mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 12:05:10 +07:00
3e76ca9561
Commit 8c0d3a02c1
("PCI: Add accessors for PCI Express Capability") added
accessors for the PCI Express Capability so that drivers didn't need to be
aware of differences between v1 and v2 of the PCI Express Capability.
Replace pci_read_config_word() and pci_write_config_word() calls with
pcie_capability_read_word() and pcie_capability_write_word().
Signed-off-by: Frederick Lawler <fred@fredlawl.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
1720 lines
45 KiB
C
1720 lines
45 KiB
C
/*
|
|
* This file is part of the Chelsio FCoE driver for Linux.
|
|
*
|
|
* Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
|
|
*
|
|
* This software is available to you under a choice of one of two
|
|
* licenses. You may choose to be licensed under the terms of the GNU
|
|
* General Public License (GPL) Version 2, available from the file
|
|
* COPYING in the main directory of this source tree, or the
|
|
* OpenIB.org BSD license below:
|
|
*
|
|
* Redistribution and use in source and binary forms, with or
|
|
* without modification, are permitted provided that the following
|
|
* conditions are met:
|
|
*
|
|
* - Redistributions of source code must retain the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
|
|
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
|
|
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
|
|
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
|
|
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
|
|
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
|
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/string.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/page.h>
|
|
#include <linux/cache.h>
|
|
|
|
#include "t4_values.h"
|
|
#include "csio_hw.h"
|
|
#include "csio_wr.h"
|
|
#include "csio_mb.h"
|
|
#include "csio_defs.h"
|
|
|
|
int csio_intr_coalesce_cnt; /* value:SGE_INGRESS_RX_THRESHOLD[0] */
|
|
static int csio_sge_thresh_reg; /* SGE_INGRESS_RX_THRESHOLD[0] */
|
|
|
|
int csio_intr_coalesce_time = 10; /* value:SGE_TIMER_VALUE_1 */
|
|
static int csio_sge_timer_reg = 1;
|
|
|
|
#define CSIO_SET_FLBUF_SIZE(_hw, _reg, _val) \
|
|
csio_wr_reg32((_hw), (_val), SGE_FL_BUFFER_SIZE##_reg##_A)
|
|
|
|
static void
|
|
csio_get_flbuf_size(struct csio_hw *hw, struct csio_sge *sge, uint32_t reg)
|
|
{
|
|
sge->sge_fl_buf_size[reg] = csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE0_A +
|
|
reg * sizeof(uint32_t));
|
|
}
|
|
|
|
/* Free list buffer size */
|
|
static inline uint32_t
|
|
csio_wr_fl_bufsz(struct csio_sge *sge, struct csio_dma_buf *buf)
|
|
{
|
|
return sge->sge_fl_buf_size[buf->paddr & 0xF];
|
|
}
|
|
|
|
/* Size of the egress queue status page */
|
|
static inline uint32_t
|
|
csio_wr_qstat_pgsz(struct csio_hw *hw)
|
|
{
|
|
return (hw->wrm.sge.sge_control & EGRSTATUSPAGESIZE_F) ? 128 : 64;
|
|
}
|
|
|
|
/* Ring freelist doorbell */
|
|
static inline void
|
|
csio_wr_ring_fldb(struct csio_hw *hw, struct csio_q *flq)
|
|
{
|
|
/*
|
|
* Ring the doorbell only when we have atleast CSIO_QCREDIT_SZ
|
|
* number of bytes in the freelist queue. This translates to atleast
|
|
* 8 freelist buffer pointers (since each pointer is 8 bytes).
|
|
*/
|
|
if (flq->inc_idx >= 8) {
|
|
csio_wr_reg32(hw, DBPRIO_F | QID_V(flq->un.fl.flid) |
|
|
PIDX_T5_V(flq->inc_idx / 8) | DBTYPE_F,
|
|
MYPF_REG(SGE_PF_KDOORBELL_A));
|
|
flq->inc_idx &= 7;
|
|
}
|
|
}
|
|
|
|
/* Write a 0 cidx increment value to enable SGE interrupts for this queue */
|
|
static void
|
|
csio_wr_sge_intr_enable(struct csio_hw *hw, uint16_t iqid)
|
|
{
|
|
csio_wr_reg32(hw, CIDXINC_V(0) |
|
|
INGRESSQID_V(iqid) |
|
|
TIMERREG_V(X_TIMERREG_RESTART_COUNTER),
|
|
MYPF_REG(SGE_PF_GTS_A));
|
|
}
|
|
|
|
/*
|
|
* csio_wr_fill_fl - Populate the FL buffers of a FL queue.
|
|
* @hw: HW module.
|
|
* @flq: Freelist queue.
|
|
*
|
|
* Fill up freelist buffer entries with buffers of size specified
|
|
* in the size register.
|
|
*
|
|
*/
|
|
static int
|
|
csio_wr_fill_fl(struct csio_hw *hw, struct csio_q *flq)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
__be64 *d = (__be64 *)(flq->vstart);
|
|
struct csio_dma_buf *buf = &flq->un.fl.bufs[0];
|
|
uint64_t paddr;
|
|
int sreg = flq->un.fl.sreg;
|
|
int n = flq->credits;
|
|
|
|
while (n--) {
|
|
buf->len = sge->sge_fl_buf_size[sreg];
|
|
buf->vaddr = dma_alloc_coherent(&hw->pdev->dev, buf->len,
|
|
&buf->paddr, GFP_KERNEL);
|
|
if (!buf->vaddr) {
|
|
csio_err(hw, "Could only fill %d buffers!\n", n + 1);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
paddr = buf->paddr | (sreg & 0xF);
|
|
|
|
*d++ = cpu_to_be64(paddr);
|
|
buf++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_update_fl -
|
|
* @hw: HW module.
|
|
* @flq: Freelist queue.
|
|
*
|
|
*
|
|
*/
|
|
static inline void
|
|
csio_wr_update_fl(struct csio_hw *hw, struct csio_q *flq, uint16_t n)
|
|
{
|
|
|
|
flq->inc_idx += n;
|
|
flq->pidx += n;
|
|
if (unlikely(flq->pidx >= flq->credits))
|
|
flq->pidx -= (uint16_t)flq->credits;
|
|
|
|
CSIO_INC_STATS(flq, n_flq_refill);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_alloc_q - Allocate a WR queue and initialize it.
|
|
* @hw: HW module
|
|
* @qsize: Size of the queue in bytes
|
|
* @wrsize: Since of WR in this queue, if fixed.
|
|
* @type: Type of queue (Ingress/Egress/Freelist)
|
|
* @owner: Module that owns this queue.
|
|
* @nflb: Number of freelist buffers for FL.
|
|
* @sreg: What is the FL buffer size register?
|
|
* @iq_int_handler: Ingress queue handler in INTx mode.
|
|
*
|
|
* This function allocates and sets up a queue for the caller
|
|
* of size qsize, aligned at the required boundary. This is subject to
|
|
* be free entries being available in the queue array. If one is found,
|
|
* it is initialized with the allocated queue, marked as being used (owner),
|
|
* and a handle returned to the caller in form of the queue's index
|
|
* into the q_arr array.
|
|
* If user has indicated a freelist (by specifying nflb > 0), create
|
|
* another queue (with its own index into q_arr) for the freelist. Allocate
|
|
* memory for DMA buffer metadata (vaddr, len etc). Save off the freelist
|
|
* idx in the ingress queue's flq.idx. This is how a Freelist is associated
|
|
* with its owning ingress queue.
|
|
*/
|
|
int
|
|
csio_wr_alloc_q(struct csio_hw *hw, uint32_t qsize, uint32_t wrsize,
|
|
uint16_t type, void *owner, uint32_t nflb, int sreg,
|
|
iq_handler_t iq_intx_handler)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_q *q, *flq;
|
|
int free_idx = wrm->free_qidx;
|
|
int ret_idx = free_idx;
|
|
uint32_t qsz;
|
|
int flq_idx;
|
|
|
|
if (free_idx >= wrm->num_q) {
|
|
csio_err(hw, "No more free queues.\n");
|
|
return -1;
|
|
}
|
|
|
|
switch (type) {
|
|
case CSIO_EGRESS:
|
|
qsz = ALIGN(qsize, CSIO_QCREDIT_SZ) + csio_wr_qstat_pgsz(hw);
|
|
break;
|
|
case CSIO_INGRESS:
|
|
switch (wrsize) {
|
|
case 16:
|
|
case 32:
|
|
case 64:
|
|
case 128:
|
|
break;
|
|
default:
|
|
csio_err(hw, "Invalid Ingress queue WR size:%d\n",
|
|
wrsize);
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Number of elements must be a multiple of 16
|
|
* So this includes status page size
|
|
*/
|
|
qsz = ALIGN(qsize/wrsize, 16) * wrsize;
|
|
|
|
break;
|
|
case CSIO_FREELIST:
|
|
qsz = ALIGN(qsize/wrsize, 8) * wrsize + csio_wr_qstat_pgsz(hw);
|
|
break;
|
|
default:
|
|
csio_err(hw, "Invalid queue type: 0x%x\n", type);
|
|
return -1;
|
|
}
|
|
|
|
q = wrm->q_arr[free_idx];
|
|
|
|
q->vstart = dma_alloc_coherent(&hw->pdev->dev, qsz, &q->pstart,
|
|
GFP_KERNEL);
|
|
if (!q->vstart) {
|
|
csio_err(hw,
|
|
"Failed to allocate DMA memory for "
|
|
"queue at id: %d size: %d\n", free_idx, qsize);
|
|
return -1;
|
|
}
|
|
|
|
q->type = type;
|
|
q->owner = owner;
|
|
q->pidx = q->cidx = q->inc_idx = 0;
|
|
q->size = qsz;
|
|
q->wr_sz = wrsize; /* If using fixed size WRs */
|
|
|
|
wrm->free_qidx++;
|
|
|
|
if (type == CSIO_INGRESS) {
|
|
/* Since queue area is set to zero */
|
|
q->un.iq.genbit = 1;
|
|
|
|
/*
|
|
* Ingress queue status page size is always the size of
|
|
* the ingress queue entry.
|
|
*/
|
|
q->credits = (qsz - q->wr_sz) / q->wr_sz;
|
|
q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
|
|
- q->wr_sz);
|
|
|
|
/* Allocate memory for FL if requested */
|
|
if (nflb > 0) {
|
|
flq_idx = csio_wr_alloc_q(hw, nflb * sizeof(__be64),
|
|
sizeof(__be64), CSIO_FREELIST,
|
|
owner, 0, sreg, NULL);
|
|
if (flq_idx == -1) {
|
|
csio_err(hw,
|
|
"Failed to allocate FL queue"
|
|
" for IQ idx:%d\n", free_idx);
|
|
return -1;
|
|
}
|
|
|
|
/* Associate the new FL with the Ingress quue */
|
|
q->un.iq.flq_idx = flq_idx;
|
|
|
|
flq = wrm->q_arr[q->un.iq.flq_idx];
|
|
flq->un.fl.bufs = kcalloc(flq->credits,
|
|
sizeof(struct csio_dma_buf),
|
|
GFP_KERNEL);
|
|
if (!flq->un.fl.bufs) {
|
|
csio_err(hw,
|
|
"Failed to allocate FL queue bufs"
|
|
" for IQ idx:%d\n", free_idx);
|
|
return -1;
|
|
}
|
|
|
|
flq->un.fl.packen = 0;
|
|
flq->un.fl.offset = 0;
|
|
flq->un.fl.sreg = sreg;
|
|
|
|
/* Fill up the free list buffers */
|
|
if (csio_wr_fill_fl(hw, flq))
|
|
return -1;
|
|
|
|
/*
|
|
* Make sure in a FLQ, atleast 1 credit (8 FL buffers)
|
|
* remains unpopulated,otherwise HW thinks
|
|
* FLQ is empty.
|
|
*/
|
|
flq->pidx = flq->inc_idx = flq->credits - 8;
|
|
} else {
|
|
q->un.iq.flq_idx = -1;
|
|
}
|
|
|
|
/* Associate the IQ INTx handler. */
|
|
q->un.iq.iq_intx_handler = iq_intx_handler;
|
|
|
|
csio_q_iqid(hw, ret_idx) = CSIO_MAX_QID;
|
|
|
|
} else if (type == CSIO_EGRESS) {
|
|
q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / CSIO_QCREDIT_SZ;
|
|
q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
|
|
- csio_wr_qstat_pgsz(hw));
|
|
csio_q_eqid(hw, ret_idx) = CSIO_MAX_QID;
|
|
} else { /* Freelist */
|
|
q->credits = (qsz - csio_wr_qstat_pgsz(hw)) / sizeof(__be64);
|
|
q->vwrap = (void *)((uintptr_t)(q->vstart) + qsz
|
|
- csio_wr_qstat_pgsz(hw));
|
|
csio_q_flid(hw, ret_idx) = CSIO_MAX_QID;
|
|
}
|
|
|
|
return ret_idx;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_iq_create_rsp - Response handler for IQ creation.
|
|
* @hw: The HW module.
|
|
* @mbp: Mailbox.
|
|
* @iq_idx: Ingress queue that got created.
|
|
*
|
|
* Handle FW_IQ_CMD mailbox completion. Save off the assigned IQ/FL ids.
|
|
*/
|
|
static int
|
|
csio_wr_iq_create_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
|
|
{
|
|
struct csio_iq_params iqp;
|
|
enum fw_retval retval;
|
|
uint32_t iq_id;
|
|
int flq_idx;
|
|
|
|
memset(&iqp, 0, sizeof(struct csio_iq_params));
|
|
|
|
csio_mb_iq_alloc_write_rsp(hw, mbp, &retval, &iqp);
|
|
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "IQ cmd returned 0x%x!\n", retval);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
csio_q_iqid(hw, iq_idx) = iqp.iqid;
|
|
csio_q_physiqid(hw, iq_idx) = iqp.physiqid;
|
|
csio_q_pidx(hw, iq_idx) = csio_q_cidx(hw, iq_idx) = 0;
|
|
csio_q_inc_idx(hw, iq_idx) = 0;
|
|
|
|
/* Actual iq-id. */
|
|
iq_id = iqp.iqid - hw->wrm.fw_iq_start;
|
|
|
|
/* Set the iq-id to iq map table. */
|
|
if (iq_id >= CSIO_MAX_IQ) {
|
|
csio_err(hw,
|
|
"Exceeding MAX_IQ(%d) supported!"
|
|
" iqid:%d rel_iqid:%d FW iq_start:%d\n",
|
|
CSIO_MAX_IQ, iq_id, iqp.iqid, hw->wrm.fw_iq_start);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
csio_q_set_intr_map(hw, iq_idx, iq_id);
|
|
|
|
/*
|
|
* During FW_IQ_CMD, FW sets interrupt_sent bit to 1 in the SGE
|
|
* ingress context of this queue. This will block interrupts to
|
|
* this queue until the next GTS write. Therefore, we do a
|
|
* 0-cidx increment GTS write for this queue just to clear the
|
|
* interrupt_sent bit. This will re-enable interrupts to this
|
|
* queue.
|
|
*/
|
|
csio_wr_sge_intr_enable(hw, iqp.physiqid);
|
|
|
|
flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
|
|
if (flq_idx != -1) {
|
|
struct csio_q *flq = hw->wrm.q_arr[flq_idx];
|
|
|
|
csio_q_flid(hw, flq_idx) = iqp.fl0id;
|
|
csio_q_cidx(hw, flq_idx) = 0;
|
|
csio_q_pidx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
|
|
csio_q_inc_idx(hw, flq_idx) = csio_q_credits(hw, flq_idx) - 8;
|
|
|
|
/* Now update SGE about the buffers allocated during init */
|
|
csio_wr_ring_fldb(hw, flq);
|
|
}
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_iq_create - Configure an Ingress queue with FW.
|
|
* @hw: The HW module.
|
|
* @priv: Private data object.
|
|
* @iq_idx: Ingress queue index in the WR module.
|
|
* @vec: MSIX vector.
|
|
* @portid: PCIE Channel to be associated with this queue.
|
|
* @async: Is this a FW asynchronous message handling queue?
|
|
* @cbfn: Completion callback.
|
|
*
|
|
* This API configures an ingress queue with FW by issuing a FW_IQ_CMD mailbox
|
|
* with alloc/write bits set.
|
|
*/
|
|
int
|
|
csio_wr_iq_create(struct csio_hw *hw, void *priv, int iq_idx,
|
|
uint32_t vec, uint8_t portid, bool async,
|
|
void (*cbfn) (struct csio_hw *, struct csio_mb *))
|
|
{
|
|
struct csio_mb *mbp;
|
|
struct csio_iq_params iqp;
|
|
int flq_idx;
|
|
|
|
memset(&iqp, 0, sizeof(struct csio_iq_params));
|
|
csio_q_portid(hw, iq_idx) = portid;
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
csio_err(hw, "IQ command out of memory!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
switch (hw->intr_mode) {
|
|
case CSIO_IM_INTX:
|
|
case CSIO_IM_MSI:
|
|
/* For interrupt forwarding queue only */
|
|
if (hw->intr_iq_idx == iq_idx)
|
|
iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
|
|
else
|
|
iqp.iqandst = X_INTERRUPTDESTINATION_IQ;
|
|
iqp.iqandstindex =
|
|
csio_q_physiqid(hw, hw->intr_iq_idx);
|
|
break;
|
|
case CSIO_IM_MSIX:
|
|
iqp.iqandst = X_INTERRUPTDESTINATION_PCIE;
|
|
iqp.iqandstindex = (uint16_t)vec;
|
|
break;
|
|
case CSIO_IM_NONE:
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Pass in the ingress queue cmd parameters */
|
|
iqp.pfn = hw->pfn;
|
|
iqp.vfn = 0;
|
|
iqp.iq_start = 1;
|
|
iqp.viid = 0;
|
|
iqp.type = FW_IQ_TYPE_FL_INT_CAP;
|
|
iqp.iqasynch = async;
|
|
if (csio_intr_coalesce_cnt)
|
|
iqp.iqanus = X_UPDATESCHEDULING_COUNTER_OPTTIMER;
|
|
else
|
|
iqp.iqanus = X_UPDATESCHEDULING_TIMER;
|
|
iqp.iqanud = X_UPDATEDELIVERY_INTERRUPT;
|
|
iqp.iqpciech = portid;
|
|
iqp.iqintcntthresh = (uint8_t)csio_sge_thresh_reg;
|
|
|
|
switch (csio_q_wr_sz(hw, iq_idx)) {
|
|
case 16:
|
|
iqp.iqesize = 0; break;
|
|
case 32:
|
|
iqp.iqesize = 1; break;
|
|
case 64:
|
|
iqp.iqesize = 2; break;
|
|
case 128:
|
|
iqp.iqesize = 3; break;
|
|
}
|
|
|
|
iqp.iqsize = csio_q_size(hw, iq_idx) /
|
|
csio_q_wr_sz(hw, iq_idx);
|
|
iqp.iqaddr = csio_q_pstart(hw, iq_idx);
|
|
|
|
flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
|
|
if (flq_idx != -1) {
|
|
enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
|
|
struct csio_q *flq = hw->wrm.q_arr[flq_idx];
|
|
|
|
iqp.fl0paden = 1;
|
|
iqp.fl0packen = flq->un.fl.packen ? 1 : 0;
|
|
iqp.fl0fbmin = X_FETCHBURSTMIN_64B;
|
|
iqp.fl0fbmax = ((chip == CHELSIO_T5) ?
|
|
X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B);
|
|
iqp.fl0size = csio_q_size(hw, flq_idx) / CSIO_QCREDIT_SZ;
|
|
iqp.fl0addr = csio_q_pstart(hw, flq_idx);
|
|
}
|
|
|
|
csio_mb_iq_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of IQ cmd failed!\n");
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cbfn != NULL)
|
|
return 0;
|
|
|
|
return csio_wr_iq_create_rsp(hw, mbp, iq_idx);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_eq_create_rsp - Response handler for EQ creation.
|
|
* @hw: The HW module.
|
|
* @mbp: Mailbox.
|
|
* @eq_idx: Egress queue that got created.
|
|
*
|
|
* Handle FW_EQ_OFLD_CMD mailbox completion. Save off the assigned EQ ids.
|
|
*/
|
|
static int
|
|
csio_wr_eq_cfg_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
|
|
{
|
|
struct csio_eq_params eqp;
|
|
enum fw_retval retval;
|
|
|
|
memset(&eqp, 0, sizeof(struct csio_eq_params));
|
|
|
|
csio_mb_eq_ofld_alloc_write_rsp(hw, mbp, &retval, &eqp);
|
|
|
|
if (retval != FW_SUCCESS) {
|
|
csio_err(hw, "EQ OFLD cmd returned 0x%x!\n", retval);
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
csio_q_eqid(hw, eq_idx) = (uint16_t)eqp.eqid;
|
|
csio_q_physeqid(hw, eq_idx) = (uint16_t)eqp.physeqid;
|
|
csio_q_pidx(hw, eq_idx) = csio_q_cidx(hw, eq_idx) = 0;
|
|
csio_q_inc_idx(hw, eq_idx) = 0;
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_eq_create - Configure an Egress queue with FW.
|
|
* @hw: HW module.
|
|
* @priv: Private data.
|
|
* @eq_idx: Egress queue index in the WR module.
|
|
* @iq_idx: Associated ingress queue index.
|
|
* @cbfn: Completion callback.
|
|
*
|
|
* This API configures a offload egress queue with FW by issuing a
|
|
* FW_EQ_OFLD_CMD (with alloc + write ) mailbox.
|
|
*/
|
|
int
|
|
csio_wr_eq_create(struct csio_hw *hw, void *priv, int eq_idx,
|
|
int iq_idx, uint8_t portid,
|
|
void (*cbfn) (struct csio_hw *, struct csio_mb *))
|
|
{
|
|
struct csio_mb *mbp;
|
|
struct csio_eq_params eqp;
|
|
|
|
memset(&eqp, 0, sizeof(struct csio_eq_params));
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp) {
|
|
csio_err(hw, "EQ command out of memory!\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
eqp.pfn = hw->pfn;
|
|
eqp.vfn = 0;
|
|
eqp.eqstart = 1;
|
|
eqp.hostfcmode = X_HOSTFCMODE_STATUS_PAGE;
|
|
eqp.iqid = csio_q_iqid(hw, iq_idx);
|
|
eqp.fbmin = X_FETCHBURSTMIN_64B;
|
|
eqp.fbmax = X_FETCHBURSTMAX_512B;
|
|
eqp.cidxfthresh = 0;
|
|
eqp.pciechn = portid;
|
|
eqp.eqsize = csio_q_size(hw, eq_idx) / CSIO_QCREDIT_SZ;
|
|
eqp.eqaddr = csio_q_pstart(hw, eq_idx);
|
|
|
|
csio_mb_eq_ofld_alloc_write(hw, mbp, priv, CSIO_MB_DEFAULT_TMO,
|
|
&eqp, cbfn);
|
|
|
|
if (csio_mb_issue(hw, mbp)) {
|
|
csio_err(hw, "Issue of EQ OFLD cmd failed!\n");
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (cbfn != NULL)
|
|
return 0;
|
|
|
|
return csio_wr_eq_cfg_rsp(hw, mbp, eq_idx);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_iq_destroy_rsp - Response handler for IQ removal.
|
|
* @hw: The HW module.
|
|
* @mbp: Mailbox.
|
|
* @iq_idx: Ingress queue that was freed.
|
|
*
|
|
* Handle FW_IQ_CMD (free) mailbox completion.
|
|
*/
|
|
static int
|
|
csio_wr_iq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int iq_idx)
|
|
{
|
|
enum fw_retval retval = csio_mb_fw_retval(mbp);
|
|
int rv = 0;
|
|
|
|
if (retval != FW_SUCCESS)
|
|
rv = -EINVAL;
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_iq_destroy - Free an ingress queue.
|
|
* @hw: The HW module.
|
|
* @priv: Private data object.
|
|
* @iq_idx: Ingress queue index to destroy
|
|
* @cbfn: Completion callback.
|
|
*
|
|
* This API frees an ingress queue by issuing the FW_IQ_CMD
|
|
* with the free bit set.
|
|
*/
|
|
static int
|
|
csio_wr_iq_destroy(struct csio_hw *hw, void *priv, int iq_idx,
|
|
void (*cbfn)(struct csio_hw *, struct csio_mb *))
|
|
{
|
|
int rv = 0;
|
|
struct csio_mb *mbp;
|
|
struct csio_iq_params iqp;
|
|
int flq_idx;
|
|
|
|
memset(&iqp, 0, sizeof(struct csio_iq_params));
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp)
|
|
return -ENOMEM;
|
|
|
|
iqp.pfn = hw->pfn;
|
|
iqp.vfn = 0;
|
|
iqp.iqid = csio_q_iqid(hw, iq_idx);
|
|
iqp.type = FW_IQ_TYPE_FL_INT_CAP;
|
|
|
|
flq_idx = csio_q_iq_flq_idx(hw, iq_idx);
|
|
if (flq_idx != -1)
|
|
iqp.fl0id = csio_q_flid(hw, flq_idx);
|
|
else
|
|
iqp.fl0id = 0xFFFF;
|
|
|
|
iqp.fl1id = 0xFFFF;
|
|
|
|
csio_mb_iq_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &iqp, cbfn);
|
|
|
|
rv = csio_mb_issue(hw, mbp);
|
|
if (rv != 0) {
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return rv;
|
|
}
|
|
|
|
if (cbfn != NULL)
|
|
return 0;
|
|
|
|
return csio_wr_iq_destroy_rsp(hw, mbp, iq_idx);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_eq_destroy_rsp - Response handler for OFLD EQ creation.
|
|
* @hw: The HW module.
|
|
* @mbp: Mailbox.
|
|
* @eq_idx: Egress queue that was freed.
|
|
*
|
|
* Handle FW_OFLD_EQ_CMD (free) mailbox completion.
|
|
*/
|
|
static int
|
|
csio_wr_eq_destroy_rsp(struct csio_hw *hw, struct csio_mb *mbp, int eq_idx)
|
|
{
|
|
enum fw_retval retval = csio_mb_fw_retval(mbp);
|
|
int rv = 0;
|
|
|
|
if (retval != FW_SUCCESS)
|
|
rv = -EINVAL;
|
|
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
|
|
return rv;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_eq_destroy - Free an Egress queue.
|
|
* @hw: The HW module.
|
|
* @priv: Private data object.
|
|
* @eq_idx: Egress queue index to destroy
|
|
* @cbfn: Completion callback.
|
|
*
|
|
* This API frees an Egress queue by issuing the FW_EQ_OFLD_CMD
|
|
* with the free bit set.
|
|
*/
|
|
static int
|
|
csio_wr_eq_destroy(struct csio_hw *hw, void *priv, int eq_idx,
|
|
void (*cbfn) (struct csio_hw *, struct csio_mb *))
|
|
{
|
|
int rv = 0;
|
|
struct csio_mb *mbp;
|
|
struct csio_eq_params eqp;
|
|
|
|
memset(&eqp, 0, sizeof(struct csio_eq_params));
|
|
|
|
mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
|
|
if (!mbp)
|
|
return -ENOMEM;
|
|
|
|
eqp.pfn = hw->pfn;
|
|
eqp.vfn = 0;
|
|
eqp.eqid = csio_q_eqid(hw, eq_idx);
|
|
|
|
csio_mb_eq_ofld_free(hw, mbp, priv, CSIO_MB_DEFAULT_TMO, &eqp, cbfn);
|
|
|
|
rv = csio_mb_issue(hw, mbp);
|
|
if (rv != 0) {
|
|
mempool_free(mbp, hw->mb_mempool);
|
|
return rv;
|
|
}
|
|
|
|
if (cbfn != NULL)
|
|
return 0;
|
|
|
|
return csio_wr_eq_destroy_rsp(hw, mbp, eq_idx);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_cleanup_eq_stpg - Cleanup Egress queue status page
|
|
* @hw: HW module
|
|
* @qidx: Egress queue index
|
|
*
|
|
* Cleanup the Egress queue status page.
|
|
*/
|
|
static void
|
|
csio_wr_cleanup_eq_stpg(struct csio_hw *hw, int qidx)
|
|
{
|
|
struct csio_q *q = csio_hw_to_wrm(hw)->q_arr[qidx];
|
|
struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
|
|
|
|
memset(stp, 0, sizeof(*stp));
|
|
}
|
|
|
|
/*
|
|
* csio_wr_cleanup_iq_ftr - Cleanup Footer entries in IQ
|
|
* @hw: HW module
|
|
* @qidx: Ingress queue index
|
|
*
|
|
* Cleanup the footer entries in the given ingress queue,
|
|
* set to 1 the internal copy of genbit.
|
|
*/
|
|
static void
|
|
csio_wr_cleanup_iq_ftr(struct csio_hw *hw, int qidx)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_q *q = wrm->q_arr[qidx];
|
|
void *wr;
|
|
struct csio_iqwr_footer *ftr;
|
|
uint32_t i = 0;
|
|
|
|
/* set to 1 since we are just about zero out genbit */
|
|
q->un.iq.genbit = 1;
|
|
|
|
for (i = 0; i < q->credits; i++) {
|
|
/* Get the WR */
|
|
wr = (void *)((uintptr_t)q->vstart +
|
|
(i * q->wr_sz));
|
|
/* Get the footer */
|
|
ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
|
|
(q->wr_sz - sizeof(*ftr)));
|
|
/* Zero out footer */
|
|
memset(ftr, 0, sizeof(*ftr));
|
|
}
|
|
}
|
|
|
|
int
|
|
csio_wr_destroy_queues(struct csio_hw *hw, bool cmd)
|
|
{
|
|
int i, flq_idx;
|
|
struct csio_q *q;
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
int rv;
|
|
|
|
for (i = 0; i < wrm->free_qidx; i++) {
|
|
q = wrm->q_arr[i];
|
|
|
|
switch (q->type) {
|
|
case CSIO_EGRESS:
|
|
if (csio_q_eqid(hw, i) != CSIO_MAX_QID) {
|
|
csio_wr_cleanup_eq_stpg(hw, i);
|
|
if (!cmd) {
|
|
csio_q_eqid(hw, i) = CSIO_MAX_QID;
|
|
continue;
|
|
}
|
|
|
|
rv = csio_wr_eq_destroy(hw, NULL, i, NULL);
|
|
if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
|
|
cmd = false;
|
|
|
|
csio_q_eqid(hw, i) = CSIO_MAX_QID;
|
|
}
|
|
/* fall through */
|
|
case CSIO_INGRESS:
|
|
if (csio_q_iqid(hw, i) != CSIO_MAX_QID) {
|
|
csio_wr_cleanup_iq_ftr(hw, i);
|
|
if (!cmd) {
|
|
csio_q_iqid(hw, i) = CSIO_MAX_QID;
|
|
flq_idx = csio_q_iq_flq_idx(hw, i);
|
|
if (flq_idx != -1)
|
|
csio_q_flid(hw, flq_idx) =
|
|
CSIO_MAX_QID;
|
|
continue;
|
|
}
|
|
|
|
rv = csio_wr_iq_destroy(hw, NULL, i, NULL);
|
|
if ((rv == -EBUSY) || (rv == -ETIMEDOUT))
|
|
cmd = false;
|
|
|
|
csio_q_iqid(hw, i) = CSIO_MAX_QID;
|
|
flq_idx = csio_q_iq_flq_idx(hw, i);
|
|
if (flq_idx != -1)
|
|
csio_q_flid(hw, flq_idx) = CSIO_MAX_QID;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
hw->flags &= ~CSIO_HWF_Q_FW_ALLOCED;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_get - Get requested size of WR entry/entries from queue.
|
|
* @hw: HW module.
|
|
* @qidx: Index of queue.
|
|
* @size: Cumulative size of Work request(s).
|
|
* @wrp: Work request pair.
|
|
*
|
|
* If requested credits are available, return the start address of the
|
|
* work request in the work request pair. Set pidx accordingly and
|
|
* return.
|
|
*
|
|
* NOTE about WR pair:
|
|
* ==================
|
|
* A WR can start towards the end of a queue, and then continue at the
|
|
* beginning, since the queue is considered to be circular. This will
|
|
* require a pair of address/size to be passed back to the caller -
|
|
* hence Work request pair format.
|
|
*/
|
|
int
|
|
csio_wr_get(struct csio_hw *hw, int qidx, uint32_t size,
|
|
struct csio_wr_pair *wrp)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_q *q = wrm->q_arr[qidx];
|
|
void *cwr = (void *)((uintptr_t)(q->vstart) +
|
|
(q->pidx * CSIO_QCREDIT_SZ));
|
|
struct csio_qstatus_page *stp = (struct csio_qstatus_page *)q->vwrap;
|
|
uint16_t cidx = q->cidx = ntohs(stp->cidx);
|
|
uint16_t pidx = q->pidx;
|
|
uint32_t req_sz = ALIGN(size, CSIO_QCREDIT_SZ);
|
|
int req_credits = req_sz / CSIO_QCREDIT_SZ;
|
|
int credits;
|
|
|
|
CSIO_DB_ASSERT(q->owner != NULL);
|
|
CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
|
|
CSIO_DB_ASSERT(cidx <= q->credits);
|
|
|
|
/* Calculate credits */
|
|
if (pidx > cidx) {
|
|
credits = q->credits - (pidx - cidx) - 1;
|
|
} else if (cidx > pidx) {
|
|
credits = cidx - pidx - 1;
|
|
} else {
|
|
/* cidx == pidx, empty queue */
|
|
credits = q->credits;
|
|
CSIO_INC_STATS(q, n_qempty);
|
|
}
|
|
|
|
/*
|
|
* Check if we have enough credits.
|
|
* credits = 1 implies queue is full.
|
|
*/
|
|
if (!credits || (req_credits > credits)) {
|
|
CSIO_INC_STATS(q, n_qfull);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* If we are here, we have enough credits to satisfy the
|
|
* request. Check if we are near the end of q, and if WR spills over.
|
|
* If it does, use the first addr/size to cover the queue until
|
|
* the end. Fit the remainder portion of the request at the top
|
|
* of queue and return it in the second addr/len. Set pidx
|
|
* accordingly.
|
|
*/
|
|
if (unlikely(((uintptr_t)cwr + req_sz) > (uintptr_t)(q->vwrap))) {
|
|
wrp->addr1 = cwr;
|
|
wrp->size1 = (uint32_t)((uintptr_t)q->vwrap - (uintptr_t)cwr);
|
|
wrp->addr2 = q->vstart;
|
|
wrp->size2 = req_sz - wrp->size1;
|
|
q->pidx = (uint16_t)(ALIGN(wrp->size2, CSIO_QCREDIT_SZ) /
|
|
CSIO_QCREDIT_SZ);
|
|
CSIO_INC_STATS(q, n_qwrap);
|
|
CSIO_INC_STATS(q, n_eq_wr_split);
|
|
} else {
|
|
wrp->addr1 = cwr;
|
|
wrp->size1 = req_sz;
|
|
wrp->addr2 = NULL;
|
|
wrp->size2 = 0;
|
|
q->pidx += (uint16_t)req_credits;
|
|
|
|
/* We are the end of queue, roll back pidx to top of queue */
|
|
if (unlikely(q->pidx == q->credits)) {
|
|
q->pidx = 0;
|
|
CSIO_INC_STATS(q, n_qwrap);
|
|
}
|
|
}
|
|
|
|
q->inc_idx = (uint16_t)req_credits;
|
|
|
|
CSIO_INC_STATS(q, n_tot_reqs);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* csio_wr_copy_to_wrp - Copies given data into WR.
|
|
* @data_buf - Data buffer
|
|
* @wrp - Work request pair.
|
|
* @wr_off - Work request offset.
|
|
* @data_len - Data length.
|
|
*
|
|
* Copies the given data in Work Request. Work request pair(wrp) specifies
|
|
* address information of Work request.
|
|
* Returns: none
|
|
*/
|
|
void
|
|
csio_wr_copy_to_wrp(void *data_buf, struct csio_wr_pair *wrp,
|
|
uint32_t wr_off, uint32_t data_len)
|
|
{
|
|
uint32_t nbytes;
|
|
|
|
/* Number of space available in buffer addr1 of WRP */
|
|
nbytes = ((wrp->size1 - wr_off) >= data_len) ?
|
|
data_len : (wrp->size1 - wr_off);
|
|
|
|
memcpy((uint8_t *) wrp->addr1 + wr_off, data_buf, nbytes);
|
|
data_len -= nbytes;
|
|
|
|
/* Write the remaining data from the begining of circular buffer */
|
|
if (data_len) {
|
|
CSIO_DB_ASSERT(data_len <= wrp->size2);
|
|
CSIO_DB_ASSERT(wrp->addr2 != NULL);
|
|
memcpy(wrp->addr2, (uint8_t *) data_buf + nbytes, data_len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_wr_issue - Notify chip of Work request.
|
|
* @hw: HW module.
|
|
* @qidx: Index of queue.
|
|
* @prio: 0: Low priority, 1: High priority
|
|
*
|
|
* Rings the SGE Doorbell by writing the current producer index of the passed
|
|
* in queue into the register.
|
|
*
|
|
*/
|
|
int
|
|
csio_wr_issue(struct csio_hw *hw, int qidx, bool prio)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_q *q = wrm->q_arr[qidx];
|
|
|
|
CSIO_DB_ASSERT((qidx >= 0) && (qidx < wrm->free_qidx));
|
|
|
|
wmb();
|
|
/* Ring SGE Doorbell writing q->pidx into it */
|
|
csio_wr_reg32(hw, DBPRIO_V(prio) | QID_V(q->un.eq.physeqid) |
|
|
PIDX_T5_V(q->inc_idx) | DBTYPE_F,
|
|
MYPF_REG(SGE_PF_KDOORBELL_A));
|
|
q->inc_idx = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline uint32_t
|
|
csio_wr_avail_qcredits(struct csio_q *q)
|
|
{
|
|
if (q->pidx > q->cidx)
|
|
return q->pidx - q->cidx;
|
|
else if (q->cidx > q->pidx)
|
|
return q->credits - (q->cidx - q->pidx);
|
|
else
|
|
return 0; /* cidx == pidx, empty queue */
|
|
}
|
|
|
|
/*
|
|
* csio_wr_inval_flq_buf - Invalidate a free list buffer entry.
|
|
* @hw: HW module.
|
|
* @flq: The freelist queue.
|
|
*
|
|
* Invalidate the driver's version of a freelist buffer entry,
|
|
* without freeing the associated the DMA memory. The entry
|
|
* to be invalidated is picked up from the current Free list
|
|
* queue cidx.
|
|
*
|
|
*/
|
|
static inline void
|
|
csio_wr_inval_flq_buf(struct csio_hw *hw, struct csio_q *flq)
|
|
{
|
|
flq->cidx++;
|
|
if (flq->cidx == flq->credits) {
|
|
flq->cidx = 0;
|
|
CSIO_INC_STATS(flq, n_qwrap);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* csio_wr_process_fl - Process a freelist completion.
|
|
* @hw: HW module.
|
|
* @q: The ingress queue attached to the Freelist.
|
|
* @wr: The freelist completion WR in the ingress queue.
|
|
* @len_to_qid: The lower 32-bits of the first flit of the RSP footer
|
|
* @iq_handler: Caller's handler for this completion.
|
|
* @priv: Private pointer of caller
|
|
*
|
|
*/
|
|
static inline void
|
|
csio_wr_process_fl(struct csio_hw *hw, struct csio_q *q,
|
|
void *wr, uint32_t len_to_qid,
|
|
void (*iq_handler)(struct csio_hw *, void *,
|
|
uint32_t, struct csio_fl_dma_buf *,
|
|
void *),
|
|
void *priv)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
struct csio_fl_dma_buf flb;
|
|
struct csio_dma_buf *buf, *fbuf;
|
|
uint32_t bufsz, len, lastlen = 0;
|
|
int n;
|
|
struct csio_q *flq = hw->wrm.q_arr[q->un.iq.flq_idx];
|
|
|
|
CSIO_DB_ASSERT(flq != NULL);
|
|
|
|
len = len_to_qid;
|
|
|
|
if (len & IQWRF_NEWBUF) {
|
|
if (flq->un.fl.offset > 0) {
|
|
csio_wr_inval_flq_buf(hw, flq);
|
|
flq->un.fl.offset = 0;
|
|
}
|
|
len = IQWRF_LEN_GET(len);
|
|
}
|
|
|
|
CSIO_DB_ASSERT(len != 0);
|
|
|
|
flb.totlen = len;
|
|
|
|
/* Consume all freelist buffers used for len bytes */
|
|
for (n = 0, fbuf = flb.flbufs; ; n++, fbuf++) {
|
|
buf = &flq->un.fl.bufs[flq->cidx];
|
|
bufsz = csio_wr_fl_bufsz(sge, buf);
|
|
|
|
fbuf->paddr = buf->paddr;
|
|
fbuf->vaddr = buf->vaddr;
|
|
|
|
flb.offset = flq->un.fl.offset;
|
|
lastlen = min(bufsz, len);
|
|
fbuf->len = lastlen;
|
|
|
|
len -= lastlen;
|
|
if (!len)
|
|
break;
|
|
csio_wr_inval_flq_buf(hw, flq);
|
|
}
|
|
|
|
flb.defer_free = flq->un.fl.packen ? 0 : 1;
|
|
|
|
iq_handler(hw, wr, q->wr_sz - sizeof(struct csio_iqwr_footer),
|
|
&flb, priv);
|
|
|
|
if (flq->un.fl.packen)
|
|
flq->un.fl.offset += ALIGN(lastlen, sge->csio_fl_align);
|
|
else
|
|
csio_wr_inval_flq_buf(hw, flq);
|
|
|
|
}
|
|
|
|
/*
|
|
* csio_is_new_iqwr - Is this a new Ingress queue entry ?
|
|
* @q: Ingress quueue.
|
|
* @ftr: Ingress queue WR SGE footer.
|
|
*
|
|
* The entry is new if our generation bit matches the corresponding
|
|
* bit in the footer of the current WR.
|
|
*/
|
|
static inline bool
|
|
csio_is_new_iqwr(struct csio_q *q, struct csio_iqwr_footer *ftr)
|
|
{
|
|
return (q->un.iq.genbit == (ftr->u.type_gen >> IQWRF_GEN_SHIFT));
|
|
}
|
|
|
|
/*
|
|
* csio_wr_process_iq - Process elements in Ingress queue.
|
|
* @hw: HW pointer
|
|
* @qidx: Index of queue
|
|
* @iq_handler: Handler for this queue
|
|
* @priv: Caller's private pointer
|
|
*
|
|
* This routine walks through every entry of the ingress queue, calling
|
|
* the provided iq_handler with the entry, until the generation bit
|
|
* flips.
|
|
*/
|
|
int
|
|
csio_wr_process_iq(struct csio_hw *hw, struct csio_q *q,
|
|
void (*iq_handler)(struct csio_hw *, void *,
|
|
uint32_t, struct csio_fl_dma_buf *,
|
|
void *),
|
|
void *priv)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
void *wr = (void *)((uintptr_t)q->vstart + (q->cidx * q->wr_sz));
|
|
struct csio_iqwr_footer *ftr;
|
|
uint32_t wr_type, fw_qid, qid;
|
|
struct csio_q *q_completed;
|
|
struct csio_q *flq = csio_iq_has_fl(q) ?
|
|
wrm->q_arr[q->un.iq.flq_idx] : NULL;
|
|
int rv = 0;
|
|
|
|
/* Get the footer */
|
|
ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
|
|
(q->wr_sz - sizeof(*ftr)));
|
|
|
|
/*
|
|
* When q wrapped around last time, driver should have inverted
|
|
* ic.genbit as well.
|
|
*/
|
|
while (csio_is_new_iqwr(q, ftr)) {
|
|
|
|
CSIO_DB_ASSERT(((uintptr_t)wr + q->wr_sz) <=
|
|
(uintptr_t)q->vwrap);
|
|
rmb();
|
|
wr_type = IQWRF_TYPE_GET(ftr->u.type_gen);
|
|
|
|
switch (wr_type) {
|
|
case X_RSPD_TYPE_CPL:
|
|
/* Subtract footer from WR len */
|
|
iq_handler(hw, wr, q->wr_sz - sizeof(*ftr), NULL, priv);
|
|
break;
|
|
case X_RSPD_TYPE_FLBUF:
|
|
csio_wr_process_fl(hw, q, wr,
|
|
ntohl(ftr->pldbuflen_qid),
|
|
iq_handler, priv);
|
|
break;
|
|
case X_RSPD_TYPE_INTR:
|
|
fw_qid = ntohl(ftr->pldbuflen_qid);
|
|
qid = fw_qid - wrm->fw_iq_start;
|
|
q_completed = hw->wrm.intr_map[qid];
|
|
|
|
if (unlikely(qid ==
|
|
csio_q_physiqid(hw, hw->intr_iq_idx))) {
|
|
/*
|
|
* We are already in the Forward Interrupt
|
|
* Interrupt Queue Service! Do-not service
|
|
* again!
|
|
*
|
|
*/
|
|
} else {
|
|
CSIO_DB_ASSERT(q_completed);
|
|
CSIO_DB_ASSERT(
|
|
q_completed->un.iq.iq_intx_handler);
|
|
|
|
/* Call the queue handler. */
|
|
q_completed->un.iq.iq_intx_handler(hw, NULL,
|
|
0, NULL, (void *)q_completed);
|
|
}
|
|
break;
|
|
default:
|
|
csio_warn(hw, "Unknown resp type 0x%x received\n",
|
|
wr_type);
|
|
CSIO_INC_STATS(q, n_rsp_unknown);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Ingress *always* has fixed size WR entries. Therefore,
|
|
* there should always be complete WRs towards the end of
|
|
* queue.
|
|
*/
|
|
if (((uintptr_t)wr + q->wr_sz) == (uintptr_t)q->vwrap) {
|
|
|
|
/* Roll over to start of queue */
|
|
q->cidx = 0;
|
|
wr = q->vstart;
|
|
|
|
/* Toggle genbit */
|
|
q->un.iq.genbit ^= 0x1;
|
|
|
|
CSIO_INC_STATS(q, n_qwrap);
|
|
} else {
|
|
q->cidx++;
|
|
wr = (void *)((uintptr_t)(q->vstart) +
|
|
(q->cidx * q->wr_sz));
|
|
}
|
|
|
|
ftr = (struct csio_iqwr_footer *)((uintptr_t)wr +
|
|
(q->wr_sz - sizeof(*ftr)));
|
|
q->inc_idx++;
|
|
|
|
} /* while (q->un.iq.genbit == hdr->genbit) */
|
|
|
|
/*
|
|
* We need to re-arm SGE interrupts in case we got a stray interrupt,
|
|
* especially in msix mode. With INTx, this may be a common occurence.
|
|
*/
|
|
if (unlikely(!q->inc_idx)) {
|
|
CSIO_INC_STATS(q, n_stray_comp);
|
|
rv = -EINVAL;
|
|
goto restart;
|
|
}
|
|
|
|
/* Replenish free list buffers if pending falls below low water mark */
|
|
if (flq) {
|
|
uint32_t avail = csio_wr_avail_qcredits(flq);
|
|
if (avail <= 16) {
|
|
/* Make sure in FLQ, atleast 1 credit (8 FL buffers)
|
|
* remains unpopulated otherwise HW thinks
|
|
* FLQ is empty.
|
|
*/
|
|
csio_wr_update_fl(hw, flq, (flq->credits - 8) - avail);
|
|
csio_wr_ring_fldb(hw, flq);
|
|
}
|
|
}
|
|
|
|
restart:
|
|
/* Now inform SGE about our incremental index value */
|
|
csio_wr_reg32(hw, CIDXINC_V(q->inc_idx) |
|
|
INGRESSQID_V(q->un.iq.physiqid) |
|
|
TIMERREG_V(csio_sge_timer_reg),
|
|
MYPF_REG(SGE_PF_GTS_A));
|
|
q->stats.n_tot_rsps += q->inc_idx;
|
|
|
|
q->inc_idx = 0;
|
|
|
|
return rv;
|
|
}
|
|
|
|
int
|
|
csio_wr_process_iq_idx(struct csio_hw *hw, int qidx,
|
|
void (*iq_handler)(struct csio_hw *, void *,
|
|
uint32_t, struct csio_fl_dma_buf *,
|
|
void *),
|
|
void *priv)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_q *iq = wrm->q_arr[qidx];
|
|
|
|
return csio_wr_process_iq(hw, iq, iq_handler, priv);
|
|
}
|
|
|
|
static int
|
|
csio_closest_timer(struct csio_sge *s, int time)
|
|
{
|
|
int i, delta, match = 0, min_delta = INT_MAX;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
|
|
delta = time - s->timer_val[i];
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (delta < min_delta) {
|
|
min_delta = delta;
|
|
match = i;
|
|
}
|
|
}
|
|
return match;
|
|
}
|
|
|
|
static int
|
|
csio_closest_thresh(struct csio_sge *s, int cnt)
|
|
{
|
|
int i, delta, match = 0, min_delta = INT_MAX;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
|
|
delta = cnt - s->counter_val[i];
|
|
if (delta < 0)
|
|
delta = -delta;
|
|
if (delta < min_delta) {
|
|
min_delta = delta;
|
|
match = i;
|
|
}
|
|
}
|
|
return match;
|
|
}
|
|
|
|
static void
|
|
csio_wr_fixup_host_params(struct csio_hw *hw)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
uint32_t clsz = L1_CACHE_BYTES;
|
|
uint32_t s_hps = PAGE_SHIFT - 10;
|
|
uint32_t stat_len = clsz > 64 ? 128 : 64;
|
|
u32 fl_align = clsz < 32 ? 32 : clsz;
|
|
u32 pack_align;
|
|
u32 ingpad, ingpack;
|
|
|
|
csio_wr_reg32(hw, HOSTPAGESIZEPF0_V(s_hps) | HOSTPAGESIZEPF1_V(s_hps) |
|
|
HOSTPAGESIZEPF2_V(s_hps) | HOSTPAGESIZEPF3_V(s_hps) |
|
|
HOSTPAGESIZEPF4_V(s_hps) | HOSTPAGESIZEPF5_V(s_hps) |
|
|
HOSTPAGESIZEPF6_V(s_hps) | HOSTPAGESIZEPF7_V(s_hps),
|
|
SGE_HOST_PAGE_SIZE_A);
|
|
|
|
/* T5 introduced the separation of the Free List Padding and
|
|
* Packing Boundaries. Thus, we can select a smaller Padding
|
|
* Boundary to avoid uselessly chewing up PCIe Link and Memory
|
|
* Bandwidth, and use a Packing Boundary which is large enough
|
|
* to avoid false sharing between CPUs, etc.
|
|
*
|
|
* For the PCI Link, the smaller the Padding Boundary the
|
|
* better. For the Memory Controller, a smaller Padding
|
|
* Boundary is better until we cross under the Memory Line
|
|
* Size (the minimum unit of transfer to/from Memory). If we
|
|
* have a Padding Boundary which is smaller than the Memory
|
|
* Line Size, that'll involve a Read-Modify-Write cycle on the
|
|
* Memory Controller which is never good.
|
|
*/
|
|
|
|
/* We want the Packing Boundary to be based on the Cache Line
|
|
* Size in order to help avoid False Sharing performance
|
|
* issues between CPUs, etc. We also want the Packing
|
|
* Boundary to incorporate the PCI-E Maximum Payload Size. We
|
|
* get best performance when the Packing Boundary is a
|
|
* multiple of the Maximum Payload Size.
|
|
*/
|
|
pack_align = fl_align;
|
|
if (pci_is_pcie(hw->pdev)) {
|
|
u32 mps, mps_log;
|
|
u16 devctl;
|
|
|
|
/* The PCIe Device Control Maximum Payload Size field
|
|
* [bits 7:5] encodes sizes as powers of 2 starting at
|
|
* 128 bytes.
|
|
*/
|
|
pcie_capability_read_word(hw->pdev, PCI_EXP_DEVCTL, &devctl);
|
|
mps_log = ((devctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5) + 7;
|
|
mps = 1 << mps_log;
|
|
if (mps > pack_align)
|
|
pack_align = mps;
|
|
}
|
|
|
|
/* T5/T6 have a special interpretation of the "0"
|
|
* value for the Packing Boundary. This corresponds to 16
|
|
* bytes instead of the expected 32 bytes.
|
|
*/
|
|
if (pack_align <= 16) {
|
|
ingpack = INGPACKBOUNDARY_16B_X;
|
|
fl_align = 16;
|
|
} else if (pack_align == 32) {
|
|
ingpack = INGPACKBOUNDARY_64B_X;
|
|
fl_align = 64;
|
|
} else {
|
|
u32 pack_align_log = fls(pack_align) - 1;
|
|
|
|
ingpack = pack_align_log - INGPACKBOUNDARY_SHIFT_X;
|
|
fl_align = pack_align;
|
|
}
|
|
|
|
/* Use the smallest Ingress Padding which isn't smaller than
|
|
* the Memory Controller Read/Write Size. We'll take that as
|
|
* being 8 bytes since we don't know of any system with a
|
|
* wider Memory Controller Bus Width.
|
|
*/
|
|
if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
|
|
ingpad = INGPADBOUNDARY_32B_X;
|
|
else
|
|
ingpad = T6_INGPADBOUNDARY_8B_X;
|
|
|
|
csio_set_reg_field(hw, SGE_CONTROL_A,
|
|
INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
|
|
EGRSTATUSPAGESIZE_F,
|
|
INGPADBOUNDARY_V(ingpad) |
|
|
EGRSTATUSPAGESIZE_V(stat_len != 64));
|
|
csio_set_reg_field(hw, SGE_CONTROL2_A,
|
|
INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
|
|
INGPACKBOUNDARY_V(ingpack));
|
|
|
|
/* FL BUFFER SIZE#0 is Page size i,e already aligned to cache line */
|
|
csio_wr_reg32(hw, PAGE_SIZE, SGE_FL_BUFFER_SIZE0_A);
|
|
|
|
/*
|
|
* If using hard params, the following will get set correctly
|
|
* in csio_wr_set_sge().
|
|
*/
|
|
if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS) {
|
|
csio_wr_reg32(hw,
|
|
(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE2_A) +
|
|
fl_align - 1) & ~(fl_align - 1),
|
|
SGE_FL_BUFFER_SIZE2_A);
|
|
csio_wr_reg32(hw,
|
|
(csio_rd_reg32(hw, SGE_FL_BUFFER_SIZE3_A) +
|
|
fl_align - 1) & ~(fl_align - 1),
|
|
SGE_FL_BUFFER_SIZE3_A);
|
|
}
|
|
|
|
sge->csio_fl_align = fl_align;
|
|
|
|
csio_wr_reg32(hw, HPZ0_V(PAGE_SHIFT - 12), ULP_RX_TDDP_PSZ_A);
|
|
|
|
/* default value of rx_dma_offset of the NIC driver */
|
|
csio_set_reg_field(hw, SGE_CONTROL_A,
|
|
PKTSHIFT_V(PKTSHIFT_M),
|
|
PKTSHIFT_V(CSIO_SGE_RX_DMA_OFFSET));
|
|
|
|
csio_hw_tp_wr_bits_indirect(hw, TP_INGRESS_CONFIG_A,
|
|
CSUM_HAS_PSEUDO_HDR_F, 0);
|
|
}
|
|
|
|
static void
|
|
csio_init_intr_coalesce_parms(struct csio_hw *hw)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
|
|
csio_sge_thresh_reg = csio_closest_thresh(sge, csio_intr_coalesce_cnt);
|
|
if (csio_intr_coalesce_cnt) {
|
|
csio_sge_thresh_reg = 0;
|
|
csio_sge_timer_reg = X_TIMERREG_RESTART_COUNTER;
|
|
return;
|
|
}
|
|
|
|
csio_sge_timer_reg = csio_closest_timer(sge, csio_intr_coalesce_time);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_get_sge - Get SGE register values.
|
|
* @hw: HW module.
|
|
*
|
|
* Used by non-master functions and by master-functions relying on config file.
|
|
*/
|
|
static void
|
|
csio_wr_get_sge(struct csio_hw *hw)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
uint32_t ingpad;
|
|
int i;
|
|
u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5;
|
|
u32 ingress_rx_threshold;
|
|
|
|
sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
|
|
|
|
ingpad = INGPADBOUNDARY_G(sge->sge_control);
|
|
|
|
switch (ingpad) {
|
|
case X_INGPCIEBOUNDARY_32B:
|
|
sge->csio_fl_align = 32; break;
|
|
case X_INGPCIEBOUNDARY_64B:
|
|
sge->csio_fl_align = 64; break;
|
|
case X_INGPCIEBOUNDARY_128B:
|
|
sge->csio_fl_align = 128; break;
|
|
case X_INGPCIEBOUNDARY_256B:
|
|
sge->csio_fl_align = 256; break;
|
|
case X_INGPCIEBOUNDARY_512B:
|
|
sge->csio_fl_align = 512; break;
|
|
case X_INGPCIEBOUNDARY_1024B:
|
|
sge->csio_fl_align = 1024; break;
|
|
case X_INGPCIEBOUNDARY_2048B:
|
|
sge->csio_fl_align = 2048; break;
|
|
case X_INGPCIEBOUNDARY_4096B:
|
|
sge->csio_fl_align = 4096; break;
|
|
}
|
|
|
|
for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
|
|
csio_get_flbuf_size(hw, sge, i);
|
|
|
|
timer_value_0_and_1 = csio_rd_reg32(hw, SGE_TIMER_VALUE_0_AND_1_A);
|
|
timer_value_2_and_3 = csio_rd_reg32(hw, SGE_TIMER_VALUE_2_AND_3_A);
|
|
timer_value_4_and_5 = csio_rd_reg32(hw, SGE_TIMER_VALUE_4_AND_5_A);
|
|
|
|
sge->timer_val[0] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE0_G(timer_value_0_and_1));
|
|
sge->timer_val[1] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE1_G(timer_value_0_and_1));
|
|
sge->timer_val[2] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE2_G(timer_value_2_and_3));
|
|
sge->timer_val[3] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE3_G(timer_value_2_and_3));
|
|
sge->timer_val[4] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE4_G(timer_value_4_and_5));
|
|
sge->timer_val[5] = (uint16_t)csio_core_ticks_to_us(hw,
|
|
TIMERVALUE5_G(timer_value_4_and_5));
|
|
|
|
ingress_rx_threshold = csio_rd_reg32(hw, SGE_INGRESS_RX_THRESHOLD_A);
|
|
sge->counter_val[0] = THRESHOLD_0_G(ingress_rx_threshold);
|
|
sge->counter_val[1] = THRESHOLD_1_G(ingress_rx_threshold);
|
|
sge->counter_val[2] = THRESHOLD_2_G(ingress_rx_threshold);
|
|
sge->counter_val[3] = THRESHOLD_3_G(ingress_rx_threshold);
|
|
|
|
csio_init_intr_coalesce_parms(hw);
|
|
}
|
|
|
|
/*
|
|
* csio_wr_set_sge - Initialize SGE registers
|
|
* @hw: HW module.
|
|
*
|
|
* Used by Master function to initialize SGE registers in the absence
|
|
* of a config file.
|
|
*/
|
|
static void
|
|
csio_wr_set_sge(struct csio_hw *hw)
|
|
{
|
|
struct csio_wrm *wrm = csio_hw_to_wrm(hw);
|
|
struct csio_sge *sge = &wrm->sge;
|
|
int i;
|
|
|
|
/*
|
|
* Set up our basic SGE mode to deliver CPL messages to our Ingress
|
|
* Queue and Packet Date to the Free List.
|
|
*/
|
|
csio_set_reg_field(hw, SGE_CONTROL_A, RXPKTCPLMODE_F, RXPKTCPLMODE_F);
|
|
|
|
sge->sge_control = csio_rd_reg32(hw, SGE_CONTROL_A);
|
|
|
|
/* sge->csio_fl_align is set up by csio_wr_fixup_host_params(). */
|
|
|
|
/*
|
|
* Set up to drop DOORBELL writes when the DOORBELL FIFO overflows
|
|
* and generate an interrupt when this occurs so we can recover.
|
|
*/
|
|
csio_set_reg_field(hw, SGE_DBFIFO_STATUS_A,
|
|
LP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
|
|
LP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
|
|
csio_set_reg_field(hw, SGE_DBFIFO_STATUS2_A,
|
|
HP_INT_THRESH_T5_V(LP_INT_THRESH_T5_M),
|
|
HP_INT_THRESH_T5_V(CSIO_SGE_DBFIFO_INT_THRESH));
|
|
|
|
csio_set_reg_field(hw, SGE_DOORBELL_CONTROL_A, ENABLE_DROP_F,
|
|
ENABLE_DROP_F);
|
|
|
|
/* SGE_FL_BUFFER_SIZE0 is set up by csio_wr_fixup_host_params(). */
|
|
|
|
CSIO_SET_FLBUF_SIZE(hw, 1, CSIO_SGE_FLBUF_SIZE1);
|
|
csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE2 + sge->csio_fl_align - 1)
|
|
& ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE2_A);
|
|
csio_wr_reg32(hw, (CSIO_SGE_FLBUF_SIZE3 + sge->csio_fl_align - 1)
|
|
& ~(sge->csio_fl_align - 1), SGE_FL_BUFFER_SIZE3_A);
|
|
CSIO_SET_FLBUF_SIZE(hw, 4, CSIO_SGE_FLBUF_SIZE4);
|
|
CSIO_SET_FLBUF_SIZE(hw, 5, CSIO_SGE_FLBUF_SIZE5);
|
|
CSIO_SET_FLBUF_SIZE(hw, 6, CSIO_SGE_FLBUF_SIZE6);
|
|
CSIO_SET_FLBUF_SIZE(hw, 7, CSIO_SGE_FLBUF_SIZE7);
|
|
CSIO_SET_FLBUF_SIZE(hw, 8, CSIO_SGE_FLBUF_SIZE8);
|
|
|
|
for (i = 0; i < CSIO_SGE_FL_SIZE_REGS; i++)
|
|
csio_get_flbuf_size(hw, sge, i);
|
|
|
|
/* Initialize interrupt coalescing attributes */
|
|
sge->timer_val[0] = CSIO_SGE_TIMER_VAL_0;
|
|
sge->timer_val[1] = CSIO_SGE_TIMER_VAL_1;
|
|
sge->timer_val[2] = CSIO_SGE_TIMER_VAL_2;
|
|
sge->timer_val[3] = CSIO_SGE_TIMER_VAL_3;
|
|
sge->timer_val[4] = CSIO_SGE_TIMER_VAL_4;
|
|
sge->timer_val[5] = CSIO_SGE_TIMER_VAL_5;
|
|
|
|
sge->counter_val[0] = CSIO_SGE_INT_CNT_VAL_0;
|
|
sge->counter_val[1] = CSIO_SGE_INT_CNT_VAL_1;
|
|
sge->counter_val[2] = CSIO_SGE_INT_CNT_VAL_2;
|
|
sge->counter_val[3] = CSIO_SGE_INT_CNT_VAL_3;
|
|
|
|
csio_wr_reg32(hw, THRESHOLD_0_V(sge->counter_val[0]) |
|
|
THRESHOLD_1_V(sge->counter_val[1]) |
|
|
THRESHOLD_2_V(sge->counter_val[2]) |
|
|
THRESHOLD_3_V(sge->counter_val[3]),
|
|
SGE_INGRESS_RX_THRESHOLD_A);
|
|
|
|
csio_wr_reg32(hw,
|
|
TIMERVALUE0_V(csio_us_to_core_ticks(hw, sge->timer_val[0])) |
|
|
TIMERVALUE1_V(csio_us_to_core_ticks(hw, sge->timer_val[1])),
|
|
SGE_TIMER_VALUE_0_AND_1_A);
|
|
|
|
csio_wr_reg32(hw,
|
|
TIMERVALUE2_V(csio_us_to_core_ticks(hw, sge->timer_val[2])) |
|
|
TIMERVALUE3_V(csio_us_to_core_ticks(hw, sge->timer_val[3])),
|
|
SGE_TIMER_VALUE_2_AND_3_A);
|
|
|
|
csio_wr_reg32(hw,
|
|
TIMERVALUE4_V(csio_us_to_core_ticks(hw, sge->timer_val[4])) |
|
|
TIMERVALUE5_V(csio_us_to_core_ticks(hw, sge->timer_val[5])),
|
|
SGE_TIMER_VALUE_4_AND_5_A);
|
|
|
|
csio_init_intr_coalesce_parms(hw);
|
|
}
|
|
|
|
void
|
|
csio_wr_sge_init(struct csio_hw *hw)
|
|
{
|
|
/*
|
|
* If we are master and chip is not initialized:
|
|
* - If we plan to use the config file, we need to fixup some
|
|
* host specific registers, and read the rest of the SGE
|
|
* configuration.
|
|
* - If we dont plan to use the config file, we need to initialize
|
|
* SGE entirely, including fixing the host specific registers.
|
|
* If we are master and chip is initialized, just read and work off of
|
|
* the already initialized SGE values.
|
|
* If we arent the master, we are only allowed to read and work off of
|
|
* the already initialized SGE values.
|
|
*
|
|
* Therefore, before calling this function, we assume that the master-
|
|
* ship of the card, state and whether to use config file or not, have
|
|
* already been decided.
|
|
*/
|
|
if (csio_is_hw_master(hw)) {
|
|
if (hw->fw_state != CSIO_DEV_STATE_INIT)
|
|
csio_wr_fixup_host_params(hw);
|
|
|
|
if (hw->flags & CSIO_HWF_USING_SOFT_PARAMS)
|
|
csio_wr_get_sge(hw);
|
|
else
|
|
csio_wr_set_sge(hw);
|
|
} else
|
|
csio_wr_get_sge(hw);
|
|
}
|
|
|
|
/*
|
|
* csio_wrm_init - Initialize Work request module.
|
|
* @wrm: WR module
|
|
* @hw: HW pointer
|
|
*
|
|
* Allocates memory for an array of queue pointers starting at q_arr.
|
|
*/
|
|
int
|
|
csio_wrm_init(struct csio_wrm *wrm, struct csio_hw *hw)
|
|
{
|
|
int i;
|
|
|
|
if (!wrm->num_q) {
|
|
csio_err(hw, "Num queues is not set\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
wrm->q_arr = kcalloc(wrm->num_q, sizeof(struct csio_q *), GFP_KERNEL);
|
|
if (!wrm->q_arr)
|
|
goto err;
|
|
|
|
for (i = 0; i < wrm->num_q; i++) {
|
|
wrm->q_arr[i] = kzalloc(sizeof(struct csio_q), GFP_KERNEL);
|
|
if (!wrm->q_arr[i]) {
|
|
while (--i >= 0)
|
|
kfree(wrm->q_arr[i]);
|
|
goto err_free_arr;
|
|
}
|
|
}
|
|
wrm->free_qidx = 0;
|
|
|
|
return 0;
|
|
|
|
err_free_arr:
|
|
kfree(wrm->q_arr);
|
|
err:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/*
|
|
* csio_wrm_exit - Initialize Work request module.
|
|
* @wrm: WR module
|
|
* @hw: HW module
|
|
*
|
|
* Uninitialize WR module. Free q_arr and pointers in it.
|
|
* We have the additional job of freeing the DMA memory associated
|
|
* with the queues.
|
|
*/
|
|
void
|
|
csio_wrm_exit(struct csio_wrm *wrm, struct csio_hw *hw)
|
|
{
|
|
int i;
|
|
uint32_t j;
|
|
struct csio_q *q;
|
|
struct csio_dma_buf *buf;
|
|
|
|
for (i = 0; i < wrm->num_q; i++) {
|
|
q = wrm->q_arr[i];
|
|
|
|
if (wrm->free_qidx && (i < wrm->free_qidx)) {
|
|
if (q->type == CSIO_FREELIST) {
|
|
if (!q->un.fl.bufs)
|
|
continue;
|
|
for (j = 0; j < q->credits; j++) {
|
|
buf = &q->un.fl.bufs[j];
|
|
if (!buf->vaddr)
|
|
continue;
|
|
dma_free_coherent(&hw->pdev->dev,
|
|
buf->len, buf->vaddr,
|
|
buf->paddr);
|
|
}
|
|
kfree(q->un.fl.bufs);
|
|
}
|
|
dma_free_coherent(&hw->pdev->dev, q->size,
|
|
q->vstart, q->pstart);
|
|
}
|
|
kfree(q);
|
|
}
|
|
|
|
hw->flags &= ~CSIO_HWF_Q_MEM_ALLOCED;
|
|
|
|
kfree(wrm->q_arr);
|
|
}
|