mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-30 23:16:37 +07:00
36f339d136
Commit 479e9b94fd
("serial: Refactor uart_flush_buffer() from
uart_close") refactored the uart_flush_buffer() in uart_close() into
those drivers that define a flush_buffer() method. However, in the
amba-pl011 driver configured without CONFIG_DMA_ENGINE, flush_buffer()
is a NULL method, so the direct call fails to compile.
Check and call the flush_buffer() method through the ops table instead.
Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: Russell King <linux@arm.linux.org.uk>
Signed-off-by: Peter Hurley <peter@hurleysoftware.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2307 lines
59 KiB
C
2307 lines
59 KiB
C
/*
|
|
* Driver for AMBA serial ports
|
|
*
|
|
* Based on drivers/char/serial.c, by Linus Torvalds, Theodore Ts'o.
|
|
*
|
|
* Copyright 1999 ARM Limited
|
|
* Copyright (C) 2000 Deep Blue Solutions Ltd.
|
|
* Copyright (C) 2010 ST-Ericsson SA
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* This is a generic driver for ARM AMBA-type serial ports. They
|
|
* have a lot of 16550-like features, but are not register compatible.
|
|
* Note that although they do have CTS, DCD and DSR inputs, they do
|
|
* not have an RI input, nor do they have DTR or RTS outputs. If
|
|
* required, these have to be supplied via some other means (eg, GPIO)
|
|
* and hooked into this driver.
|
|
*/
|
|
|
|
|
|
#if defined(CONFIG_SERIAL_AMBA_PL011_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
|
|
#define SUPPORT_SYSRQ
|
|
#endif
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/init.h>
|
|
#include <linux/console.h>
|
|
#include <linux/sysrq.h>
|
|
#include <linux/device.h>
|
|
#include <linux/tty.h>
|
|
#include <linux/tty_flip.h>
|
|
#include <linux/serial_core.h>
|
|
#include <linux/serial.h>
|
|
#include <linux/amba/bus.h>
|
|
#include <linux/amba/serial.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/dmaengine.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/types.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_device.h>
|
|
#include <linux/pinctrl/consumer.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/io.h>
|
|
|
|
#define UART_NR 14
|
|
|
|
#define SERIAL_AMBA_MAJOR 204
|
|
#define SERIAL_AMBA_MINOR 64
|
|
#define SERIAL_AMBA_NR UART_NR
|
|
|
|
#define AMBA_ISR_PASS_LIMIT 256
|
|
|
|
#define UART_DR_ERROR (UART011_DR_OE|UART011_DR_BE|UART011_DR_PE|UART011_DR_FE)
|
|
#define UART_DUMMY_DR_RX (1 << 16)
|
|
|
|
/* There is by now at least one vendor with differing details, so handle it */
|
|
struct vendor_data {
|
|
unsigned int ifls;
|
|
unsigned int lcrh_tx;
|
|
unsigned int lcrh_rx;
|
|
bool oversampling;
|
|
bool dma_threshold;
|
|
bool cts_event_workaround;
|
|
|
|
unsigned int (*get_fifosize)(struct amba_device *dev);
|
|
};
|
|
|
|
static unsigned int get_fifosize_arm(struct amba_device *dev)
|
|
{
|
|
return amba_rev(dev) < 3 ? 16 : 32;
|
|
}
|
|
|
|
static struct vendor_data vendor_arm = {
|
|
.ifls = UART011_IFLS_RX4_8|UART011_IFLS_TX4_8,
|
|
.lcrh_tx = UART011_LCRH,
|
|
.lcrh_rx = UART011_LCRH,
|
|
.oversampling = false,
|
|
.dma_threshold = false,
|
|
.cts_event_workaround = false,
|
|
.get_fifosize = get_fifosize_arm,
|
|
};
|
|
|
|
static unsigned int get_fifosize_st(struct amba_device *dev)
|
|
{
|
|
return 64;
|
|
}
|
|
|
|
static struct vendor_data vendor_st = {
|
|
.ifls = UART011_IFLS_RX_HALF|UART011_IFLS_TX_HALF,
|
|
.lcrh_tx = ST_UART011_LCRH_TX,
|
|
.lcrh_rx = ST_UART011_LCRH_RX,
|
|
.oversampling = true,
|
|
.dma_threshold = true,
|
|
.cts_event_workaround = true,
|
|
.get_fifosize = get_fifosize_st,
|
|
};
|
|
|
|
/* Deals with DMA transactions */
|
|
|
|
struct pl011_sgbuf {
|
|
struct scatterlist sg;
|
|
char *buf;
|
|
};
|
|
|
|
struct pl011_dmarx_data {
|
|
struct dma_chan *chan;
|
|
struct completion complete;
|
|
bool use_buf_b;
|
|
struct pl011_sgbuf sgbuf_a;
|
|
struct pl011_sgbuf sgbuf_b;
|
|
dma_cookie_t cookie;
|
|
bool running;
|
|
struct timer_list timer;
|
|
unsigned int last_residue;
|
|
unsigned long last_jiffies;
|
|
bool auto_poll_rate;
|
|
unsigned int poll_rate;
|
|
unsigned int poll_timeout;
|
|
};
|
|
|
|
struct pl011_dmatx_data {
|
|
struct dma_chan *chan;
|
|
struct scatterlist sg;
|
|
char *buf;
|
|
bool queued;
|
|
};
|
|
|
|
/*
|
|
* We wrap our port structure around the generic uart_port.
|
|
*/
|
|
struct uart_amba_port {
|
|
struct uart_port port;
|
|
struct clk *clk;
|
|
const struct vendor_data *vendor;
|
|
unsigned int dmacr; /* dma control reg */
|
|
unsigned int im; /* interrupt mask */
|
|
unsigned int old_status;
|
|
unsigned int fifosize; /* vendor-specific */
|
|
unsigned int lcrh_tx; /* vendor-specific */
|
|
unsigned int lcrh_rx; /* vendor-specific */
|
|
unsigned int old_cr; /* state during shutdown */
|
|
bool autorts;
|
|
char type[12];
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
/* DMA stuff */
|
|
bool using_tx_dma;
|
|
bool using_rx_dma;
|
|
struct pl011_dmarx_data dmarx;
|
|
struct pl011_dmatx_data dmatx;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* Reads up to 256 characters from the FIFO or until it's empty and
|
|
* inserts them into the TTY layer. Returns the number of characters
|
|
* read from the FIFO.
|
|
*/
|
|
static int pl011_fifo_to_tty(struct uart_amba_port *uap)
|
|
{
|
|
u16 status, ch;
|
|
unsigned int flag, max_count = 256;
|
|
int fifotaken = 0;
|
|
|
|
while (max_count--) {
|
|
status = readw(uap->port.membase + UART01x_FR);
|
|
if (status & UART01x_FR_RXFE)
|
|
break;
|
|
|
|
/* Take chars from the FIFO and update status */
|
|
ch = readw(uap->port.membase + UART01x_DR) |
|
|
UART_DUMMY_DR_RX;
|
|
flag = TTY_NORMAL;
|
|
uap->port.icount.rx++;
|
|
fifotaken++;
|
|
|
|
if (unlikely(ch & UART_DR_ERROR)) {
|
|
if (ch & UART011_DR_BE) {
|
|
ch &= ~(UART011_DR_FE | UART011_DR_PE);
|
|
uap->port.icount.brk++;
|
|
if (uart_handle_break(&uap->port))
|
|
continue;
|
|
} else if (ch & UART011_DR_PE)
|
|
uap->port.icount.parity++;
|
|
else if (ch & UART011_DR_FE)
|
|
uap->port.icount.frame++;
|
|
if (ch & UART011_DR_OE)
|
|
uap->port.icount.overrun++;
|
|
|
|
ch &= uap->port.read_status_mask;
|
|
|
|
if (ch & UART011_DR_BE)
|
|
flag = TTY_BREAK;
|
|
else if (ch & UART011_DR_PE)
|
|
flag = TTY_PARITY;
|
|
else if (ch & UART011_DR_FE)
|
|
flag = TTY_FRAME;
|
|
}
|
|
|
|
if (uart_handle_sysrq_char(&uap->port, ch & 255))
|
|
continue;
|
|
|
|
uart_insert_char(&uap->port, ch, UART011_DR_OE, ch, flag);
|
|
}
|
|
|
|
return fifotaken;
|
|
}
|
|
|
|
|
|
/*
|
|
* All the DMA operation mode stuff goes inside this ifdef.
|
|
* This assumes that you have a generic DMA device interface,
|
|
* no custom DMA interfaces are supported.
|
|
*/
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
|
|
#define PL011_DMA_BUFFER_SIZE PAGE_SIZE
|
|
|
|
static int pl011_sgbuf_init(struct dma_chan *chan, struct pl011_sgbuf *sg,
|
|
enum dma_data_direction dir)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
|
|
sg->buf = dma_alloc_coherent(chan->device->dev,
|
|
PL011_DMA_BUFFER_SIZE, &dma_addr, GFP_KERNEL);
|
|
if (!sg->buf)
|
|
return -ENOMEM;
|
|
|
|
sg_init_table(&sg->sg, 1);
|
|
sg_set_page(&sg->sg, phys_to_page(dma_addr),
|
|
PL011_DMA_BUFFER_SIZE, offset_in_page(dma_addr));
|
|
sg_dma_address(&sg->sg) = dma_addr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pl011_sgbuf_free(struct dma_chan *chan, struct pl011_sgbuf *sg,
|
|
enum dma_data_direction dir)
|
|
{
|
|
if (sg->buf) {
|
|
dma_free_coherent(chan->device->dev,
|
|
PL011_DMA_BUFFER_SIZE, sg->buf,
|
|
sg_dma_address(&sg->sg));
|
|
}
|
|
}
|
|
|
|
static void pl011_dma_probe_initcall(struct device *dev, struct uart_amba_port *uap)
|
|
{
|
|
/* DMA is the sole user of the platform data right now */
|
|
struct amba_pl011_data *plat = dev_get_platdata(uap->port.dev);
|
|
struct dma_slave_config tx_conf = {
|
|
.dst_addr = uap->port.mapbase + UART01x_DR,
|
|
.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
|
|
.direction = DMA_MEM_TO_DEV,
|
|
.dst_maxburst = uap->fifosize >> 1,
|
|
.device_fc = false,
|
|
};
|
|
struct dma_chan *chan;
|
|
dma_cap_mask_t mask;
|
|
|
|
chan = dma_request_slave_channel(dev, "tx");
|
|
|
|
if (!chan) {
|
|
/* We need platform data */
|
|
if (!plat || !plat->dma_filter) {
|
|
dev_info(uap->port.dev, "no DMA platform data\n");
|
|
return;
|
|
}
|
|
|
|
/* Try to acquire a generic DMA engine slave TX channel */
|
|
dma_cap_zero(mask);
|
|
dma_cap_set(DMA_SLAVE, mask);
|
|
|
|
chan = dma_request_channel(mask, plat->dma_filter,
|
|
plat->dma_tx_param);
|
|
if (!chan) {
|
|
dev_err(uap->port.dev, "no TX DMA channel!\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
dmaengine_slave_config(chan, &tx_conf);
|
|
uap->dmatx.chan = chan;
|
|
|
|
dev_info(uap->port.dev, "DMA channel TX %s\n",
|
|
dma_chan_name(uap->dmatx.chan));
|
|
|
|
/* Optionally make use of an RX channel as well */
|
|
chan = dma_request_slave_channel(dev, "rx");
|
|
|
|
if (!chan && plat->dma_rx_param) {
|
|
chan = dma_request_channel(mask, plat->dma_filter, plat->dma_rx_param);
|
|
|
|
if (!chan) {
|
|
dev_err(uap->port.dev, "no RX DMA channel!\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (chan) {
|
|
struct dma_slave_config rx_conf = {
|
|
.src_addr = uap->port.mapbase + UART01x_DR,
|
|
.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE,
|
|
.direction = DMA_DEV_TO_MEM,
|
|
.src_maxburst = uap->fifosize >> 2,
|
|
.device_fc = false,
|
|
};
|
|
|
|
dmaengine_slave_config(chan, &rx_conf);
|
|
uap->dmarx.chan = chan;
|
|
|
|
if (plat && plat->dma_rx_poll_enable) {
|
|
/* Set poll rate if specified. */
|
|
if (plat->dma_rx_poll_rate) {
|
|
uap->dmarx.auto_poll_rate = false;
|
|
uap->dmarx.poll_rate = plat->dma_rx_poll_rate;
|
|
} else {
|
|
/*
|
|
* 100 ms defaults to poll rate if not
|
|
* specified. This will be adjusted with
|
|
* the baud rate at set_termios.
|
|
*/
|
|
uap->dmarx.auto_poll_rate = true;
|
|
uap->dmarx.poll_rate = 100;
|
|
}
|
|
/* 3 secs defaults poll_timeout if not specified. */
|
|
if (plat->dma_rx_poll_timeout)
|
|
uap->dmarx.poll_timeout =
|
|
plat->dma_rx_poll_timeout;
|
|
else
|
|
uap->dmarx.poll_timeout = 3000;
|
|
} else
|
|
uap->dmarx.auto_poll_rate = false;
|
|
|
|
dev_info(uap->port.dev, "DMA channel RX %s\n",
|
|
dma_chan_name(uap->dmarx.chan));
|
|
}
|
|
}
|
|
|
|
#ifndef MODULE
|
|
/*
|
|
* Stack up the UARTs and let the above initcall be done at device
|
|
* initcall time, because the serial driver is called as an arch
|
|
* initcall, and at this time the DMA subsystem is not yet registered.
|
|
* At this point the driver will switch over to using DMA where desired.
|
|
*/
|
|
struct dma_uap {
|
|
struct list_head node;
|
|
struct uart_amba_port *uap;
|
|
struct device *dev;
|
|
};
|
|
|
|
static LIST_HEAD(pl011_dma_uarts);
|
|
|
|
static int __init pl011_dma_initcall(void)
|
|
{
|
|
struct list_head *node, *tmp;
|
|
|
|
list_for_each_safe(node, tmp, &pl011_dma_uarts) {
|
|
struct dma_uap *dmau = list_entry(node, struct dma_uap, node);
|
|
pl011_dma_probe_initcall(dmau->dev, dmau->uap);
|
|
list_del(node);
|
|
kfree(dmau);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
device_initcall(pl011_dma_initcall);
|
|
|
|
static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
|
|
{
|
|
struct dma_uap *dmau = kzalloc(sizeof(struct dma_uap), GFP_KERNEL);
|
|
if (dmau) {
|
|
dmau->uap = uap;
|
|
dmau->dev = dev;
|
|
list_add_tail(&dmau->node, &pl011_dma_uarts);
|
|
}
|
|
}
|
|
#else
|
|
static void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
|
|
{
|
|
pl011_dma_probe_initcall(dev, uap);
|
|
}
|
|
#endif
|
|
|
|
static void pl011_dma_remove(struct uart_amba_port *uap)
|
|
{
|
|
/* TODO: remove the initcall if it has not yet executed */
|
|
if (uap->dmatx.chan)
|
|
dma_release_channel(uap->dmatx.chan);
|
|
if (uap->dmarx.chan)
|
|
dma_release_channel(uap->dmarx.chan);
|
|
}
|
|
|
|
/* Forward declare this for the refill routine */
|
|
static int pl011_dma_tx_refill(struct uart_amba_port *uap);
|
|
|
|
/*
|
|
* The current DMA TX buffer has been sent.
|
|
* Try to queue up another DMA buffer.
|
|
*/
|
|
static void pl011_dma_tx_callback(void *data)
|
|
{
|
|
struct uart_amba_port *uap = data;
|
|
struct pl011_dmatx_data *dmatx = &uap->dmatx;
|
|
unsigned long flags;
|
|
u16 dmacr;
|
|
|
|
spin_lock_irqsave(&uap->port.lock, flags);
|
|
if (uap->dmatx.queued)
|
|
dma_unmap_sg(dmatx->chan->device->dev, &dmatx->sg, 1,
|
|
DMA_TO_DEVICE);
|
|
|
|
dmacr = uap->dmacr;
|
|
uap->dmacr = dmacr & ~UART011_TXDMAE;
|
|
writew(uap->dmacr, uap->port.membase + UART011_DMACR);
|
|
|
|
/*
|
|
* If TX DMA was disabled, it means that we've stopped the DMA for
|
|
* some reason (eg, XOFF received, or we want to send an X-char.)
|
|
*
|
|
* Note: we need to be careful here of a potential race between DMA
|
|
* and the rest of the driver - if the driver disables TX DMA while
|
|
* a TX buffer completing, we must update the tx queued status to
|
|
* get further refills (hence we check dmacr).
|
|
*/
|
|
if (!(dmacr & UART011_TXDMAE) || uart_tx_stopped(&uap->port) ||
|
|
uart_circ_empty(&uap->port.state->xmit)) {
|
|
uap->dmatx.queued = false;
|
|
spin_unlock_irqrestore(&uap->port.lock, flags);
|
|
return;
|
|
}
|
|
|
|
if (pl011_dma_tx_refill(uap) <= 0) {
|
|
/*
|
|
* We didn't queue a DMA buffer for some reason, but we
|
|
* have data pending to be sent. Re-enable the TX IRQ.
|
|
*/
|
|
uap->im |= UART011_TXIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
}
|
|
spin_unlock_irqrestore(&uap->port.lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Try to refill the TX DMA buffer.
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
* Returns:
|
|
* 1 if we queued up a TX DMA buffer.
|
|
* 0 if we didn't want to handle this by DMA
|
|
* <0 on error
|
|
*/
|
|
static int pl011_dma_tx_refill(struct uart_amba_port *uap)
|
|
{
|
|
struct pl011_dmatx_data *dmatx = &uap->dmatx;
|
|
struct dma_chan *chan = dmatx->chan;
|
|
struct dma_device *dma_dev = chan->device;
|
|
struct dma_async_tx_descriptor *desc;
|
|
struct circ_buf *xmit = &uap->port.state->xmit;
|
|
unsigned int count;
|
|
|
|
/*
|
|
* Try to avoid the overhead involved in using DMA if the
|
|
* transaction fits in the first half of the FIFO, by using
|
|
* the standard interrupt handling. This ensures that we
|
|
* issue a uart_write_wakeup() at the appropriate time.
|
|
*/
|
|
count = uart_circ_chars_pending(xmit);
|
|
if (count < (uap->fifosize >> 1)) {
|
|
uap->dmatx.queued = false;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Bodge: don't send the last character by DMA, as this
|
|
* will prevent XON from notifying us to restart DMA.
|
|
*/
|
|
count -= 1;
|
|
|
|
/* Else proceed to copy the TX chars to the DMA buffer and fire DMA */
|
|
if (count > PL011_DMA_BUFFER_SIZE)
|
|
count = PL011_DMA_BUFFER_SIZE;
|
|
|
|
if (xmit->tail < xmit->head)
|
|
memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], count);
|
|
else {
|
|
size_t first = UART_XMIT_SIZE - xmit->tail;
|
|
size_t second = xmit->head;
|
|
|
|
memcpy(&dmatx->buf[0], &xmit->buf[xmit->tail], first);
|
|
if (second)
|
|
memcpy(&dmatx->buf[first], &xmit->buf[0], second);
|
|
}
|
|
|
|
dmatx->sg.length = count;
|
|
|
|
if (dma_map_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE) != 1) {
|
|
uap->dmatx.queued = false;
|
|
dev_dbg(uap->port.dev, "unable to map TX DMA\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
desc = dmaengine_prep_slave_sg(chan, &dmatx->sg, 1, DMA_MEM_TO_DEV,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
if (!desc) {
|
|
dma_unmap_sg(dma_dev->dev, &dmatx->sg, 1, DMA_TO_DEVICE);
|
|
uap->dmatx.queued = false;
|
|
/*
|
|
* If DMA cannot be used right now, we complete this
|
|
* transaction via IRQ and let the TTY layer retry.
|
|
*/
|
|
dev_dbg(uap->port.dev, "TX DMA busy\n");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Some data to go along to the callback */
|
|
desc->callback = pl011_dma_tx_callback;
|
|
desc->callback_param = uap;
|
|
|
|
/* All errors should happen at prepare time */
|
|
dmaengine_submit(desc);
|
|
|
|
/* Fire the DMA transaction */
|
|
dma_dev->device_issue_pending(chan);
|
|
|
|
uap->dmacr |= UART011_TXDMAE;
|
|
writew(uap->dmacr, uap->port.membase + UART011_DMACR);
|
|
uap->dmatx.queued = true;
|
|
|
|
/*
|
|
* Now we know that DMA will fire, so advance the ring buffer
|
|
* with the stuff we just dispatched.
|
|
*/
|
|
xmit->tail = (xmit->tail + count) & (UART_XMIT_SIZE - 1);
|
|
uap->port.icount.tx += count;
|
|
|
|
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
|
|
uart_write_wakeup(&uap->port);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* We received a transmit interrupt without a pending X-char but with
|
|
* pending characters.
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
* Returns:
|
|
* false if we want to use PIO to transmit
|
|
* true if we queued a DMA buffer
|
|
*/
|
|
static bool pl011_dma_tx_irq(struct uart_amba_port *uap)
|
|
{
|
|
if (!uap->using_tx_dma)
|
|
return false;
|
|
|
|
/*
|
|
* If we already have a TX buffer queued, but received a
|
|
* TX interrupt, it will be because we've just sent an X-char.
|
|
* Ensure the TX DMA is enabled and the TX IRQ is disabled.
|
|
*/
|
|
if (uap->dmatx.queued) {
|
|
uap->dmacr |= UART011_TXDMAE;
|
|
writew(uap->dmacr, uap->port.membase + UART011_DMACR);
|
|
uap->im &= ~UART011_TXIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* We don't have a TX buffer queued, so try to queue one.
|
|
* If we successfully queued a buffer, mask the TX IRQ.
|
|
*/
|
|
if (pl011_dma_tx_refill(uap) > 0) {
|
|
uap->im &= ~UART011_TXIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Stop the DMA transmit (eg, due to received XOFF).
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
*/
|
|
static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
|
|
{
|
|
if (uap->dmatx.queued) {
|
|
uap->dmacr &= ~UART011_TXDMAE;
|
|
writew(uap->dmacr, uap->port.membase + UART011_DMACR);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Try to start a DMA transmit, or in the case of an XON/OFF
|
|
* character queued for send, try to get that character out ASAP.
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
* Returns:
|
|
* false if we want the TX IRQ to be enabled
|
|
* true if we have a buffer queued
|
|
*/
|
|
static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
|
|
{
|
|
u16 dmacr;
|
|
|
|
if (!uap->using_tx_dma)
|
|
return false;
|
|
|
|
if (!uap->port.x_char) {
|
|
/* no X-char, try to push chars out in DMA mode */
|
|
bool ret = true;
|
|
|
|
if (!uap->dmatx.queued) {
|
|
if (pl011_dma_tx_refill(uap) > 0) {
|
|
uap->im &= ~UART011_TXIM;
|
|
ret = true;
|
|
} else {
|
|
uap->im |= UART011_TXIM;
|
|
ret = false;
|
|
}
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
} else if (!(uap->dmacr & UART011_TXDMAE)) {
|
|
uap->dmacr |= UART011_TXDMAE;
|
|
writew(uap->dmacr,
|
|
uap->port.membase + UART011_DMACR);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* We have an X-char to send. Disable DMA to prevent it loading
|
|
* the TX fifo, and then see if we can stuff it into the FIFO.
|
|
*/
|
|
dmacr = uap->dmacr;
|
|
uap->dmacr &= ~UART011_TXDMAE;
|
|
writew(uap->dmacr, uap->port.membase + UART011_DMACR);
|
|
|
|
if (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF) {
|
|
/*
|
|
* No space in the FIFO, so enable the transmit interrupt
|
|
* so we know when there is space. Note that once we've
|
|
* loaded the character, we should just re-enable DMA.
|
|
*/
|
|
return false;
|
|
}
|
|
|
|
writew(uap->port.x_char, uap->port.membase + UART01x_DR);
|
|
uap->port.icount.tx++;
|
|
uap->port.x_char = 0;
|
|
|
|
/* Success - restore the DMA state */
|
|
uap->dmacr = dmacr;
|
|
writew(dmacr, uap->port.membase + UART011_DMACR);
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Flush the transmit buffer.
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
*/
|
|
static void pl011_dma_flush_buffer(struct uart_port *port)
|
|
__releases(&uap->port.lock)
|
|
__acquires(&uap->port.lock)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
if (!uap->using_tx_dma)
|
|
return;
|
|
|
|
/* Avoid deadlock with the DMA engine callback */
|
|
spin_unlock(&uap->port.lock);
|
|
dmaengine_terminate_all(uap->dmatx.chan);
|
|
spin_lock(&uap->port.lock);
|
|
if (uap->dmatx.queued) {
|
|
dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
|
|
DMA_TO_DEVICE);
|
|
uap->dmatx.queued = false;
|
|
uap->dmacr &= ~UART011_TXDMAE;
|
|
writew(uap->dmacr, uap->port.membase + UART011_DMACR);
|
|
}
|
|
}
|
|
|
|
static void pl011_dma_rx_callback(void *data);
|
|
|
|
static int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
|
|
{
|
|
struct dma_chan *rxchan = uap->dmarx.chan;
|
|
struct pl011_dmarx_data *dmarx = &uap->dmarx;
|
|
struct dma_async_tx_descriptor *desc;
|
|
struct pl011_sgbuf *sgbuf;
|
|
|
|
if (!rxchan)
|
|
return -EIO;
|
|
|
|
/* Start the RX DMA job */
|
|
sgbuf = uap->dmarx.use_buf_b ?
|
|
&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
|
|
desc = dmaengine_prep_slave_sg(rxchan, &sgbuf->sg, 1,
|
|
DMA_DEV_TO_MEM,
|
|
DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
|
|
/*
|
|
* If the DMA engine is busy and cannot prepare a
|
|
* channel, no big deal, the driver will fall back
|
|
* to interrupt mode as a result of this error code.
|
|
*/
|
|
if (!desc) {
|
|
uap->dmarx.running = false;
|
|
dmaengine_terminate_all(rxchan);
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Some data to go along to the callback */
|
|
desc->callback = pl011_dma_rx_callback;
|
|
desc->callback_param = uap;
|
|
dmarx->cookie = dmaengine_submit(desc);
|
|
dma_async_issue_pending(rxchan);
|
|
|
|
uap->dmacr |= UART011_RXDMAE;
|
|
writew(uap->dmacr, uap->port.membase + UART011_DMACR);
|
|
uap->dmarx.running = true;
|
|
|
|
uap->im &= ~UART011_RXIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is called when either the DMA job is complete, or
|
|
* the FIFO timeout interrupt occurred. This must be called
|
|
* with the port spinlock uap->port.lock held.
|
|
*/
|
|
static void pl011_dma_rx_chars(struct uart_amba_port *uap,
|
|
u32 pending, bool use_buf_b,
|
|
bool readfifo)
|
|
{
|
|
struct tty_port *port = &uap->port.state->port;
|
|
struct pl011_sgbuf *sgbuf = use_buf_b ?
|
|
&uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
|
|
int dma_count = 0;
|
|
u32 fifotaken = 0; /* only used for vdbg() */
|
|
|
|
struct pl011_dmarx_data *dmarx = &uap->dmarx;
|
|
int dmataken = 0;
|
|
|
|
if (uap->dmarx.poll_rate) {
|
|
/* The data can be taken by polling */
|
|
dmataken = sgbuf->sg.length - dmarx->last_residue;
|
|
/* Recalculate the pending size */
|
|
if (pending >= dmataken)
|
|
pending -= dmataken;
|
|
}
|
|
|
|
/* Pick the remain data from the DMA */
|
|
if (pending) {
|
|
|
|
/*
|
|
* First take all chars in the DMA pipe, then look in the FIFO.
|
|
* Note that tty_insert_flip_buf() tries to take as many chars
|
|
* as it can.
|
|
*/
|
|
dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
|
|
pending);
|
|
|
|
uap->port.icount.rx += dma_count;
|
|
if (dma_count < pending)
|
|
dev_warn(uap->port.dev,
|
|
"couldn't insert all characters (TTY is full?)\n");
|
|
}
|
|
|
|
/* Reset the last_residue for Rx DMA poll */
|
|
if (uap->dmarx.poll_rate)
|
|
dmarx->last_residue = sgbuf->sg.length;
|
|
|
|
/*
|
|
* Only continue with trying to read the FIFO if all DMA chars have
|
|
* been taken first.
|
|
*/
|
|
if (dma_count == pending && readfifo) {
|
|
/* Clear any error flags */
|
|
writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS,
|
|
uap->port.membase + UART011_ICR);
|
|
|
|
/*
|
|
* If we read all the DMA'd characters, and we had an
|
|
* incomplete buffer, that could be due to an rx error, or
|
|
* maybe we just timed out. Read any pending chars and check
|
|
* the error status.
|
|
*
|
|
* Error conditions will only occur in the FIFO, these will
|
|
* trigger an immediate interrupt and stop the DMA job, so we
|
|
* will always find the error in the FIFO, never in the DMA
|
|
* buffer.
|
|
*/
|
|
fifotaken = pl011_fifo_to_tty(uap);
|
|
}
|
|
|
|
spin_unlock(&uap->port.lock);
|
|
dev_vdbg(uap->port.dev,
|
|
"Took %d chars from DMA buffer and %d chars from the FIFO\n",
|
|
dma_count, fifotaken);
|
|
tty_flip_buffer_push(port);
|
|
spin_lock(&uap->port.lock);
|
|
}
|
|
|
|
static void pl011_dma_rx_irq(struct uart_amba_port *uap)
|
|
{
|
|
struct pl011_dmarx_data *dmarx = &uap->dmarx;
|
|
struct dma_chan *rxchan = dmarx->chan;
|
|
struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
|
|
&dmarx->sgbuf_b : &dmarx->sgbuf_a;
|
|
size_t pending;
|
|
struct dma_tx_state state;
|
|
enum dma_status dmastat;
|
|
|
|
/*
|
|
* Pause the transfer so we can trust the current counter,
|
|
* do this before we pause the PL011 block, else we may
|
|
* overflow the FIFO.
|
|
*/
|
|
if (dmaengine_pause(rxchan))
|
|
dev_err(uap->port.dev, "unable to pause DMA transfer\n");
|
|
dmastat = rxchan->device->device_tx_status(rxchan,
|
|
dmarx->cookie, &state);
|
|
if (dmastat != DMA_PAUSED)
|
|
dev_err(uap->port.dev, "unable to pause DMA transfer\n");
|
|
|
|
/* Disable RX DMA - incoming data will wait in the FIFO */
|
|
uap->dmacr &= ~UART011_RXDMAE;
|
|
writew(uap->dmacr, uap->port.membase + UART011_DMACR);
|
|
uap->dmarx.running = false;
|
|
|
|
pending = sgbuf->sg.length - state.residue;
|
|
BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
|
|
/* Then we terminate the transfer - we now know our residue */
|
|
dmaengine_terminate_all(rxchan);
|
|
|
|
/*
|
|
* This will take the chars we have so far and insert
|
|
* into the framework.
|
|
*/
|
|
pl011_dma_rx_chars(uap, pending, dmarx->use_buf_b, true);
|
|
|
|
/* Switch buffer & re-trigger DMA job */
|
|
dmarx->use_buf_b = !dmarx->use_buf_b;
|
|
if (pl011_dma_rx_trigger_dma(uap)) {
|
|
dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
|
|
"fall back to interrupt mode\n");
|
|
uap->im |= UART011_RXIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
}
|
|
}
|
|
|
|
static void pl011_dma_rx_callback(void *data)
|
|
{
|
|
struct uart_amba_port *uap = data;
|
|
struct pl011_dmarx_data *dmarx = &uap->dmarx;
|
|
struct dma_chan *rxchan = dmarx->chan;
|
|
bool lastbuf = dmarx->use_buf_b;
|
|
struct pl011_sgbuf *sgbuf = dmarx->use_buf_b ?
|
|
&dmarx->sgbuf_b : &dmarx->sgbuf_a;
|
|
size_t pending;
|
|
struct dma_tx_state state;
|
|
int ret;
|
|
|
|
/*
|
|
* This completion interrupt occurs typically when the
|
|
* RX buffer is totally stuffed but no timeout has yet
|
|
* occurred. When that happens, we just want the RX
|
|
* routine to flush out the secondary DMA buffer while
|
|
* we immediately trigger the next DMA job.
|
|
*/
|
|
spin_lock_irq(&uap->port.lock);
|
|
/*
|
|
* Rx data can be taken by the UART interrupts during
|
|
* the DMA irq handler. So we check the residue here.
|
|
*/
|
|
rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
|
|
pending = sgbuf->sg.length - state.residue;
|
|
BUG_ON(pending > PL011_DMA_BUFFER_SIZE);
|
|
/* Then we terminate the transfer - we now know our residue */
|
|
dmaengine_terminate_all(rxchan);
|
|
|
|
uap->dmarx.running = false;
|
|
dmarx->use_buf_b = !lastbuf;
|
|
ret = pl011_dma_rx_trigger_dma(uap);
|
|
|
|
pl011_dma_rx_chars(uap, pending, lastbuf, false);
|
|
spin_unlock_irq(&uap->port.lock);
|
|
/*
|
|
* Do this check after we picked the DMA chars so we don't
|
|
* get some IRQ immediately from RX.
|
|
*/
|
|
if (ret) {
|
|
dev_dbg(uap->port.dev, "could not retrigger RX DMA job "
|
|
"fall back to interrupt mode\n");
|
|
uap->im |= UART011_RXIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop accepting received characters, when we're shutting down or
|
|
* suspending this port.
|
|
* Locking: called with port lock held and IRQs disabled.
|
|
*/
|
|
static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
|
|
{
|
|
/* FIXME. Just disable the DMA enable */
|
|
uap->dmacr &= ~UART011_RXDMAE;
|
|
writew(uap->dmacr, uap->port.membase + UART011_DMACR);
|
|
}
|
|
|
|
/*
|
|
* Timer handler for Rx DMA polling.
|
|
* Every polling, It checks the residue in the dma buffer and transfer
|
|
* data to the tty. Also, last_residue is updated for the next polling.
|
|
*/
|
|
static void pl011_dma_rx_poll(unsigned long args)
|
|
{
|
|
struct uart_amba_port *uap = (struct uart_amba_port *)args;
|
|
struct tty_port *port = &uap->port.state->port;
|
|
struct pl011_dmarx_data *dmarx = &uap->dmarx;
|
|
struct dma_chan *rxchan = uap->dmarx.chan;
|
|
unsigned long flags = 0;
|
|
unsigned int dmataken = 0;
|
|
unsigned int size = 0;
|
|
struct pl011_sgbuf *sgbuf;
|
|
int dma_count;
|
|
struct dma_tx_state state;
|
|
|
|
sgbuf = dmarx->use_buf_b ? &uap->dmarx.sgbuf_b : &uap->dmarx.sgbuf_a;
|
|
rxchan->device->device_tx_status(rxchan, dmarx->cookie, &state);
|
|
if (likely(state.residue < dmarx->last_residue)) {
|
|
dmataken = sgbuf->sg.length - dmarx->last_residue;
|
|
size = dmarx->last_residue - state.residue;
|
|
dma_count = tty_insert_flip_string(port, sgbuf->buf + dmataken,
|
|
size);
|
|
if (dma_count == size)
|
|
dmarx->last_residue = state.residue;
|
|
dmarx->last_jiffies = jiffies;
|
|
}
|
|
tty_flip_buffer_push(port);
|
|
|
|
/*
|
|
* If no data is received in poll_timeout, the driver will fall back
|
|
* to interrupt mode. We will retrigger DMA at the first interrupt.
|
|
*/
|
|
if (jiffies_to_msecs(jiffies - dmarx->last_jiffies)
|
|
> uap->dmarx.poll_timeout) {
|
|
|
|
spin_lock_irqsave(&uap->port.lock, flags);
|
|
pl011_dma_rx_stop(uap);
|
|
uap->im |= UART011_RXIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
spin_unlock_irqrestore(&uap->port.lock, flags);
|
|
|
|
uap->dmarx.running = false;
|
|
dmaengine_terminate_all(rxchan);
|
|
del_timer(&uap->dmarx.timer);
|
|
} else {
|
|
mod_timer(&uap->dmarx.timer,
|
|
jiffies + msecs_to_jiffies(uap->dmarx.poll_rate));
|
|
}
|
|
}
|
|
|
|
static void pl011_dma_startup(struct uart_amba_port *uap)
|
|
{
|
|
int ret;
|
|
|
|
if (!uap->dmatx.chan)
|
|
return;
|
|
|
|
uap->dmatx.buf = kmalloc(PL011_DMA_BUFFER_SIZE, GFP_KERNEL);
|
|
if (!uap->dmatx.buf) {
|
|
dev_err(uap->port.dev, "no memory for DMA TX buffer\n");
|
|
uap->port.fifosize = uap->fifosize;
|
|
return;
|
|
}
|
|
|
|
sg_init_one(&uap->dmatx.sg, uap->dmatx.buf, PL011_DMA_BUFFER_SIZE);
|
|
|
|
/* The DMA buffer is now the FIFO the TTY subsystem can use */
|
|
uap->port.fifosize = PL011_DMA_BUFFER_SIZE;
|
|
uap->using_tx_dma = true;
|
|
|
|
if (!uap->dmarx.chan)
|
|
goto skip_rx;
|
|
|
|
/* Allocate and map DMA RX buffers */
|
|
ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
|
|
DMA_FROM_DEVICE);
|
|
if (ret) {
|
|
dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
|
|
"RX buffer A", ret);
|
|
goto skip_rx;
|
|
}
|
|
|
|
ret = pl011_sgbuf_init(uap->dmarx.chan, &uap->dmarx.sgbuf_b,
|
|
DMA_FROM_DEVICE);
|
|
if (ret) {
|
|
dev_err(uap->port.dev, "failed to init DMA %s: %d\n",
|
|
"RX buffer B", ret);
|
|
pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a,
|
|
DMA_FROM_DEVICE);
|
|
goto skip_rx;
|
|
}
|
|
|
|
uap->using_rx_dma = true;
|
|
|
|
skip_rx:
|
|
/* Turn on DMA error (RX/TX will be enabled on demand) */
|
|
uap->dmacr |= UART011_DMAONERR;
|
|
writew(uap->dmacr, uap->port.membase + UART011_DMACR);
|
|
|
|
/*
|
|
* ST Micro variants has some specific dma burst threshold
|
|
* compensation. Set this to 16 bytes, so burst will only
|
|
* be issued above/below 16 bytes.
|
|
*/
|
|
if (uap->vendor->dma_threshold)
|
|
writew(ST_UART011_DMAWM_RX_16 | ST_UART011_DMAWM_TX_16,
|
|
uap->port.membase + ST_UART011_DMAWM);
|
|
|
|
if (uap->using_rx_dma) {
|
|
if (pl011_dma_rx_trigger_dma(uap))
|
|
dev_dbg(uap->port.dev, "could not trigger initial "
|
|
"RX DMA job, fall back to interrupt mode\n");
|
|
if (uap->dmarx.poll_rate) {
|
|
init_timer(&(uap->dmarx.timer));
|
|
uap->dmarx.timer.function = pl011_dma_rx_poll;
|
|
uap->dmarx.timer.data = (unsigned long)uap;
|
|
mod_timer(&uap->dmarx.timer,
|
|
jiffies +
|
|
msecs_to_jiffies(uap->dmarx.poll_rate));
|
|
uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
|
|
uap->dmarx.last_jiffies = jiffies;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pl011_dma_shutdown(struct uart_amba_port *uap)
|
|
{
|
|
if (!(uap->using_tx_dma || uap->using_rx_dma))
|
|
return;
|
|
|
|
/* Disable RX and TX DMA */
|
|
while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
|
|
barrier();
|
|
|
|
spin_lock_irq(&uap->port.lock);
|
|
uap->dmacr &= ~(UART011_DMAONERR | UART011_RXDMAE | UART011_TXDMAE);
|
|
writew(uap->dmacr, uap->port.membase + UART011_DMACR);
|
|
spin_unlock_irq(&uap->port.lock);
|
|
|
|
if (uap->using_tx_dma) {
|
|
/* In theory, this should already be done by pl011_dma_flush_buffer */
|
|
dmaengine_terminate_all(uap->dmatx.chan);
|
|
if (uap->dmatx.queued) {
|
|
dma_unmap_sg(uap->dmatx.chan->device->dev, &uap->dmatx.sg, 1,
|
|
DMA_TO_DEVICE);
|
|
uap->dmatx.queued = false;
|
|
}
|
|
|
|
kfree(uap->dmatx.buf);
|
|
uap->using_tx_dma = false;
|
|
}
|
|
|
|
if (uap->using_rx_dma) {
|
|
dmaengine_terminate_all(uap->dmarx.chan);
|
|
/* Clean up the RX DMA */
|
|
pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_a, DMA_FROM_DEVICE);
|
|
pl011_sgbuf_free(uap->dmarx.chan, &uap->dmarx.sgbuf_b, DMA_FROM_DEVICE);
|
|
if (uap->dmarx.poll_rate)
|
|
del_timer_sync(&uap->dmarx.timer);
|
|
uap->using_rx_dma = false;
|
|
}
|
|
}
|
|
|
|
static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
|
|
{
|
|
return uap->using_rx_dma;
|
|
}
|
|
|
|
static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
|
|
{
|
|
return uap->using_rx_dma && uap->dmarx.running;
|
|
}
|
|
|
|
#else
|
|
/* Blank functions if the DMA engine is not available */
|
|
static inline void pl011_dma_probe(struct device *dev, struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline void pl011_dma_remove(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline void pl011_dma_startup(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline void pl011_dma_shutdown(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline bool pl011_dma_tx_irq(struct uart_amba_port *uap)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void pl011_dma_tx_stop(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline bool pl011_dma_tx_start(struct uart_amba_port *uap)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline void pl011_dma_rx_irq(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline void pl011_dma_rx_stop(struct uart_amba_port *uap)
|
|
{
|
|
}
|
|
|
|
static inline int pl011_dma_rx_trigger_dma(struct uart_amba_port *uap)
|
|
{
|
|
return -EIO;
|
|
}
|
|
|
|
static inline bool pl011_dma_rx_available(struct uart_amba_port *uap)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline bool pl011_dma_rx_running(struct uart_amba_port *uap)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
#define pl011_dma_flush_buffer NULL
|
|
#endif
|
|
|
|
static void pl011_stop_tx(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
uap->im &= ~UART011_TXIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
pl011_dma_tx_stop(uap);
|
|
}
|
|
|
|
static void pl011_start_tx(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
if (!pl011_dma_tx_start(uap)) {
|
|
uap->im |= UART011_TXIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
}
|
|
}
|
|
|
|
static void pl011_stop_rx(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
uap->im &= ~(UART011_RXIM|UART011_RTIM|UART011_FEIM|
|
|
UART011_PEIM|UART011_BEIM|UART011_OEIM);
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
|
|
pl011_dma_rx_stop(uap);
|
|
}
|
|
|
|
static void pl011_enable_ms(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
uap->im |= UART011_RIMIM|UART011_CTSMIM|UART011_DCDMIM|UART011_DSRMIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
}
|
|
|
|
static void pl011_rx_chars(struct uart_amba_port *uap)
|
|
__releases(&uap->port.lock)
|
|
__acquires(&uap->port.lock)
|
|
{
|
|
pl011_fifo_to_tty(uap);
|
|
|
|
spin_unlock(&uap->port.lock);
|
|
tty_flip_buffer_push(&uap->port.state->port);
|
|
/*
|
|
* If we were temporarily out of DMA mode for a while,
|
|
* attempt to switch back to DMA mode again.
|
|
*/
|
|
if (pl011_dma_rx_available(uap)) {
|
|
if (pl011_dma_rx_trigger_dma(uap)) {
|
|
dev_dbg(uap->port.dev, "could not trigger RX DMA job "
|
|
"fall back to interrupt mode again\n");
|
|
uap->im |= UART011_RXIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
} else {
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
/* Start Rx DMA poll */
|
|
if (uap->dmarx.poll_rate) {
|
|
uap->dmarx.last_jiffies = jiffies;
|
|
uap->dmarx.last_residue = PL011_DMA_BUFFER_SIZE;
|
|
mod_timer(&uap->dmarx.timer,
|
|
jiffies +
|
|
msecs_to_jiffies(uap->dmarx.poll_rate));
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
spin_lock(&uap->port.lock);
|
|
}
|
|
|
|
static void pl011_tx_chars(struct uart_amba_port *uap)
|
|
{
|
|
struct circ_buf *xmit = &uap->port.state->xmit;
|
|
int count;
|
|
|
|
if (uap->port.x_char) {
|
|
writew(uap->port.x_char, uap->port.membase + UART01x_DR);
|
|
uap->port.icount.tx++;
|
|
uap->port.x_char = 0;
|
|
return;
|
|
}
|
|
if (uart_circ_empty(xmit) || uart_tx_stopped(&uap->port)) {
|
|
pl011_stop_tx(&uap->port);
|
|
return;
|
|
}
|
|
|
|
/* If we are using DMA mode, try to send some characters. */
|
|
if (pl011_dma_tx_irq(uap))
|
|
return;
|
|
|
|
count = uap->fifosize >> 1;
|
|
do {
|
|
writew(xmit->buf[xmit->tail], uap->port.membase + UART01x_DR);
|
|
xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
|
|
uap->port.icount.tx++;
|
|
if (uart_circ_empty(xmit))
|
|
break;
|
|
} while (--count > 0);
|
|
|
|
if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
|
|
uart_write_wakeup(&uap->port);
|
|
|
|
if (uart_circ_empty(xmit))
|
|
pl011_stop_tx(&uap->port);
|
|
}
|
|
|
|
static void pl011_modem_status(struct uart_amba_port *uap)
|
|
{
|
|
unsigned int status, delta;
|
|
|
|
status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
|
|
|
|
delta = status ^ uap->old_status;
|
|
uap->old_status = status;
|
|
|
|
if (!delta)
|
|
return;
|
|
|
|
if (delta & UART01x_FR_DCD)
|
|
uart_handle_dcd_change(&uap->port, status & UART01x_FR_DCD);
|
|
|
|
if (delta & UART01x_FR_DSR)
|
|
uap->port.icount.dsr++;
|
|
|
|
if (delta & UART01x_FR_CTS)
|
|
uart_handle_cts_change(&uap->port, status & UART01x_FR_CTS);
|
|
|
|
wake_up_interruptible(&uap->port.state->port.delta_msr_wait);
|
|
}
|
|
|
|
static irqreturn_t pl011_int(int irq, void *dev_id)
|
|
{
|
|
struct uart_amba_port *uap = dev_id;
|
|
unsigned long flags;
|
|
unsigned int status, pass_counter = AMBA_ISR_PASS_LIMIT;
|
|
int handled = 0;
|
|
unsigned int dummy_read;
|
|
|
|
spin_lock_irqsave(&uap->port.lock, flags);
|
|
status = readw(uap->port.membase + UART011_MIS);
|
|
if (status) {
|
|
do {
|
|
if (uap->vendor->cts_event_workaround) {
|
|
/* workaround to make sure that all bits are unlocked.. */
|
|
writew(0x00, uap->port.membase + UART011_ICR);
|
|
|
|
/*
|
|
* WA: introduce 26ns(1 uart clk) delay before W1C;
|
|
* single apb access will incur 2 pclk(133.12Mhz) delay,
|
|
* so add 2 dummy reads
|
|
*/
|
|
dummy_read = readw(uap->port.membase + UART011_ICR);
|
|
dummy_read = readw(uap->port.membase + UART011_ICR);
|
|
}
|
|
|
|
writew(status & ~(UART011_TXIS|UART011_RTIS|
|
|
UART011_RXIS),
|
|
uap->port.membase + UART011_ICR);
|
|
|
|
if (status & (UART011_RTIS|UART011_RXIS)) {
|
|
if (pl011_dma_rx_running(uap))
|
|
pl011_dma_rx_irq(uap);
|
|
else
|
|
pl011_rx_chars(uap);
|
|
}
|
|
if (status & (UART011_DSRMIS|UART011_DCDMIS|
|
|
UART011_CTSMIS|UART011_RIMIS))
|
|
pl011_modem_status(uap);
|
|
if (status & UART011_TXIS)
|
|
pl011_tx_chars(uap);
|
|
|
|
if (pass_counter-- == 0)
|
|
break;
|
|
|
|
status = readw(uap->port.membase + UART011_MIS);
|
|
} while (status != 0);
|
|
handled = 1;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&uap->port.lock, flags);
|
|
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static unsigned int pl011_tx_empty(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int status = readw(uap->port.membase + UART01x_FR);
|
|
return status & (UART01x_FR_BUSY|UART01x_FR_TXFF) ? 0 : TIOCSER_TEMT;
|
|
}
|
|
|
|
static unsigned int pl011_get_mctrl(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int result = 0;
|
|
unsigned int status = readw(uap->port.membase + UART01x_FR);
|
|
|
|
#define TIOCMBIT(uartbit, tiocmbit) \
|
|
if (status & uartbit) \
|
|
result |= tiocmbit
|
|
|
|
TIOCMBIT(UART01x_FR_DCD, TIOCM_CAR);
|
|
TIOCMBIT(UART01x_FR_DSR, TIOCM_DSR);
|
|
TIOCMBIT(UART01x_FR_CTS, TIOCM_CTS);
|
|
TIOCMBIT(UART011_FR_RI, TIOCM_RNG);
|
|
#undef TIOCMBIT
|
|
return result;
|
|
}
|
|
|
|
static void pl011_set_mctrl(struct uart_port *port, unsigned int mctrl)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int cr;
|
|
|
|
cr = readw(uap->port.membase + UART011_CR);
|
|
|
|
#define TIOCMBIT(tiocmbit, uartbit) \
|
|
if (mctrl & tiocmbit) \
|
|
cr |= uartbit; \
|
|
else \
|
|
cr &= ~uartbit
|
|
|
|
TIOCMBIT(TIOCM_RTS, UART011_CR_RTS);
|
|
TIOCMBIT(TIOCM_DTR, UART011_CR_DTR);
|
|
TIOCMBIT(TIOCM_OUT1, UART011_CR_OUT1);
|
|
TIOCMBIT(TIOCM_OUT2, UART011_CR_OUT2);
|
|
TIOCMBIT(TIOCM_LOOP, UART011_CR_LBE);
|
|
|
|
if (uap->autorts) {
|
|
/* We need to disable auto-RTS if we want to turn RTS off */
|
|
TIOCMBIT(TIOCM_RTS, UART011_CR_RTSEN);
|
|
}
|
|
#undef TIOCMBIT
|
|
|
|
writew(cr, uap->port.membase + UART011_CR);
|
|
}
|
|
|
|
static void pl011_break_ctl(struct uart_port *port, int break_state)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned long flags;
|
|
unsigned int lcr_h;
|
|
|
|
spin_lock_irqsave(&uap->port.lock, flags);
|
|
lcr_h = readw(uap->port.membase + uap->lcrh_tx);
|
|
if (break_state == -1)
|
|
lcr_h |= UART01x_LCRH_BRK;
|
|
else
|
|
lcr_h &= ~UART01x_LCRH_BRK;
|
|
writew(lcr_h, uap->port.membase + uap->lcrh_tx);
|
|
spin_unlock_irqrestore(&uap->port.lock, flags);
|
|
}
|
|
|
|
#ifdef CONFIG_CONSOLE_POLL
|
|
|
|
static void pl011_quiesce_irqs(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned char __iomem *regs = uap->port.membase;
|
|
|
|
writew(readw(regs + UART011_MIS), regs + UART011_ICR);
|
|
/*
|
|
* There is no way to clear TXIM as this is "ready to transmit IRQ", so
|
|
* we simply mask it. start_tx() will unmask it.
|
|
*
|
|
* Note we can race with start_tx(), and if the race happens, the
|
|
* polling user might get another interrupt just after we clear it.
|
|
* But it should be OK and can happen even w/o the race, e.g.
|
|
* controller immediately got some new data and raised the IRQ.
|
|
*
|
|
* And whoever uses polling routines assumes that it manages the device
|
|
* (including tx queue), so we're also fine with start_tx()'s caller
|
|
* side.
|
|
*/
|
|
writew(readw(regs + UART011_IMSC) & ~UART011_TXIM, regs + UART011_IMSC);
|
|
}
|
|
|
|
static int pl011_get_poll_char(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int status;
|
|
|
|
/*
|
|
* The caller might need IRQs lowered, e.g. if used with KDB NMI
|
|
* debugger.
|
|
*/
|
|
pl011_quiesce_irqs(port);
|
|
|
|
status = readw(uap->port.membase + UART01x_FR);
|
|
if (status & UART01x_FR_RXFE)
|
|
return NO_POLL_CHAR;
|
|
|
|
return readw(uap->port.membase + UART01x_DR);
|
|
}
|
|
|
|
static void pl011_put_poll_char(struct uart_port *port,
|
|
unsigned char ch)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
|
|
barrier();
|
|
|
|
writew(ch, uap->port.membase + UART01x_DR);
|
|
}
|
|
|
|
#endif /* CONFIG_CONSOLE_POLL */
|
|
|
|
static int pl011_hwinit(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
int retval;
|
|
|
|
/* Optionaly enable pins to be muxed in and configured */
|
|
pinctrl_pm_select_default_state(port->dev);
|
|
|
|
/*
|
|
* Try to enable the clock producer.
|
|
*/
|
|
retval = clk_prepare_enable(uap->clk);
|
|
if (retval)
|
|
return retval;
|
|
|
|
uap->port.uartclk = clk_get_rate(uap->clk);
|
|
|
|
/* Clear pending error and receive interrupts */
|
|
writew(UART011_OEIS | UART011_BEIS | UART011_PEIS | UART011_FEIS |
|
|
UART011_RTIS | UART011_RXIS, uap->port.membase + UART011_ICR);
|
|
|
|
/*
|
|
* Save interrupts enable mask, and enable RX interrupts in case if
|
|
* the interrupt is used for NMI entry.
|
|
*/
|
|
uap->im = readw(uap->port.membase + UART011_IMSC);
|
|
writew(UART011_RTIM | UART011_RXIM, uap->port.membase + UART011_IMSC);
|
|
|
|
if (dev_get_platdata(uap->port.dev)) {
|
|
struct amba_pl011_data *plat;
|
|
|
|
plat = dev_get_platdata(uap->port.dev);
|
|
if (plat->init)
|
|
plat->init();
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void pl011_write_lcr_h(struct uart_amba_port *uap, unsigned int lcr_h)
|
|
{
|
|
writew(lcr_h, uap->port.membase + uap->lcrh_rx);
|
|
if (uap->lcrh_rx != uap->lcrh_tx) {
|
|
int i;
|
|
/*
|
|
* Wait 10 PCLKs before writing LCRH_TX register,
|
|
* to get this delay write read only register 10 times
|
|
*/
|
|
for (i = 0; i < 10; ++i)
|
|
writew(0xff, uap->port.membase + UART011_MIS);
|
|
writew(lcr_h, uap->port.membase + uap->lcrh_tx);
|
|
}
|
|
}
|
|
|
|
static int pl011_startup(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int cr, lcr_h, fbrd, ibrd;
|
|
int retval;
|
|
|
|
retval = pl011_hwinit(port);
|
|
if (retval)
|
|
goto clk_dis;
|
|
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
|
|
/*
|
|
* Allocate the IRQ
|
|
*/
|
|
retval = request_irq(uap->port.irq, pl011_int, 0, "uart-pl011", uap);
|
|
if (retval)
|
|
goto clk_dis;
|
|
|
|
writew(uap->vendor->ifls, uap->port.membase + UART011_IFLS);
|
|
|
|
/*
|
|
* Provoke TX FIFO interrupt into asserting. Taking care to preserve
|
|
* baud rate and data format specified by FBRD, IBRD and LCRH as the
|
|
* UART may already be in use as a console.
|
|
*/
|
|
spin_lock_irq(&uap->port.lock);
|
|
|
|
fbrd = readw(uap->port.membase + UART011_FBRD);
|
|
ibrd = readw(uap->port.membase + UART011_IBRD);
|
|
lcr_h = readw(uap->port.membase + uap->lcrh_rx);
|
|
|
|
cr = UART01x_CR_UARTEN | UART011_CR_TXE | UART011_CR_LBE;
|
|
writew(cr, uap->port.membase + UART011_CR);
|
|
writew(0, uap->port.membase + UART011_FBRD);
|
|
writew(1, uap->port.membase + UART011_IBRD);
|
|
pl011_write_lcr_h(uap, 0);
|
|
writew(0, uap->port.membase + UART01x_DR);
|
|
while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_BUSY)
|
|
barrier();
|
|
|
|
writew(fbrd, uap->port.membase + UART011_FBRD);
|
|
writew(ibrd, uap->port.membase + UART011_IBRD);
|
|
pl011_write_lcr_h(uap, lcr_h);
|
|
|
|
/* restore RTS and DTR */
|
|
cr = uap->old_cr & (UART011_CR_RTS | UART011_CR_DTR);
|
|
cr |= UART01x_CR_UARTEN | UART011_CR_RXE | UART011_CR_TXE;
|
|
writew(cr, uap->port.membase + UART011_CR);
|
|
|
|
spin_unlock_irq(&uap->port.lock);
|
|
|
|
/*
|
|
* initialise the old status of the modem signals
|
|
*/
|
|
uap->old_status = readw(uap->port.membase + UART01x_FR) & UART01x_FR_MODEM_ANY;
|
|
|
|
/* Startup DMA */
|
|
pl011_dma_startup(uap);
|
|
|
|
/*
|
|
* Finally, enable interrupts, only timeouts when using DMA
|
|
* if initial RX DMA job failed, start in interrupt mode
|
|
* as well.
|
|
*/
|
|
spin_lock_irq(&uap->port.lock);
|
|
/* Clear out any spuriously appearing RX interrupts */
|
|
writew(UART011_RTIS | UART011_RXIS,
|
|
uap->port.membase + UART011_ICR);
|
|
uap->im = UART011_RTIM;
|
|
if (!pl011_dma_rx_running(uap))
|
|
uap->im |= UART011_RXIM;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
spin_unlock_irq(&uap->port.lock);
|
|
|
|
return 0;
|
|
|
|
clk_dis:
|
|
clk_disable_unprepare(uap->clk);
|
|
return retval;
|
|
}
|
|
|
|
static void pl011_shutdown_channel(struct uart_amba_port *uap,
|
|
unsigned int lcrh)
|
|
{
|
|
unsigned long val;
|
|
|
|
val = readw(uap->port.membase + lcrh);
|
|
val &= ~(UART01x_LCRH_BRK | UART01x_LCRH_FEN);
|
|
writew(val, uap->port.membase + lcrh);
|
|
}
|
|
|
|
static void pl011_shutdown(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int cr;
|
|
|
|
/*
|
|
* disable all interrupts
|
|
*/
|
|
spin_lock_irq(&uap->port.lock);
|
|
uap->im = 0;
|
|
writew(uap->im, uap->port.membase + UART011_IMSC);
|
|
writew(0xffff, uap->port.membase + UART011_ICR);
|
|
spin_unlock_irq(&uap->port.lock);
|
|
|
|
pl011_dma_shutdown(uap);
|
|
|
|
/*
|
|
* Free the interrupt
|
|
*/
|
|
free_irq(uap->port.irq, uap);
|
|
|
|
/*
|
|
* disable the port
|
|
* disable the port. It should not disable RTS and DTR.
|
|
* Also RTS and DTR state should be preserved to restore
|
|
* it during startup().
|
|
*/
|
|
uap->autorts = false;
|
|
spin_lock_irq(&uap->port.lock);
|
|
cr = readw(uap->port.membase + UART011_CR);
|
|
uap->old_cr = cr;
|
|
cr &= UART011_CR_RTS | UART011_CR_DTR;
|
|
cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
|
|
writew(cr, uap->port.membase + UART011_CR);
|
|
spin_unlock_irq(&uap->port.lock);
|
|
|
|
/*
|
|
* disable break condition and fifos
|
|
*/
|
|
pl011_shutdown_channel(uap, uap->lcrh_rx);
|
|
if (uap->lcrh_rx != uap->lcrh_tx)
|
|
pl011_shutdown_channel(uap, uap->lcrh_tx);
|
|
|
|
/*
|
|
* Shut down the clock producer
|
|
*/
|
|
clk_disable_unprepare(uap->clk);
|
|
/* Optionally let pins go into sleep states */
|
|
pinctrl_pm_select_sleep_state(port->dev);
|
|
|
|
if (dev_get_platdata(uap->port.dev)) {
|
|
struct amba_pl011_data *plat;
|
|
|
|
plat = dev_get_platdata(uap->port.dev);
|
|
if (plat->exit)
|
|
plat->exit();
|
|
}
|
|
|
|
if (uap->port.ops->flush_buffer)
|
|
uap->port.ops->flush_buffer(port);
|
|
}
|
|
|
|
static void
|
|
pl011_set_termios(struct uart_port *port, struct ktermios *termios,
|
|
struct ktermios *old)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
unsigned int lcr_h, old_cr;
|
|
unsigned long flags;
|
|
unsigned int baud, quot, clkdiv;
|
|
|
|
if (uap->vendor->oversampling)
|
|
clkdiv = 8;
|
|
else
|
|
clkdiv = 16;
|
|
|
|
/*
|
|
* Ask the core to calculate the divisor for us.
|
|
*/
|
|
baud = uart_get_baud_rate(port, termios, old, 0,
|
|
port->uartclk / clkdiv);
|
|
#ifdef CONFIG_DMA_ENGINE
|
|
/*
|
|
* Adjust RX DMA polling rate with baud rate if not specified.
|
|
*/
|
|
if (uap->dmarx.auto_poll_rate)
|
|
uap->dmarx.poll_rate = DIV_ROUND_UP(10000000, baud);
|
|
#endif
|
|
|
|
if (baud > port->uartclk/16)
|
|
quot = DIV_ROUND_CLOSEST(port->uartclk * 8, baud);
|
|
else
|
|
quot = DIV_ROUND_CLOSEST(port->uartclk * 4, baud);
|
|
|
|
switch (termios->c_cflag & CSIZE) {
|
|
case CS5:
|
|
lcr_h = UART01x_LCRH_WLEN_5;
|
|
break;
|
|
case CS6:
|
|
lcr_h = UART01x_LCRH_WLEN_6;
|
|
break;
|
|
case CS7:
|
|
lcr_h = UART01x_LCRH_WLEN_7;
|
|
break;
|
|
default: // CS8
|
|
lcr_h = UART01x_LCRH_WLEN_8;
|
|
break;
|
|
}
|
|
if (termios->c_cflag & CSTOPB)
|
|
lcr_h |= UART01x_LCRH_STP2;
|
|
if (termios->c_cflag & PARENB) {
|
|
lcr_h |= UART01x_LCRH_PEN;
|
|
if (!(termios->c_cflag & PARODD))
|
|
lcr_h |= UART01x_LCRH_EPS;
|
|
}
|
|
if (uap->fifosize > 1)
|
|
lcr_h |= UART01x_LCRH_FEN;
|
|
|
|
spin_lock_irqsave(&port->lock, flags);
|
|
|
|
/*
|
|
* Update the per-port timeout.
|
|
*/
|
|
uart_update_timeout(port, termios->c_cflag, baud);
|
|
|
|
port->read_status_mask = UART011_DR_OE | 255;
|
|
if (termios->c_iflag & INPCK)
|
|
port->read_status_mask |= UART011_DR_FE | UART011_DR_PE;
|
|
if (termios->c_iflag & (IGNBRK | BRKINT | PARMRK))
|
|
port->read_status_mask |= UART011_DR_BE;
|
|
|
|
/*
|
|
* Characters to ignore
|
|
*/
|
|
port->ignore_status_mask = 0;
|
|
if (termios->c_iflag & IGNPAR)
|
|
port->ignore_status_mask |= UART011_DR_FE | UART011_DR_PE;
|
|
if (termios->c_iflag & IGNBRK) {
|
|
port->ignore_status_mask |= UART011_DR_BE;
|
|
/*
|
|
* If we're ignoring parity and break indicators,
|
|
* ignore overruns too (for real raw support).
|
|
*/
|
|
if (termios->c_iflag & IGNPAR)
|
|
port->ignore_status_mask |= UART011_DR_OE;
|
|
}
|
|
|
|
/*
|
|
* Ignore all characters if CREAD is not set.
|
|
*/
|
|
if ((termios->c_cflag & CREAD) == 0)
|
|
port->ignore_status_mask |= UART_DUMMY_DR_RX;
|
|
|
|
if (UART_ENABLE_MS(port, termios->c_cflag))
|
|
pl011_enable_ms(port);
|
|
|
|
/* first, disable everything */
|
|
old_cr = readw(port->membase + UART011_CR);
|
|
writew(0, port->membase + UART011_CR);
|
|
|
|
if (termios->c_cflag & CRTSCTS) {
|
|
if (old_cr & UART011_CR_RTS)
|
|
old_cr |= UART011_CR_RTSEN;
|
|
|
|
old_cr |= UART011_CR_CTSEN;
|
|
uap->autorts = true;
|
|
} else {
|
|
old_cr &= ~(UART011_CR_CTSEN | UART011_CR_RTSEN);
|
|
uap->autorts = false;
|
|
}
|
|
|
|
if (uap->vendor->oversampling) {
|
|
if (baud > port->uartclk / 16)
|
|
old_cr |= ST_UART011_CR_OVSFACT;
|
|
else
|
|
old_cr &= ~ST_UART011_CR_OVSFACT;
|
|
}
|
|
|
|
/*
|
|
* Workaround for the ST Micro oversampling variants to
|
|
* increase the bitrate slightly, by lowering the divisor,
|
|
* to avoid delayed sampling of start bit at high speeds,
|
|
* else we see data corruption.
|
|
*/
|
|
if (uap->vendor->oversampling) {
|
|
if ((baud >= 3000000) && (baud < 3250000) && (quot > 1))
|
|
quot -= 1;
|
|
else if ((baud > 3250000) && (quot > 2))
|
|
quot -= 2;
|
|
}
|
|
/* Set baud rate */
|
|
writew(quot & 0x3f, port->membase + UART011_FBRD);
|
|
writew(quot >> 6, port->membase + UART011_IBRD);
|
|
|
|
/*
|
|
* ----------v----------v----------v----------v-----
|
|
* NOTE: lcrh_tx and lcrh_rx MUST BE WRITTEN AFTER
|
|
* UART011_FBRD & UART011_IBRD.
|
|
* ----------^----------^----------^----------^-----
|
|
*/
|
|
pl011_write_lcr_h(uap, lcr_h);
|
|
writew(old_cr, port->membase + UART011_CR);
|
|
|
|
spin_unlock_irqrestore(&port->lock, flags);
|
|
}
|
|
|
|
static const char *pl011_type(struct uart_port *port)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
return uap->port.type == PORT_AMBA ? uap->type : NULL;
|
|
}
|
|
|
|
/*
|
|
* Release the memory region(s) being used by 'port'
|
|
*/
|
|
static void pl011_release_port(struct uart_port *port)
|
|
{
|
|
release_mem_region(port->mapbase, SZ_4K);
|
|
}
|
|
|
|
/*
|
|
* Request the memory region(s) being used by 'port'
|
|
*/
|
|
static int pl011_request_port(struct uart_port *port)
|
|
{
|
|
return request_mem_region(port->mapbase, SZ_4K, "uart-pl011")
|
|
!= NULL ? 0 : -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Configure/autoconfigure the port.
|
|
*/
|
|
static void pl011_config_port(struct uart_port *port, int flags)
|
|
{
|
|
if (flags & UART_CONFIG_TYPE) {
|
|
port->type = PORT_AMBA;
|
|
pl011_request_port(port);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* verify the new serial_struct (for TIOCSSERIAL).
|
|
*/
|
|
static int pl011_verify_port(struct uart_port *port, struct serial_struct *ser)
|
|
{
|
|
int ret = 0;
|
|
if (ser->type != PORT_UNKNOWN && ser->type != PORT_AMBA)
|
|
ret = -EINVAL;
|
|
if (ser->irq < 0 || ser->irq >= nr_irqs)
|
|
ret = -EINVAL;
|
|
if (ser->baud_base < 9600)
|
|
ret = -EINVAL;
|
|
return ret;
|
|
}
|
|
|
|
static struct uart_ops amba_pl011_pops = {
|
|
.tx_empty = pl011_tx_empty,
|
|
.set_mctrl = pl011_set_mctrl,
|
|
.get_mctrl = pl011_get_mctrl,
|
|
.stop_tx = pl011_stop_tx,
|
|
.start_tx = pl011_start_tx,
|
|
.stop_rx = pl011_stop_rx,
|
|
.enable_ms = pl011_enable_ms,
|
|
.break_ctl = pl011_break_ctl,
|
|
.startup = pl011_startup,
|
|
.shutdown = pl011_shutdown,
|
|
.flush_buffer = pl011_dma_flush_buffer,
|
|
.set_termios = pl011_set_termios,
|
|
.type = pl011_type,
|
|
.release_port = pl011_release_port,
|
|
.request_port = pl011_request_port,
|
|
.config_port = pl011_config_port,
|
|
.verify_port = pl011_verify_port,
|
|
#ifdef CONFIG_CONSOLE_POLL
|
|
.poll_init = pl011_hwinit,
|
|
.poll_get_char = pl011_get_poll_char,
|
|
.poll_put_char = pl011_put_poll_char,
|
|
#endif
|
|
};
|
|
|
|
static struct uart_amba_port *amba_ports[UART_NR];
|
|
|
|
#ifdef CONFIG_SERIAL_AMBA_PL011_CONSOLE
|
|
|
|
static void pl011_console_putchar(struct uart_port *port, int ch)
|
|
{
|
|
struct uart_amba_port *uap =
|
|
container_of(port, struct uart_amba_port, port);
|
|
|
|
while (readw(uap->port.membase + UART01x_FR) & UART01x_FR_TXFF)
|
|
barrier();
|
|
writew(ch, uap->port.membase + UART01x_DR);
|
|
}
|
|
|
|
static void
|
|
pl011_console_write(struct console *co, const char *s, unsigned int count)
|
|
{
|
|
struct uart_amba_port *uap = amba_ports[co->index];
|
|
unsigned int status, old_cr, new_cr;
|
|
unsigned long flags;
|
|
int locked = 1;
|
|
|
|
clk_enable(uap->clk);
|
|
|
|
local_irq_save(flags);
|
|
if (uap->port.sysrq)
|
|
locked = 0;
|
|
else if (oops_in_progress)
|
|
locked = spin_trylock(&uap->port.lock);
|
|
else
|
|
spin_lock(&uap->port.lock);
|
|
|
|
/*
|
|
* First save the CR then disable the interrupts
|
|
*/
|
|
old_cr = readw(uap->port.membase + UART011_CR);
|
|
new_cr = old_cr & ~UART011_CR_CTSEN;
|
|
new_cr |= UART01x_CR_UARTEN | UART011_CR_TXE;
|
|
writew(new_cr, uap->port.membase + UART011_CR);
|
|
|
|
uart_console_write(&uap->port, s, count, pl011_console_putchar);
|
|
|
|
/*
|
|
* Finally, wait for transmitter to become empty
|
|
* and restore the TCR
|
|
*/
|
|
do {
|
|
status = readw(uap->port.membase + UART01x_FR);
|
|
} while (status & UART01x_FR_BUSY);
|
|
writew(old_cr, uap->port.membase + UART011_CR);
|
|
|
|
if (locked)
|
|
spin_unlock(&uap->port.lock);
|
|
local_irq_restore(flags);
|
|
|
|
clk_disable(uap->clk);
|
|
}
|
|
|
|
static void __init
|
|
pl011_console_get_options(struct uart_amba_port *uap, int *baud,
|
|
int *parity, int *bits)
|
|
{
|
|
if (readw(uap->port.membase + UART011_CR) & UART01x_CR_UARTEN) {
|
|
unsigned int lcr_h, ibrd, fbrd;
|
|
|
|
lcr_h = readw(uap->port.membase + uap->lcrh_tx);
|
|
|
|
*parity = 'n';
|
|
if (lcr_h & UART01x_LCRH_PEN) {
|
|
if (lcr_h & UART01x_LCRH_EPS)
|
|
*parity = 'e';
|
|
else
|
|
*parity = 'o';
|
|
}
|
|
|
|
if ((lcr_h & 0x60) == UART01x_LCRH_WLEN_7)
|
|
*bits = 7;
|
|
else
|
|
*bits = 8;
|
|
|
|
ibrd = readw(uap->port.membase + UART011_IBRD);
|
|
fbrd = readw(uap->port.membase + UART011_FBRD);
|
|
|
|
*baud = uap->port.uartclk * 4 / (64 * ibrd + fbrd);
|
|
|
|
if (uap->vendor->oversampling) {
|
|
if (readw(uap->port.membase + UART011_CR)
|
|
& ST_UART011_CR_OVSFACT)
|
|
*baud *= 2;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int __init pl011_console_setup(struct console *co, char *options)
|
|
{
|
|
struct uart_amba_port *uap;
|
|
int baud = 38400;
|
|
int bits = 8;
|
|
int parity = 'n';
|
|
int flow = 'n';
|
|
int ret;
|
|
|
|
/*
|
|
* Check whether an invalid uart number has been specified, and
|
|
* if so, search for the first available port that does have
|
|
* console support.
|
|
*/
|
|
if (co->index >= UART_NR)
|
|
co->index = 0;
|
|
uap = amba_ports[co->index];
|
|
if (!uap)
|
|
return -ENODEV;
|
|
|
|
/* Allow pins to be muxed in and configured */
|
|
pinctrl_pm_select_default_state(uap->port.dev);
|
|
|
|
ret = clk_prepare(uap->clk);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (dev_get_platdata(uap->port.dev)) {
|
|
struct amba_pl011_data *plat;
|
|
|
|
plat = dev_get_platdata(uap->port.dev);
|
|
if (plat->init)
|
|
plat->init();
|
|
}
|
|
|
|
uap->port.uartclk = clk_get_rate(uap->clk);
|
|
|
|
if (options)
|
|
uart_parse_options(options, &baud, &parity, &bits, &flow);
|
|
else
|
|
pl011_console_get_options(uap, &baud, &parity, &bits);
|
|
|
|
return uart_set_options(&uap->port, co, baud, parity, bits, flow);
|
|
}
|
|
|
|
static struct uart_driver amba_reg;
|
|
static struct console amba_console = {
|
|
.name = "ttyAMA",
|
|
.write = pl011_console_write,
|
|
.device = uart_console_device,
|
|
.setup = pl011_console_setup,
|
|
.flags = CON_PRINTBUFFER,
|
|
.index = -1,
|
|
.data = &amba_reg,
|
|
};
|
|
|
|
#define AMBA_CONSOLE (&amba_console)
|
|
|
|
static void pl011_putc(struct uart_port *port, int c)
|
|
{
|
|
while (readl(port->membase + UART01x_FR) & UART01x_FR_TXFF)
|
|
;
|
|
writeb(c, port->membase + UART01x_DR);
|
|
while (readl(port->membase + UART01x_FR) & UART01x_FR_BUSY)
|
|
;
|
|
}
|
|
|
|
static void pl011_early_write(struct console *con, const char *s, unsigned n)
|
|
{
|
|
struct earlycon_device *dev = con->data;
|
|
|
|
uart_console_write(&dev->port, s, n, pl011_putc);
|
|
}
|
|
|
|
static int __init pl011_early_console_setup(struct earlycon_device *device,
|
|
const char *opt)
|
|
{
|
|
if (!device->port.membase)
|
|
return -ENODEV;
|
|
|
|
device->con->write = pl011_early_write;
|
|
return 0;
|
|
}
|
|
EARLYCON_DECLARE(pl011, pl011_early_console_setup);
|
|
OF_EARLYCON_DECLARE(pl011, "arm,pl011", pl011_early_console_setup);
|
|
|
|
#else
|
|
#define AMBA_CONSOLE NULL
|
|
#endif
|
|
|
|
static struct uart_driver amba_reg = {
|
|
.owner = THIS_MODULE,
|
|
.driver_name = "ttyAMA",
|
|
.dev_name = "ttyAMA",
|
|
.major = SERIAL_AMBA_MAJOR,
|
|
.minor = SERIAL_AMBA_MINOR,
|
|
.nr = UART_NR,
|
|
.cons = AMBA_CONSOLE,
|
|
};
|
|
|
|
static int pl011_probe_dt_alias(int index, struct device *dev)
|
|
{
|
|
struct device_node *np;
|
|
static bool seen_dev_with_alias = false;
|
|
static bool seen_dev_without_alias = false;
|
|
int ret = index;
|
|
|
|
if (!IS_ENABLED(CONFIG_OF))
|
|
return ret;
|
|
|
|
np = dev->of_node;
|
|
if (!np)
|
|
return ret;
|
|
|
|
ret = of_alias_get_id(np, "serial");
|
|
if (IS_ERR_VALUE(ret)) {
|
|
seen_dev_without_alias = true;
|
|
ret = index;
|
|
} else {
|
|
seen_dev_with_alias = true;
|
|
if (ret >= ARRAY_SIZE(amba_ports) || amba_ports[ret] != NULL) {
|
|
dev_warn(dev, "requested serial port %d not available.\n", ret);
|
|
ret = index;
|
|
}
|
|
}
|
|
|
|
if (seen_dev_with_alias && seen_dev_without_alias)
|
|
dev_warn(dev, "aliased and non-aliased serial devices found in device tree. Serial port enumeration may be unpredictable.\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pl011_probe(struct amba_device *dev, const struct amba_id *id)
|
|
{
|
|
struct uart_amba_port *uap;
|
|
struct vendor_data *vendor = id->data;
|
|
void __iomem *base;
|
|
int i, ret;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
|
|
if (amba_ports[i] == NULL)
|
|
break;
|
|
|
|
if (i == ARRAY_SIZE(amba_ports))
|
|
return -EBUSY;
|
|
|
|
uap = devm_kzalloc(&dev->dev, sizeof(struct uart_amba_port),
|
|
GFP_KERNEL);
|
|
if (uap == NULL)
|
|
return -ENOMEM;
|
|
|
|
i = pl011_probe_dt_alias(i, &dev->dev);
|
|
|
|
base = devm_ioremap(&dev->dev, dev->res.start,
|
|
resource_size(&dev->res));
|
|
if (!base)
|
|
return -ENOMEM;
|
|
|
|
uap->clk = devm_clk_get(&dev->dev, NULL);
|
|
if (IS_ERR(uap->clk))
|
|
return PTR_ERR(uap->clk);
|
|
|
|
uap->vendor = vendor;
|
|
uap->lcrh_rx = vendor->lcrh_rx;
|
|
uap->lcrh_tx = vendor->lcrh_tx;
|
|
uap->old_cr = 0;
|
|
uap->fifosize = vendor->get_fifosize(dev);
|
|
uap->port.dev = &dev->dev;
|
|
uap->port.mapbase = dev->res.start;
|
|
uap->port.membase = base;
|
|
uap->port.iotype = UPIO_MEM;
|
|
uap->port.irq = dev->irq[0];
|
|
uap->port.fifosize = uap->fifosize;
|
|
uap->port.ops = &amba_pl011_pops;
|
|
uap->port.flags = UPF_BOOT_AUTOCONF;
|
|
uap->port.line = i;
|
|
pl011_dma_probe(&dev->dev, uap);
|
|
|
|
/* Ensure interrupts from this UART are masked and cleared */
|
|
writew(0, uap->port.membase + UART011_IMSC);
|
|
writew(0xffff, uap->port.membase + UART011_ICR);
|
|
|
|
snprintf(uap->type, sizeof(uap->type), "PL011 rev%u", amba_rev(dev));
|
|
|
|
amba_ports[i] = uap;
|
|
|
|
amba_set_drvdata(dev, uap);
|
|
|
|
if (!amba_reg.state) {
|
|
ret = uart_register_driver(&amba_reg);
|
|
if (ret < 0) {
|
|
pr_err("Failed to register AMBA-PL011 driver\n");
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = uart_add_one_port(&amba_reg, &uap->port);
|
|
if (ret) {
|
|
amba_ports[i] = NULL;
|
|
uart_unregister_driver(&amba_reg);
|
|
pl011_dma_remove(uap);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int pl011_remove(struct amba_device *dev)
|
|
{
|
|
struct uart_amba_port *uap = amba_get_drvdata(dev);
|
|
bool busy = false;
|
|
int i;
|
|
|
|
uart_remove_one_port(&amba_reg, &uap->port);
|
|
|
|
for (i = 0; i < ARRAY_SIZE(amba_ports); i++)
|
|
if (amba_ports[i] == uap)
|
|
amba_ports[i] = NULL;
|
|
else if (amba_ports[i])
|
|
busy = true;
|
|
|
|
pl011_dma_remove(uap);
|
|
if (!busy)
|
|
uart_unregister_driver(&amba_reg);
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int pl011_suspend(struct device *dev)
|
|
{
|
|
struct uart_amba_port *uap = dev_get_drvdata(dev);
|
|
|
|
if (!uap)
|
|
return -EINVAL;
|
|
|
|
return uart_suspend_port(&amba_reg, &uap->port);
|
|
}
|
|
|
|
static int pl011_resume(struct device *dev)
|
|
{
|
|
struct uart_amba_port *uap = dev_get_drvdata(dev);
|
|
|
|
if (!uap)
|
|
return -EINVAL;
|
|
|
|
return uart_resume_port(&amba_reg, &uap->port);
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(pl011_dev_pm_ops, pl011_suspend, pl011_resume);
|
|
|
|
static struct amba_id pl011_ids[] = {
|
|
{
|
|
.id = 0x00041011,
|
|
.mask = 0x000fffff,
|
|
.data = &vendor_arm,
|
|
},
|
|
{
|
|
.id = 0x00380802,
|
|
.mask = 0x00ffffff,
|
|
.data = &vendor_st,
|
|
},
|
|
{ 0, 0 },
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(amba, pl011_ids);
|
|
|
|
static struct amba_driver pl011_driver = {
|
|
.drv = {
|
|
.name = "uart-pl011",
|
|
.pm = &pl011_dev_pm_ops,
|
|
},
|
|
.id_table = pl011_ids,
|
|
.probe = pl011_probe,
|
|
.remove = pl011_remove,
|
|
};
|
|
|
|
static int __init pl011_init(void)
|
|
{
|
|
printk(KERN_INFO "Serial: AMBA PL011 UART driver\n");
|
|
|
|
return amba_driver_register(&pl011_driver);
|
|
}
|
|
|
|
static void __exit pl011_exit(void)
|
|
{
|
|
amba_driver_unregister(&pl011_driver);
|
|
}
|
|
|
|
/*
|
|
* While this can be a module, if builtin it's most likely the console
|
|
* So let's leave module_exit but move module_init to an earlier place
|
|
*/
|
|
arch_initcall(pl011_init);
|
|
module_exit(pl011_exit);
|
|
|
|
MODULE_AUTHOR("ARM Ltd/Deep Blue Solutions Ltd");
|
|
MODULE_DESCRIPTION("ARM AMBA serial port driver");
|
|
MODULE_LICENSE("GPL");
|