mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-23 05:36:35 +07:00
dd753d961c
Commit428826f535
("fdt: add support for rng-seed") moves of_fdt_crc32 from early_init_dt_verify() to early_init_dt_scan() since early_init_dt_scan_chosen() may modify fdt to erase rng-seed. However, arm and some other arch won't call early_init_dt_scan(), they call early_init_dt_verify() then early_init_dt_scan_nodes(). Restore of_fdt_crc32 to early_init_dt_verify() then update it in early_init_dt_scan_chosen() if fdt if updated. Fixes:428826f535
("fdt: add support for rng-seed") Reported-by: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: Hsin-Yi Wang <hsinyi@chromium.org> Tested-by: Geert Uytterhoeven <geert+renesas@glider.be> Signed-off-by: Will Deacon <will@kernel.org>
1297 lines
32 KiB
C
1297 lines
32 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Functions for working with the Flattened Device Tree data format
|
|
*
|
|
* Copyright 2009 Benjamin Herrenschmidt, IBM Corp
|
|
* benh@kernel.crashing.org
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "OF: fdt: " fmt
|
|
|
|
#include <linux/crc32.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/initrd.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_fdt.h>
|
|
#include <linux/of_reserved_mem.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/string.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/libfdt.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/serial_core.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/random.h>
|
|
|
|
#include <asm/setup.h> /* for COMMAND_LINE_SIZE */
|
|
#include <asm/page.h>
|
|
|
|
#include "of_private.h"
|
|
|
|
/*
|
|
* of_fdt_limit_memory - limit the number of regions in the /memory node
|
|
* @limit: maximum entries
|
|
*
|
|
* Adjust the flattened device tree to have at most 'limit' number of
|
|
* memory entries in the /memory node. This function may be called
|
|
* any time after initial_boot_param is set.
|
|
*/
|
|
void __init of_fdt_limit_memory(int limit)
|
|
{
|
|
int memory;
|
|
int len;
|
|
const void *val;
|
|
int nr_address_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
|
|
int nr_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
|
|
const __be32 *addr_prop;
|
|
const __be32 *size_prop;
|
|
int root_offset;
|
|
int cell_size;
|
|
|
|
root_offset = fdt_path_offset(initial_boot_params, "/");
|
|
if (root_offset < 0)
|
|
return;
|
|
|
|
addr_prop = fdt_getprop(initial_boot_params, root_offset,
|
|
"#address-cells", NULL);
|
|
if (addr_prop)
|
|
nr_address_cells = fdt32_to_cpu(*addr_prop);
|
|
|
|
size_prop = fdt_getprop(initial_boot_params, root_offset,
|
|
"#size-cells", NULL);
|
|
if (size_prop)
|
|
nr_size_cells = fdt32_to_cpu(*size_prop);
|
|
|
|
cell_size = sizeof(uint32_t)*(nr_address_cells + nr_size_cells);
|
|
|
|
memory = fdt_path_offset(initial_boot_params, "/memory");
|
|
if (memory > 0) {
|
|
val = fdt_getprop(initial_boot_params, memory, "reg", &len);
|
|
if (len > limit*cell_size) {
|
|
len = limit*cell_size;
|
|
pr_debug("Limiting number of entries to %d\n", limit);
|
|
fdt_setprop(initial_boot_params, memory, "reg", val,
|
|
len);
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool of_fdt_device_is_available(const void *blob, unsigned long node)
|
|
{
|
|
const char *status = fdt_getprop(blob, node, "status", NULL);
|
|
|
|
if (!status)
|
|
return true;
|
|
|
|
if (!strcmp(status, "ok") || !strcmp(status, "okay"))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void *unflatten_dt_alloc(void **mem, unsigned long size,
|
|
unsigned long align)
|
|
{
|
|
void *res;
|
|
|
|
*mem = PTR_ALIGN(*mem, align);
|
|
res = *mem;
|
|
*mem += size;
|
|
|
|
return res;
|
|
}
|
|
|
|
static void populate_properties(const void *blob,
|
|
int offset,
|
|
void **mem,
|
|
struct device_node *np,
|
|
const char *nodename,
|
|
bool dryrun)
|
|
{
|
|
struct property *pp, **pprev = NULL;
|
|
int cur;
|
|
bool has_name = false;
|
|
|
|
pprev = &np->properties;
|
|
for (cur = fdt_first_property_offset(blob, offset);
|
|
cur >= 0;
|
|
cur = fdt_next_property_offset(blob, cur)) {
|
|
const __be32 *val;
|
|
const char *pname;
|
|
u32 sz;
|
|
|
|
val = fdt_getprop_by_offset(blob, cur, &pname, &sz);
|
|
if (!val) {
|
|
pr_warn("Cannot locate property at 0x%x\n", cur);
|
|
continue;
|
|
}
|
|
|
|
if (!pname) {
|
|
pr_warn("Cannot find property name at 0x%x\n", cur);
|
|
continue;
|
|
}
|
|
|
|
if (!strcmp(pname, "name"))
|
|
has_name = true;
|
|
|
|
pp = unflatten_dt_alloc(mem, sizeof(struct property),
|
|
__alignof__(struct property));
|
|
if (dryrun)
|
|
continue;
|
|
|
|
/* We accept flattened tree phandles either in
|
|
* ePAPR-style "phandle" properties, or the
|
|
* legacy "linux,phandle" properties. If both
|
|
* appear and have different values, things
|
|
* will get weird. Don't do that.
|
|
*/
|
|
if (!strcmp(pname, "phandle") ||
|
|
!strcmp(pname, "linux,phandle")) {
|
|
if (!np->phandle)
|
|
np->phandle = be32_to_cpup(val);
|
|
}
|
|
|
|
/* And we process the "ibm,phandle" property
|
|
* used in pSeries dynamic device tree
|
|
* stuff
|
|
*/
|
|
if (!strcmp(pname, "ibm,phandle"))
|
|
np->phandle = be32_to_cpup(val);
|
|
|
|
pp->name = (char *)pname;
|
|
pp->length = sz;
|
|
pp->value = (__be32 *)val;
|
|
*pprev = pp;
|
|
pprev = &pp->next;
|
|
}
|
|
|
|
/* With version 0x10 we may not have the name property,
|
|
* recreate it here from the unit name if absent
|
|
*/
|
|
if (!has_name) {
|
|
const char *p = nodename, *ps = p, *pa = NULL;
|
|
int len;
|
|
|
|
while (*p) {
|
|
if ((*p) == '@')
|
|
pa = p;
|
|
else if ((*p) == '/')
|
|
ps = p + 1;
|
|
p++;
|
|
}
|
|
|
|
if (pa < ps)
|
|
pa = p;
|
|
len = (pa - ps) + 1;
|
|
pp = unflatten_dt_alloc(mem, sizeof(struct property) + len,
|
|
__alignof__(struct property));
|
|
if (!dryrun) {
|
|
pp->name = "name";
|
|
pp->length = len;
|
|
pp->value = pp + 1;
|
|
*pprev = pp;
|
|
pprev = &pp->next;
|
|
memcpy(pp->value, ps, len - 1);
|
|
((char *)pp->value)[len - 1] = 0;
|
|
pr_debug("fixed up name for %s -> %s\n",
|
|
nodename, (char *)pp->value);
|
|
}
|
|
}
|
|
|
|
if (!dryrun)
|
|
*pprev = NULL;
|
|
}
|
|
|
|
static bool populate_node(const void *blob,
|
|
int offset,
|
|
void **mem,
|
|
struct device_node *dad,
|
|
struct device_node **pnp,
|
|
bool dryrun)
|
|
{
|
|
struct device_node *np;
|
|
const char *pathp;
|
|
unsigned int l, allocl;
|
|
|
|
pathp = fdt_get_name(blob, offset, &l);
|
|
if (!pathp) {
|
|
*pnp = NULL;
|
|
return false;
|
|
}
|
|
|
|
allocl = ++l;
|
|
|
|
np = unflatten_dt_alloc(mem, sizeof(struct device_node) + allocl,
|
|
__alignof__(struct device_node));
|
|
if (!dryrun) {
|
|
char *fn;
|
|
of_node_init(np);
|
|
np->full_name = fn = ((char *)np) + sizeof(*np);
|
|
|
|
memcpy(fn, pathp, l);
|
|
|
|
if (dad != NULL) {
|
|
np->parent = dad;
|
|
np->sibling = dad->child;
|
|
dad->child = np;
|
|
}
|
|
}
|
|
|
|
populate_properties(blob, offset, mem, np, pathp, dryrun);
|
|
if (!dryrun) {
|
|
np->name = of_get_property(np, "name", NULL);
|
|
if (!np->name)
|
|
np->name = "<NULL>";
|
|
}
|
|
|
|
*pnp = np;
|
|
return true;
|
|
}
|
|
|
|
static void reverse_nodes(struct device_node *parent)
|
|
{
|
|
struct device_node *child, *next;
|
|
|
|
/* In-depth first */
|
|
child = parent->child;
|
|
while (child) {
|
|
reverse_nodes(child);
|
|
|
|
child = child->sibling;
|
|
}
|
|
|
|
/* Reverse the nodes in the child list */
|
|
child = parent->child;
|
|
parent->child = NULL;
|
|
while (child) {
|
|
next = child->sibling;
|
|
|
|
child->sibling = parent->child;
|
|
parent->child = child;
|
|
child = next;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* unflatten_dt_nodes - Alloc and populate a device_node from the flat tree
|
|
* @blob: The parent device tree blob
|
|
* @mem: Memory chunk to use for allocating device nodes and properties
|
|
* @dad: Parent struct device_node
|
|
* @nodepp: The device_node tree created by the call
|
|
*
|
|
* It returns the size of unflattened device tree or error code
|
|
*/
|
|
static int unflatten_dt_nodes(const void *blob,
|
|
void *mem,
|
|
struct device_node *dad,
|
|
struct device_node **nodepp)
|
|
{
|
|
struct device_node *root;
|
|
int offset = 0, depth = 0, initial_depth = 0;
|
|
#define FDT_MAX_DEPTH 64
|
|
struct device_node *nps[FDT_MAX_DEPTH];
|
|
void *base = mem;
|
|
bool dryrun = !base;
|
|
|
|
if (nodepp)
|
|
*nodepp = NULL;
|
|
|
|
/*
|
|
* We're unflattening device sub-tree if @dad is valid. There are
|
|
* possibly multiple nodes in the first level of depth. We need
|
|
* set @depth to 1 to make fdt_next_node() happy as it bails
|
|
* immediately when negative @depth is found. Otherwise, the device
|
|
* nodes except the first one won't be unflattened successfully.
|
|
*/
|
|
if (dad)
|
|
depth = initial_depth = 1;
|
|
|
|
root = dad;
|
|
nps[depth] = dad;
|
|
|
|
for (offset = 0;
|
|
offset >= 0 && depth >= initial_depth;
|
|
offset = fdt_next_node(blob, offset, &depth)) {
|
|
if (WARN_ON_ONCE(depth >= FDT_MAX_DEPTH))
|
|
continue;
|
|
|
|
if (!IS_ENABLED(CONFIG_OF_KOBJ) &&
|
|
!of_fdt_device_is_available(blob, offset))
|
|
continue;
|
|
|
|
if (!populate_node(blob, offset, &mem, nps[depth],
|
|
&nps[depth+1], dryrun))
|
|
return mem - base;
|
|
|
|
if (!dryrun && nodepp && !*nodepp)
|
|
*nodepp = nps[depth+1];
|
|
if (!dryrun && !root)
|
|
root = nps[depth+1];
|
|
}
|
|
|
|
if (offset < 0 && offset != -FDT_ERR_NOTFOUND) {
|
|
pr_err("Error %d processing FDT\n", offset);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Reverse the child list. Some drivers assumes node order matches .dts
|
|
* node order
|
|
*/
|
|
if (!dryrun)
|
|
reverse_nodes(root);
|
|
|
|
return mem - base;
|
|
}
|
|
|
|
/**
|
|
* __unflatten_device_tree - create tree of device_nodes from flat blob
|
|
*
|
|
* unflattens a device-tree, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used.
|
|
* @blob: The blob to expand
|
|
* @dad: Parent device node
|
|
* @mynodes: The device_node tree created by the call
|
|
* @dt_alloc: An allocator that provides a virtual address to memory
|
|
* for the resulting tree
|
|
* @detached: if true set OF_DETACHED on @mynodes
|
|
*
|
|
* Returns NULL on failure or the memory chunk containing the unflattened
|
|
* device tree on success.
|
|
*/
|
|
void *__unflatten_device_tree(const void *blob,
|
|
struct device_node *dad,
|
|
struct device_node **mynodes,
|
|
void *(*dt_alloc)(u64 size, u64 align),
|
|
bool detached)
|
|
{
|
|
int size;
|
|
void *mem;
|
|
|
|
pr_debug(" -> unflatten_device_tree()\n");
|
|
|
|
if (!blob) {
|
|
pr_debug("No device tree pointer\n");
|
|
return NULL;
|
|
}
|
|
|
|
pr_debug("Unflattening device tree:\n");
|
|
pr_debug("magic: %08x\n", fdt_magic(blob));
|
|
pr_debug("size: %08x\n", fdt_totalsize(blob));
|
|
pr_debug("version: %08x\n", fdt_version(blob));
|
|
|
|
if (fdt_check_header(blob)) {
|
|
pr_err("Invalid device tree blob header\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* First pass, scan for size */
|
|
size = unflatten_dt_nodes(blob, NULL, dad, NULL);
|
|
if (size < 0)
|
|
return NULL;
|
|
|
|
size = ALIGN(size, 4);
|
|
pr_debug(" size is %d, allocating...\n", size);
|
|
|
|
/* Allocate memory for the expanded device tree */
|
|
mem = dt_alloc(size + 4, __alignof__(struct device_node));
|
|
if (!mem)
|
|
return NULL;
|
|
|
|
memset(mem, 0, size);
|
|
|
|
*(__be32 *)(mem + size) = cpu_to_be32(0xdeadbeef);
|
|
|
|
pr_debug(" unflattening %p...\n", mem);
|
|
|
|
/* Second pass, do actual unflattening */
|
|
unflatten_dt_nodes(blob, mem, dad, mynodes);
|
|
if (be32_to_cpup(mem + size) != 0xdeadbeef)
|
|
pr_warning("End of tree marker overwritten: %08x\n",
|
|
be32_to_cpup(mem + size));
|
|
|
|
if (detached && mynodes) {
|
|
of_node_set_flag(*mynodes, OF_DETACHED);
|
|
pr_debug("unflattened tree is detached\n");
|
|
}
|
|
|
|
pr_debug(" <- unflatten_device_tree()\n");
|
|
return mem;
|
|
}
|
|
|
|
static void *kernel_tree_alloc(u64 size, u64 align)
|
|
{
|
|
return kzalloc(size, GFP_KERNEL);
|
|
}
|
|
|
|
static DEFINE_MUTEX(of_fdt_unflatten_mutex);
|
|
|
|
/**
|
|
* of_fdt_unflatten_tree - create tree of device_nodes from flat blob
|
|
* @blob: Flat device tree blob
|
|
* @dad: Parent device node
|
|
* @mynodes: The device tree created by the call
|
|
*
|
|
* unflattens the device-tree passed by the firmware, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used.
|
|
*
|
|
* Returns NULL on failure or the memory chunk containing the unflattened
|
|
* device tree on success.
|
|
*/
|
|
void *of_fdt_unflatten_tree(const unsigned long *blob,
|
|
struct device_node *dad,
|
|
struct device_node **mynodes)
|
|
{
|
|
void *mem;
|
|
|
|
mutex_lock(&of_fdt_unflatten_mutex);
|
|
mem = __unflatten_device_tree(blob, dad, mynodes, &kernel_tree_alloc,
|
|
true);
|
|
mutex_unlock(&of_fdt_unflatten_mutex);
|
|
|
|
return mem;
|
|
}
|
|
EXPORT_SYMBOL_GPL(of_fdt_unflatten_tree);
|
|
|
|
/* Everything below here references initial_boot_params directly. */
|
|
int __initdata dt_root_addr_cells;
|
|
int __initdata dt_root_size_cells;
|
|
|
|
void *initial_boot_params __ro_after_init;
|
|
|
|
#ifdef CONFIG_OF_EARLY_FLATTREE
|
|
|
|
static u32 of_fdt_crc32;
|
|
|
|
/**
|
|
* res_mem_reserve_reg() - reserve all memory described in 'reg' property
|
|
*/
|
|
static int __init __reserved_mem_reserve_reg(unsigned long node,
|
|
const char *uname)
|
|
{
|
|
int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
|
|
phys_addr_t base, size;
|
|
int len;
|
|
const __be32 *prop;
|
|
int first = 1;
|
|
bool nomap;
|
|
|
|
prop = of_get_flat_dt_prop(node, "reg", &len);
|
|
if (!prop)
|
|
return -ENOENT;
|
|
|
|
if (len && len % t_len != 0) {
|
|
pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
|
|
uname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
|
|
|
|
while (len >= t_len) {
|
|
base = dt_mem_next_cell(dt_root_addr_cells, &prop);
|
|
size = dt_mem_next_cell(dt_root_size_cells, &prop);
|
|
|
|
if (size &&
|
|
early_init_dt_reserve_memory_arch(base, size, nomap) == 0)
|
|
pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %ld MiB\n",
|
|
uname, &base, (unsigned long)size / SZ_1M);
|
|
else
|
|
pr_info("Reserved memory: failed to reserve memory for node '%s': base %pa, size %ld MiB\n",
|
|
uname, &base, (unsigned long)size / SZ_1M);
|
|
|
|
len -= t_len;
|
|
if (first) {
|
|
fdt_reserved_mem_save_node(node, uname, base, size);
|
|
first = 0;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* __reserved_mem_check_root() - check if #size-cells, #address-cells provided
|
|
* in /reserved-memory matches the values supported by the current implementation,
|
|
* also check if ranges property has been provided
|
|
*/
|
|
static int __init __reserved_mem_check_root(unsigned long node)
|
|
{
|
|
const __be32 *prop;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
|
|
if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
|
|
return -EINVAL;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
|
|
if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
|
|
return -EINVAL;
|
|
|
|
prop = of_get_flat_dt_prop(node, "ranges", NULL);
|
|
if (!prop)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
|
|
*/
|
|
static int __init __fdt_scan_reserved_mem(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
static int found;
|
|
int err;
|
|
|
|
if (!found && depth == 1 && strcmp(uname, "reserved-memory") == 0) {
|
|
if (__reserved_mem_check_root(node) != 0) {
|
|
pr_err("Reserved memory: unsupported node format, ignoring\n");
|
|
/* break scan */
|
|
return 1;
|
|
}
|
|
found = 1;
|
|
/* scan next node */
|
|
return 0;
|
|
} else if (!found) {
|
|
/* scan next node */
|
|
return 0;
|
|
} else if (found && depth < 2) {
|
|
/* scanning of /reserved-memory has been finished */
|
|
return 1;
|
|
}
|
|
|
|
if (!of_fdt_device_is_available(initial_boot_params, node))
|
|
return 0;
|
|
|
|
err = __reserved_mem_reserve_reg(node, uname);
|
|
if (err == -ENOENT && of_get_flat_dt_prop(node, "size", NULL))
|
|
fdt_reserved_mem_save_node(node, uname, 0, 0);
|
|
|
|
/* scan next node */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* early_init_fdt_scan_reserved_mem() - create reserved memory regions
|
|
*
|
|
* This function grabs memory from early allocator for device exclusive use
|
|
* defined in device tree structures. It should be called by arch specific code
|
|
* once the early allocator (i.e. memblock) has been fully activated.
|
|
*/
|
|
void __init early_init_fdt_scan_reserved_mem(void)
|
|
{
|
|
int n;
|
|
u64 base, size;
|
|
|
|
if (!initial_boot_params)
|
|
return;
|
|
|
|
/* Process header /memreserve/ fields */
|
|
for (n = 0; ; n++) {
|
|
fdt_get_mem_rsv(initial_boot_params, n, &base, &size);
|
|
if (!size)
|
|
break;
|
|
early_init_dt_reserve_memory_arch(base, size, false);
|
|
}
|
|
|
|
of_scan_flat_dt(__fdt_scan_reserved_mem, NULL);
|
|
fdt_init_reserved_mem();
|
|
}
|
|
|
|
/**
|
|
* early_init_fdt_reserve_self() - reserve the memory used by the FDT blob
|
|
*/
|
|
void __init early_init_fdt_reserve_self(void)
|
|
{
|
|
if (!initial_boot_params)
|
|
return;
|
|
|
|
/* Reserve the dtb region */
|
|
early_init_dt_reserve_memory_arch(__pa(initial_boot_params),
|
|
fdt_totalsize(initial_boot_params),
|
|
false);
|
|
}
|
|
|
|
/**
|
|
* of_scan_flat_dt - scan flattened tree blob and call callback on each.
|
|
* @it: callback function
|
|
* @data: context data pointer
|
|
*
|
|
* This function is used to scan the flattened device-tree, it is
|
|
* used to extract the memory information at boot before we can
|
|
* unflatten the tree
|
|
*/
|
|
int __init of_scan_flat_dt(int (*it)(unsigned long node,
|
|
const char *uname, int depth,
|
|
void *data),
|
|
void *data)
|
|
{
|
|
const void *blob = initial_boot_params;
|
|
const char *pathp;
|
|
int offset, rc = 0, depth = -1;
|
|
|
|
if (!blob)
|
|
return 0;
|
|
|
|
for (offset = fdt_next_node(blob, -1, &depth);
|
|
offset >= 0 && depth >= 0 && !rc;
|
|
offset = fdt_next_node(blob, offset, &depth)) {
|
|
|
|
pathp = fdt_get_name(blob, offset, NULL);
|
|
if (*pathp == '/')
|
|
pathp = kbasename(pathp);
|
|
rc = it(offset, pathp, depth, data);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/**
|
|
* of_scan_flat_dt_subnodes - scan sub-nodes of a node call callback on each.
|
|
* @it: callback function
|
|
* @data: context data pointer
|
|
*
|
|
* This function is used to scan sub-nodes of a node.
|
|
*/
|
|
int __init of_scan_flat_dt_subnodes(unsigned long parent,
|
|
int (*it)(unsigned long node,
|
|
const char *uname,
|
|
void *data),
|
|
void *data)
|
|
{
|
|
const void *blob = initial_boot_params;
|
|
int node;
|
|
|
|
fdt_for_each_subnode(node, blob, parent) {
|
|
const char *pathp;
|
|
int rc;
|
|
|
|
pathp = fdt_get_name(blob, node, NULL);
|
|
if (*pathp == '/')
|
|
pathp = kbasename(pathp);
|
|
rc = it(node, pathp, data);
|
|
if (rc)
|
|
return rc;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* of_get_flat_dt_subnode_by_name - get the subnode by given name
|
|
*
|
|
* @node: the parent node
|
|
* @uname: the name of subnode
|
|
* @return offset of the subnode, or -FDT_ERR_NOTFOUND if there is none
|
|
*/
|
|
|
|
int __init of_get_flat_dt_subnode_by_name(unsigned long node, const char *uname)
|
|
{
|
|
return fdt_subnode_offset(initial_boot_params, node, uname);
|
|
}
|
|
|
|
/**
|
|
* of_get_flat_dt_root - find the root node in the flat blob
|
|
*/
|
|
unsigned long __init of_get_flat_dt_root(void)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* of_get_flat_dt_prop - Given a node in the flat blob, return the property ptr
|
|
*
|
|
* This function can be used within scan_flattened_dt callback to get
|
|
* access to properties
|
|
*/
|
|
const void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
|
|
int *size)
|
|
{
|
|
return fdt_getprop(initial_boot_params, node, name, size);
|
|
}
|
|
|
|
/**
|
|
* of_fdt_is_compatible - Return true if given node from the given blob has
|
|
* compat in its compatible list
|
|
* @blob: A device tree blob
|
|
* @node: node to test
|
|
* @compat: compatible string to compare with compatible list.
|
|
*
|
|
* On match, returns a non-zero value with smaller values returned for more
|
|
* specific compatible values.
|
|
*/
|
|
static int of_fdt_is_compatible(const void *blob,
|
|
unsigned long node, const char *compat)
|
|
{
|
|
const char *cp;
|
|
int cplen;
|
|
unsigned long l, score = 0;
|
|
|
|
cp = fdt_getprop(blob, node, "compatible", &cplen);
|
|
if (cp == NULL)
|
|
return 0;
|
|
while (cplen > 0) {
|
|
score++;
|
|
if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
|
|
return score;
|
|
l = strlen(cp) + 1;
|
|
cp += l;
|
|
cplen -= l;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* of_flat_dt_is_compatible - Return true if given node has compat in compatible list
|
|
* @node: node to test
|
|
* @compat: compatible string to compare with compatible list.
|
|
*/
|
|
int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
|
|
{
|
|
return of_fdt_is_compatible(initial_boot_params, node, compat);
|
|
}
|
|
|
|
/**
|
|
* of_flat_dt_match - Return true if node matches a list of compatible values
|
|
*/
|
|
static int __init of_flat_dt_match(unsigned long node, const char *const *compat)
|
|
{
|
|
unsigned int tmp, score = 0;
|
|
|
|
if (!compat)
|
|
return 0;
|
|
|
|
while (*compat) {
|
|
tmp = of_fdt_is_compatible(initial_boot_params, node, *compat);
|
|
if (tmp && (score == 0 || (tmp < score)))
|
|
score = tmp;
|
|
compat++;
|
|
}
|
|
|
|
return score;
|
|
}
|
|
|
|
/**
|
|
* of_get_flat_dt_prop - Given a node in the flat blob, return the phandle
|
|
*/
|
|
uint32_t __init of_get_flat_dt_phandle(unsigned long node)
|
|
{
|
|
return fdt_get_phandle(initial_boot_params, node);
|
|
}
|
|
|
|
struct fdt_scan_status {
|
|
const char *name;
|
|
int namelen;
|
|
int depth;
|
|
int found;
|
|
int (*iterator)(unsigned long node, const char *uname, int depth, void *data);
|
|
void *data;
|
|
};
|
|
|
|
const char * __init of_flat_dt_get_machine_name(void)
|
|
{
|
|
const char *name;
|
|
unsigned long dt_root = of_get_flat_dt_root();
|
|
|
|
name = of_get_flat_dt_prop(dt_root, "model", NULL);
|
|
if (!name)
|
|
name = of_get_flat_dt_prop(dt_root, "compatible", NULL);
|
|
return name;
|
|
}
|
|
|
|
/**
|
|
* of_flat_dt_match_machine - Iterate match tables to find matching machine.
|
|
*
|
|
* @default_match: A machine specific ptr to return in case of no match.
|
|
* @get_next_compat: callback function to return next compatible match table.
|
|
*
|
|
* Iterate through machine match tables to find the best match for the machine
|
|
* compatible string in the FDT.
|
|
*/
|
|
const void * __init of_flat_dt_match_machine(const void *default_match,
|
|
const void * (*get_next_compat)(const char * const**))
|
|
{
|
|
const void *data = NULL;
|
|
const void *best_data = default_match;
|
|
const char *const *compat;
|
|
unsigned long dt_root;
|
|
unsigned int best_score = ~1, score = 0;
|
|
|
|
dt_root = of_get_flat_dt_root();
|
|
while ((data = get_next_compat(&compat))) {
|
|
score = of_flat_dt_match(dt_root, compat);
|
|
if (score > 0 && score < best_score) {
|
|
best_data = data;
|
|
best_score = score;
|
|
}
|
|
}
|
|
if (!best_data) {
|
|
const char *prop;
|
|
int size;
|
|
|
|
pr_err("\n unrecognized device tree list:\n[ ");
|
|
|
|
prop = of_get_flat_dt_prop(dt_root, "compatible", &size);
|
|
if (prop) {
|
|
while (size > 0) {
|
|
printk("'%s' ", prop);
|
|
size -= strlen(prop) + 1;
|
|
prop += strlen(prop) + 1;
|
|
}
|
|
}
|
|
printk("]\n\n");
|
|
return NULL;
|
|
}
|
|
|
|
pr_info("Machine model: %s\n", of_flat_dt_get_machine_name());
|
|
|
|
return best_data;
|
|
}
|
|
|
|
#ifdef CONFIG_BLK_DEV_INITRD
|
|
static void __early_init_dt_declare_initrd(unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
/* ARM64 would cause a BUG to occur here when CONFIG_DEBUG_VM is
|
|
* enabled since __va() is called too early. ARM64 does make use
|
|
* of phys_initrd_start/phys_initrd_size so we can skip this
|
|
* conversion.
|
|
*/
|
|
if (!IS_ENABLED(CONFIG_ARM64)) {
|
|
initrd_start = (unsigned long)__va(start);
|
|
initrd_end = (unsigned long)__va(end);
|
|
initrd_below_start_ok = 1;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* early_init_dt_check_for_initrd - Decode initrd location from flat tree
|
|
* @node: reference to node containing initrd location ('chosen')
|
|
*/
|
|
static void __init early_init_dt_check_for_initrd(unsigned long node)
|
|
{
|
|
u64 start, end;
|
|
int len;
|
|
const __be32 *prop;
|
|
|
|
pr_debug("Looking for initrd properties... ");
|
|
|
|
prop = of_get_flat_dt_prop(node, "linux,initrd-start", &len);
|
|
if (!prop)
|
|
return;
|
|
start = of_read_number(prop, len/4);
|
|
|
|
prop = of_get_flat_dt_prop(node, "linux,initrd-end", &len);
|
|
if (!prop)
|
|
return;
|
|
end = of_read_number(prop, len/4);
|
|
|
|
__early_init_dt_declare_initrd(start, end);
|
|
phys_initrd_start = start;
|
|
phys_initrd_size = end - start;
|
|
|
|
pr_debug("initrd_start=0x%llx initrd_end=0x%llx\n",
|
|
(unsigned long long)start, (unsigned long long)end);
|
|
}
|
|
#else
|
|
static inline void early_init_dt_check_for_initrd(unsigned long node)
|
|
{
|
|
}
|
|
#endif /* CONFIG_BLK_DEV_INITRD */
|
|
|
|
#ifdef CONFIG_SERIAL_EARLYCON
|
|
|
|
int __init early_init_dt_scan_chosen_stdout(void)
|
|
{
|
|
int offset;
|
|
const char *p, *q, *options = NULL;
|
|
int l;
|
|
const struct earlycon_id **p_match;
|
|
const void *fdt = initial_boot_params;
|
|
|
|
offset = fdt_path_offset(fdt, "/chosen");
|
|
if (offset < 0)
|
|
offset = fdt_path_offset(fdt, "/chosen@0");
|
|
if (offset < 0)
|
|
return -ENOENT;
|
|
|
|
p = fdt_getprop(fdt, offset, "stdout-path", &l);
|
|
if (!p)
|
|
p = fdt_getprop(fdt, offset, "linux,stdout-path", &l);
|
|
if (!p || !l)
|
|
return -ENOENT;
|
|
|
|
q = strchrnul(p, ':');
|
|
if (*q != '\0')
|
|
options = q + 1;
|
|
l = q - p;
|
|
|
|
/* Get the node specified by stdout-path */
|
|
offset = fdt_path_offset_namelen(fdt, p, l);
|
|
if (offset < 0) {
|
|
pr_warn("earlycon: stdout-path %.*s not found\n", l, p);
|
|
return 0;
|
|
}
|
|
|
|
for (p_match = __earlycon_table; p_match < __earlycon_table_end;
|
|
p_match++) {
|
|
const struct earlycon_id *match = *p_match;
|
|
|
|
if (!match->compatible[0])
|
|
continue;
|
|
|
|
if (fdt_node_check_compatible(fdt, offset, match->compatible))
|
|
continue;
|
|
|
|
of_setup_earlycon(match, offset, options);
|
|
return 0;
|
|
}
|
|
return -ENODEV;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* early_init_dt_scan_root - fetch the top level address and size cells
|
|
*/
|
|
int __init early_init_dt_scan_root(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
const __be32 *prop;
|
|
|
|
if (depth != 0)
|
|
return 0;
|
|
|
|
dt_root_size_cells = OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
|
|
dt_root_addr_cells = OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
|
|
|
|
prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
|
|
if (prop)
|
|
dt_root_size_cells = be32_to_cpup(prop);
|
|
pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
|
|
|
|
prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
|
|
if (prop)
|
|
dt_root_addr_cells = be32_to_cpup(prop);
|
|
pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
u64 __init dt_mem_next_cell(int s, const __be32 **cellp)
|
|
{
|
|
const __be32 *p = *cellp;
|
|
|
|
*cellp = p + s;
|
|
return of_read_number(p, s);
|
|
}
|
|
|
|
/**
|
|
* early_init_dt_scan_memory - Look for and parse memory nodes
|
|
*/
|
|
int __init early_init_dt_scan_memory(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
|
|
const __be32 *reg, *endp;
|
|
int l;
|
|
bool hotpluggable;
|
|
|
|
/* We are scanning "memory" nodes only */
|
|
if (type == NULL || strcmp(type, "memory") != 0)
|
|
return 0;
|
|
|
|
reg = of_get_flat_dt_prop(node, "linux,usable-memory", &l);
|
|
if (reg == NULL)
|
|
reg = of_get_flat_dt_prop(node, "reg", &l);
|
|
if (reg == NULL)
|
|
return 0;
|
|
|
|
endp = reg + (l / sizeof(__be32));
|
|
hotpluggable = of_get_flat_dt_prop(node, "hotpluggable", NULL);
|
|
|
|
pr_debug("memory scan node %s, reg size %d,\n", uname, l);
|
|
|
|
while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
|
|
u64 base, size;
|
|
|
|
base = dt_mem_next_cell(dt_root_addr_cells, ®);
|
|
size = dt_mem_next_cell(dt_root_size_cells, ®);
|
|
|
|
if (size == 0)
|
|
continue;
|
|
pr_debug(" - %llx , %llx\n", (unsigned long long)base,
|
|
(unsigned long long)size);
|
|
|
|
early_init_dt_add_memory_arch(base, size);
|
|
|
|
if (!hotpluggable)
|
|
continue;
|
|
|
|
if (early_init_dt_mark_hotplug_memory_arch(base, size))
|
|
pr_warn("failed to mark hotplug range 0x%llx - 0x%llx\n",
|
|
base, base + size);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __init early_init_dt_scan_chosen(unsigned long node, const char *uname,
|
|
int depth, void *data)
|
|
{
|
|
int l;
|
|
const char *p;
|
|
const void *rng_seed;
|
|
|
|
pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
|
|
|
|
if (depth != 1 || !data ||
|
|
(strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
|
|
return 0;
|
|
|
|
early_init_dt_check_for_initrd(node);
|
|
|
|
/* Retrieve command line */
|
|
p = of_get_flat_dt_prop(node, "bootargs", &l);
|
|
if (p != NULL && l > 0)
|
|
strlcpy(data, p, min(l, COMMAND_LINE_SIZE));
|
|
|
|
/*
|
|
* CONFIG_CMDLINE is meant to be a default in case nothing else
|
|
* managed to set the command line, unless CONFIG_CMDLINE_FORCE
|
|
* is set in which case we override whatever was found earlier.
|
|
*/
|
|
#ifdef CONFIG_CMDLINE
|
|
#if defined(CONFIG_CMDLINE_EXTEND)
|
|
strlcat(data, " ", COMMAND_LINE_SIZE);
|
|
strlcat(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
|
|
#elif defined(CONFIG_CMDLINE_FORCE)
|
|
strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
|
|
#else
|
|
/* No arguments from boot loader, use kernel's cmdl*/
|
|
if (!((char *)data)[0])
|
|
strlcpy(data, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
|
|
#endif
|
|
#endif /* CONFIG_CMDLINE */
|
|
|
|
pr_debug("Command line is: %s\n", (char*)data);
|
|
|
|
rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l);
|
|
if (rng_seed && l > 0) {
|
|
add_bootloader_randomness(rng_seed, l);
|
|
|
|
/* try to clear seed so it won't be found. */
|
|
fdt_nop_property(initial_boot_params, node, "rng-seed");
|
|
|
|
/* update CRC check value */
|
|
of_fdt_crc32 = crc32_be(~0, initial_boot_params,
|
|
fdt_totalsize(initial_boot_params));
|
|
}
|
|
|
|
/* break now */
|
|
return 1;
|
|
}
|
|
|
|
#ifndef MIN_MEMBLOCK_ADDR
|
|
#define MIN_MEMBLOCK_ADDR __pa(PAGE_OFFSET)
|
|
#endif
|
|
#ifndef MAX_MEMBLOCK_ADDR
|
|
#define MAX_MEMBLOCK_ADDR ((phys_addr_t)~0)
|
|
#endif
|
|
|
|
void __init __weak early_init_dt_add_memory_arch(u64 base, u64 size)
|
|
{
|
|
const u64 phys_offset = MIN_MEMBLOCK_ADDR;
|
|
|
|
if (size < PAGE_SIZE - (base & ~PAGE_MASK)) {
|
|
pr_warn("Ignoring memory block 0x%llx - 0x%llx\n",
|
|
base, base + size);
|
|
return;
|
|
}
|
|
|
|
if (!PAGE_ALIGNED(base)) {
|
|
size -= PAGE_SIZE - (base & ~PAGE_MASK);
|
|
base = PAGE_ALIGN(base);
|
|
}
|
|
size &= PAGE_MASK;
|
|
|
|
if (base > MAX_MEMBLOCK_ADDR) {
|
|
pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
|
|
base, base + size);
|
|
return;
|
|
}
|
|
|
|
if (base + size - 1 > MAX_MEMBLOCK_ADDR) {
|
|
pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
|
|
((u64)MAX_MEMBLOCK_ADDR) + 1, base + size);
|
|
size = MAX_MEMBLOCK_ADDR - base + 1;
|
|
}
|
|
|
|
if (base + size < phys_offset) {
|
|
pr_warning("Ignoring memory block 0x%llx - 0x%llx\n",
|
|
base, base + size);
|
|
return;
|
|
}
|
|
if (base < phys_offset) {
|
|
pr_warning("Ignoring memory range 0x%llx - 0x%llx\n",
|
|
base, phys_offset);
|
|
size -= phys_offset - base;
|
|
base = phys_offset;
|
|
}
|
|
memblock_add(base, size);
|
|
}
|
|
|
|
int __init __weak early_init_dt_mark_hotplug_memory_arch(u64 base, u64 size)
|
|
{
|
|
return memblock_mark_hotplug(base, size);
|
|
}
|
|
|
|
int __init __weak early_init_dt_reserve_memory_arch(phys_addr_t base,
|
|
phys_addr_t size, bool nomap)
|
|
{
|
|
if (nomap)
|
|
return memblock_remove(base, size);
|
|
return memblock_reserve(base, size);
|
|
}
|
|
|
|
static void * __init early_init_dt_alloc_memory_arch(u64 size, u64 align)
|
|
{
|
|
void *ptr = memblock_alloc(size, align);
|
|
|
|
if (!ptr)
|
|
panic("%s: Failed to allocate %llu bytes align=0x%llx\n",
|
|
__func__, size, align);
|
|
|
|
return ptr;
|
|
}
|
|
|
|
bool __init early_init_dt_verify(void *params)
|
|
{
|
|
if (!params)
|
|
return false;
|
|
|
|
/* check device tree validity */
|
|
if (fdt_check_header(params))
|
|
return false;
|
|
|
|
/* Setup flat device-tree pointer */
|
|
initial_boot_params = params;
|
|
of_fdt_crc32 = crc32_be(~0, initial_boot_params,
|
|
fdt_totalsize(initial_boot_params));
|
|
return true;
|
|
}
|
|
|
|
|
|
void __init early_init_dt_scan_nodes(void)
|
|
{
|
|
int rc = 0;
|
|
|
|
/* Retrieve various information from the /chosen node */
|
|
rc = of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line);
|
|
if (!rc)
|
|
pr_warn("No chosen node found, continuing without\n");
|
|
|
|
/* Initialize {size,address}-cells info */
|
|
of_scan_flat_dt(early_init_dt_scan_root, NULL);
|
|
|
|
/* Setup memory, calling early_init_dt_add_memory_arch */
|
|
of_scan_flat_dt(early_init_dt_scan_memory, NULL);
|
|
}
|
|
|
|
bool __init early_init_dt_scan(void *params)
|
|
{
|
|
bool status;
|
|
|
|
status = early_init_dt_verify(params);
|
|
if (!status)
|
|
return false;
|
|
|
|
early_init_dt_scan_nodes();
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* unflatten_device_tree - create tree of device_nodes from flat blob
|
|
*
|
|
* unflattens the device-tree passed by the firmware, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used.
|
|
*/
|
|
void __init unflatten_device_tree(void)
|
|
{
|
|
__unflatten_device_tree(initial_boot_params, NULL, &of_root,
|
|
early_init_dt_alloc_memory_arch, false);
|
|
|
|
/* Get pointer to "/chosen" and "/aliases" nodes for use everywhere */
|
|
of_alias_scan(early_init_dt_alloc_memory_arch);
|
|
|
|
unittest_unflatten_overlay_base();
|
|
}
|
|
|
|
/**
|
|
* unflatten_and_copy_device_tree - copy and create tree of device_nodes from flat blob
|
|
*
|
|
* Copies and unflattens the device-tree passed by the firmware, creating the
|
|
* tree of struct device_node. It also fills the "name" and "type"
|
|
* pointers of the nodes so the normal device-tree walking functions
|
|
* can be used. This should only be used when the FDT memory has not been
|
|
* reserved such is the case when the FDT is built-in to the kernel init
|
|
* section. If the FDT memory is reserved already then unflatten_device_tree
|
|
* should be used instead.
|
|
*/
|
|
void __init unflatten_and_copy_device_tree(void)
|
|
{
|
|
int size;
|
|
void *dt;
|
|
|
|
if (!initial_boot_params) {
|
|
pr_warn("No valid device tree found, continuing without\n");
|
|
return;
|
|
}
|
|
|
|
size = fdt_totalsize(initial_boot_params);
|
|
dt = early_init_dt_alloc_memory_arch(size,
|
|
roundup_pow_of_two(FDT_V17_SIZE));
|
|
|
|
if (dt) {
|
|
memcpy(dt, initial_boot_params, size);
|
|
initial_boot_params = dt;
|
|
}
|
|
unflatten_device_tree();
|
|
}
|
|
|
|
#ifdef CONFIG_SYSFS
|
|
static ssize_t of_fdt_raw_read(struct file *filp, struct kobject *kobj,
|
|
struct bin_attribute *bin_attr,
|
|
char *buf, loff_t off, size_t count)
|
|
{
|
|
memcpy(buf, initial_boot_params + off, count);
|
|
return count;
|
|
}
|
|
|
|
static int __init of_fdt_raw_init(void)
|
|
{
|
|
static struct bin_attribute of_fdt_raw_attr =
|
|
__BIN_ATTR(fdt, S_IRUSR, of_fdt_raw_read, NULL, 0);
|
|
|
|
if (!initial_boot_params)
|
|
return 0;
|
|
|
|
if (of_fdt_crc32 != crc32_be(~0, initial_boot_params,
|
|
fdt_totalsize(initial_boot_params))) {
|
|
pr_warn("not creating '/sys/firmware/fdt': CRC check failed\n");
|
|
return 0;
|
|
}
|
|
of_fdt_raw_attr.size = fdt_totalsize(initial_boot_params);
|
|
return sysfs_create_bin_file(firmware_kobj, &of_fdt_raw_attr);
|
|
}
|
|
late_initcall(of_fdt_raw_init);
|
|
#endif
|
|
|
|
#endif /* CONFIG_OF_EARLY_FLATTREE */
|