linux_dsm_epyc7002/arch/sh/kernel/cpu/sh4a/hwblk-sh7722.c
Magnus Damm 0f8ee1874f sh: Add support for multiple hwblk counters
Extend the SuperH hwblk code to support more than one counter.
Contains ground work for the future Runtime PM implementation.

Signed-off-by: Magnus Damm <damm@igel.co.jp>
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
2009-07-20 04:23:39 +09:00

107 lines
3.6 KiB
C

/*
* arch/sh/kernel/cpu/sh4a/hwblk-sh7722.c
*
* SH7722 hardware block support
*
* Copyright (C) 2009 Magnus Damm
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/io.h>
#include <asm/suspend.h>
#include <asm/hwblk.h>
#include <cpu/sh7722.h>
/* SH7722 registers */
#define MSTPCR0 0xa4150030
#define MSTPCR1 0xa4150034
#define MSTPCR2 0xa4150038
/* SH7722 Power Domains */
enum { CORE_AREA, SUB_AREA, CORE_AREA_BM };
static struct hwblk_area sh7722_hwblk_area[] = {
[CORE_AREA] = HWBLK_AREA(0, 0),
[CORE_AREA_BM] = HWBLK_AREA(HWBLK_AREA_FLAG_PARENT, CORE_AREA),
[SUB_AREA] = HWBLK_AREA(0, 0),
};
/* Table mapping HWBLK to Module Stop Bit and Power Domain */
static struct hwblk sh7722_hwblk[HWBLK_NR] = {
[HWBLK_TLB] = HWBLK(MSTPCR0, 31, CORE_AREA),
[HWBLK_IC] = HWBLK(MSTPCR0, 30, CORE_AREA),
[HWBLK_OC] = HWBLK(MSTPCR0, 29, CORE_AREA),
[HWBLK_URAM] = HWBLK(MSTPCR0, 28, CORE_AREA),
[HWBLK_XYMEM] = HWBLK(MSTPCR0, 26, CORE_AREA),
[HWBLK_INTC] = HWBLK(MSTPCR0, 22, CORE_AREA),
[HWBLK_DMAC] = HWBLK(MSTPCR0, 21, CORE_AREA_BM),
[HWBLK_SHYWAY] = HWBLK(MSTPCR0, 20, CORE_AREA),
[HWBLK_HUDI] = HWBLK(MSTPCR0, 19, CORE_AREA),
[HWBLK_UBC] = HWBLK(MSTPCR0, 17, CORE_AREA),
[HWBLK_TMU] = HWBLK(MSTPCR0, 15, CORE_AREA),
[HWBLK_CMT] = HWBLK(MSTPCR0, 14, SUB_AREA),
[HWBLK_RWDT] = HWBLK(MSTPCR0, 13, SUB_AREA),
[HWBLK_FLCTL] = HWBLK(MSTPCR0, 10, CORE_AREA),
[HWBLK_SCIF0] = HWBLK(MSTPCR0, 7, CORE_AREA),
[HWBLK_SCIF1] = HWBLK(MSTPCR0, 6, CORE_AREA),
[HWBLK_SCIF2] = HWBLK(MSTPCR0, 5, CORE_AREA),
[HWBLK_SIO] = HWBLK(MSTPCR0, 3, CORE_AREA),
[HWBLK_SIOF0] = HWBLK(MSTPCR0, 2, CORE_AREA),
[HWBLK_SIOF1] = HWBLK(MSTPCR0, 1, CORE_AREA),
[HWBLK_IIC] = HWBLK(MSTPCR1, 9, CORE_AREA),
[HWBLK_RTC] = HWBLK(MSTPCR1, 8, SUB_AREA),
[HWBLK_TPU] = HWBLK(MSTPCR2, 25, CORE_AREA),
[HWBLK_IRDA] = HWBLK(MSTPCR2, 24, CORE_AREA),
[HWBLK_SDHI] = HWBLK(MSTPCR2, 18, CORE_AREA),
[HWBLK_SIM] = HWBLK(MSTPCR2, 16, CORE_AREA),
[HWBLK_KEYSC] = HWBLK(MSTPCR2, 14, SUB_AREA),
[HWBLK_TSIF] = HWBLK(MSTPCR2, 13, SUB_AREA),
[HWBLK_USBF] = HWBLK(MSTPCR2, 11, CORE_AREA),
[HWBLK_2DG] = HWBLK(MSTPCR2, 9, CORE_AREA_BM),
[HWBLK_SIU] = HWBLK(MSTPCR2, 8, CORE_AREA),
[HWBLK_JPU] = HWBLK(MSTPCR2, 6, CORE_AREA_BM),
[HWBLK_VOU] = HWBLK(MSTPCR2, 5, CORE_AREA_BM),
[HWBLK_BEU] = HWBLK(MSTPCR2, 4, CORE_AREA_BM),
[HWBLK_CEU] = HWBLK(MSTPCR2, 3, CORE_AREA_BM),
[HWBLK_VEU] = HWBLK(MSTPCR2, 2, CORE_AREA_BM),
[HWBLK_VPU] = HWBLK(MSTPCR2, 1, CORE_AREA_BM),
[HWBLK_LCDC] = HWBLK(MSTPCR2, 0, CORE_AREA_BM),
};
static struct hwblk_info sh7722_hwblk_info = {
.areas = sh7722_hwblk_area,
.nr_areas = ARRAY_SIZE(sh7722_hwblk_area),
.hwblks = sh7722_hwblk,
.nr_hwblks = ARRAY_SIZE(sh7722_hwblk),
};
int arch_hwblk_sleep_mode(void)
{
if (!sh7722_hwblk_area[CORE_AREA].cnt[HWBLK_CNT_USAGE])
return SUSP_SH_STANDBY | SUSP_SH_SF;
if (!sh7722_hwblk_area[CORE_AREA_BM].cnt[HWBLK_CNT_USAGE])
return SUSP_SH_SLEEP | SUSP_SH_SF;
return SUSP_SH_SLEEP;
}
int __init arch_hwblk_init(void)
{
return hwblk_register(&sh7722_hwblk_info);
}