HSM_ST_LAST;
break;
default:
WARN_ON(1);
return AC_ERR_SYSTEM;
}
return 0;
}
static void arasan_cf_set_piomode(struct ata_port *ap, struct ata_device *adev)
{
struct arasan_cf_dev *acdev = ap->host->private_data;
u8 pio = adev->pio_mode - XFER_PIO_0;
unsigned long flags;
u32 val;
/* Arasan ctrl supports Mode0 -> Mode6 */
if (pio > 6) {
dev_err(ap->dev, "Unknown PIO mode\n");
return;
}
spin_lock_irqsave(&acdev->host->lock, flags);
val = readl(acdev->vbase + OP_MODE) &
~(ULTRA_DMA_ENB | MULTI_WORD_DMA_ENB | DRQ_BLOCK_SIZE_MASK);
writel(val, acdev->vbase + OP_MODE);
val = readl(acdev->vbase + TM_CFG) & ~TRUEIDE_PIO_TIMING_MASK;
val |= pio << TRUEIDE_PIO_TIMING_SHIFT;
writel(val, acdev->vbase + TM_CFG);
cf_interrupt_enable(acdev, BUF_AVAIL_IRQ | XFER_DONE_IRQ, 0);
cf_interrupt_enable(acdev, PIO_XFER_ERR_IRQ, 1);
spin_unlock_irqrestore(&acdev->host->lock, flags);
}
static void arasan_cf_set_dmamode(struct ata_port *ap, struct ata_device *adev)
{
struct arasan_cf_dev *acdev = ap->host->private_data;
u32 opmode, tmcfg, dma_mode = adev->dma_mode;
unsigned long flags;
spin_lock_irqsave(&acdev->host->lock, flags);
opmode = readl(acdev->vbase + OP_MODE) &
~(MULTI_WORD_DMA_ENB | ULTRA_DMA_ENB);
tmcfg = readl(acdev->vbase + TM_CFG);
if ((dma_mode >= XFER_UDMA_0) && (dma_mode <= XFER_UDMA_6)) {
opmode |= ULTRA_DMA_ENB;
tmcfg &= ~ULTRA_DMA_TIMING_MASK;
tmcfg |= (dma_mode - XFER_UDMA_0) << ULTRA_DMA_TIMING_SHIFT;
} else if ((dma_mode >= XFER_MW_DMA_0) && (dma_mode <= XFER_MW_DMA_4)) {
opmode |= MULTI_WORD_DMA_ENB;
tmcfg &= ~TRUEIDE_MWORD_DMA_TIMING_MASK;
tmcfg |= (dma_mode - XFER_MW_DMA_0) <<
TRUEIDE_MWORD_DMA_TIMING_SHIFT;
} else {
dev_err(ap->dev, "Unknown DMA mode\n");
spin_unlock_irqrestore(&acdev->host->lock, flags);
return;
}
writel(opmode, acdev->vbase + OP_MODE);
writel(tmcfg, acdev->vbase + TM_CFG);
writel(DMA_XFER_MODE, acdev->vbase + XFER_CTR);
cf_interrupt_enable(acdev, PIO_XFER_ERR_IRQ, 0);
cf_interrupt_enable(acdev, BUF_AVAIL_IRQ | XFER_DONE_IRQ, 1);
spin_unlock_irqrestore(&acdev->host->lock, flags);
}
static struct ata_port_operations arasan_cf_ops = {
.inherits = &ata_sff_port_ops,
.freeze = arasan_cf_freeze,
.error_handler = arasan_cf_error_handler,
.qc_issue = arasan_cf_qc_issue,
.set_piomode = arasan_cf_set_piomode,
.set_dmamode = arasan_cf_set_dmamode,
};
static int __devinit arasan_cf_probe(struct platform_device *pdev)
{
struct arasan_cf_dev *acdev;
struct arasan_cf_pdata *pdata = dev_get_platdata(&pdev->dev);
struct ata_host *host;
struct ata_port *ap;
struct resource *res;
irq_handler_t irq_handler = NULL;
int ret = 0;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -EINVAL;
if (!devm_request_mem_region(&pdev->dev, res->start, resource_size(res),
DRIVER_NAME)) {
dev_warn(&pdev->dev, "Failed to get memory region resource\n");
return -ENOENT;
}
acdev = devm_kzalloc(&pdev->dev, sizeof(*acdev), GFP_KERNEL);
if (!acdev) {
dev_warn(&pdev->dev, "kzalloc fail\n");
return -ENOMEM;
}
/* if irq is 0, support only PIO */
acdev->irq = platform_get_irq(pdev, 0);
if (acdev->irq)
irq_handler = arasan_cf_interrupt;
else
pdata->quirk |= CF_BROKEN_MWDMA | CF_BROKEN_UDMA;
acdev->pbase = res->start;
acdev->vbase = devm_ioremap_nocache(&pdev->dev, res->start,
resource_size(res));
if (!acdev->vbase) {
dev_warn(&pdev->dev, "ioremap fail\n");
return -ENOMEM;
}
acdev->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(acdev->clk)) {
dev_warn(&pdev->dev, "Clock not found\n");
return PTR_ERR(acdev->clk);
}
/* allocate host */
host = ata_host_alloc(&pdev->dev, 1);
if (!host) {
ret = -ENOMEM;
dev_warn(&pdev->dev, "alloc host fail\n");
goto free_clk;
}
ap = host->ports[0];
host->private_data = acdev;
acdev->host = host;
ap->ops = &arasan_cf_ops;
ap->pio_mask = ATA_PIO6;
ap->mwdma_mask = ATA_MWDMA4;
ap->udma_mask = ATA_UDMA6;
init_completion(&acdev->cf_completion);
init_completion(&acdev->dma_completion);
INIT_WORK(&acdev->work, data_xfer);
INIT_DELAYED_WORK(&acdev->dwork, delayed_finish);
dma_cap_set(DMA_MEMCPY, acdev->mask);
acdev->dma_priv = pdata->dma_priv;
/* Handle platform specific quirks */
if (pdata->quirk) {
if (pdata->quirk & CF_BROKEN_PIO) {
ap->ops->set_piomode = NULL;
ap->pio_mask = 0;
}
if (pdata->quirk & CF_BROKEN_MWDMA)
ap->mwdma_mask = 0;
if (pdata->quirk & CF_BROKEN_UDMA)
ap->udma_mask = 0;
}
ap->flags |= ATA_FLAG_PIO_POLLING | ATA_FLAG_NO_ATAPI;
ap->ioaddr.cmd_addr = acdev->vbase + ATA_DATA_PORT;
ap->ioaddr.data_addr = acdev->vbase + ATA_DATA_PORT;
ap->ioaddr.error_addr = acdev->vbase + ATA_ERR_FTR;
ap->ioaddr.feature_addr = acdev->vbase + ATA_ERR_FTR;
ap->ioaddr.nsect_addr = acdev->vbase + ATA_SC;
ap->ioaddr.lbal_addr = acdev->vbase + ATA_SN;
ap->ioaddr.lbam_addr = acdev->vbase + ATA_CL;
ap->ioaddr.lbah_addr = acdev->vbase + ATA_CH;
ap->ioaddr.device_addr = acdev->vbase + ATA_SH;
ap->ioaddr.status_addr = acdev->vbase + ATA_STS_CMD;
ap->ioaddr.command_addr = acdev->vbase + ATA_STS_CMD;
ap->ioaddr.altstatus_addr = acdev->vbase + ATA_ASTS_DCTR;
ap->ioaddr.ctl_addr = acdev->vbase + ATA_ASTS_DCTR;
ata_port_desc(ap, "phy_addr %llx virt_addr %p",
(unsigned long long) res->start, acdev->vbase);
ret = cf_init(acdev);
if (ret)
goto free_clk;
cf_card_detect(acdev, 0);
return ata_host_activate(host, acdev->irq, irq_handler, 0,
&arasan_cf_sht);
free_clk:
clk_put(acdev->clk);
return ret;
}
static int __devexit arasan_cf_remove(struct platform_device *pdev)
{
struct ata_host *host = dev_get_drvdata(&pdev->dev);
struct arasan_cf_dev *acdev = host->ports[0]->private_data;
ata_host_detach(host);
cf_exit(acdev);
clk_put(acdev->clk);
return 0;
}
#ifdef CONFIG_PM
static int arasan_cf_suspend(struct device *dev)
{
struct ata_host *host = dev_get_drvdata(dev);
struct arasan_cf_dev *acdev = host->ports[0]->private_data;
if (acdev->dma_chan)
acdev->dma_chan->device->device_control(acdev->dma_chan,
DMA_TERMINATE_ALL, 0);
cf_exit(acdev);
return ata_host_suspend(host, PMSG_SUSPEND);
}
static int arasan_cf_resume(struct device *dev)
{
struct ata_host *host = dev_get_drvdata(dev);
struct arasan_cf_dev *acdev = host->ports[0]->private_data;
cf_init(acdev);
ata_host_resume(host);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(arasan_cf_pm_ops, arasan_cf_suspend, arasan_cf_resume);
#ifdef CONFIG_OF
static const struct of_device_id arasan_cf_id_table[] = {
{ .compatible = "arasan,cf-spear1340" },
{}
};
MODULE_DEVICE_TABLE(of, arasan_cf_id_table);
#endif
static struct platform_driver arasan_cf_driver = {
.probe = arasan_cf_probe,
.remove = __devexit_p(arasan_cf_remove),
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
.pm = &arasan_cf_pm_ops,
.of_match_table = of_match_ptr(arasan_cf_id_table),
},
};
module_platform_driver(arasan_cf_driver);
MODULE_AUTHOR("Viresh Kumar <viresh.linux@gmail.com>");
MODULE_DESCRIPTION("Arasan ATA Compact Flash driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" DRIVER_NAME);