mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 09:35:49 +07:00
2c207985f3
Since commit bbbe480297
("mm, oom: remove 'prefer children over
parent' heuristic") removed the
"%s: Kill process %d (%s) score %u or sacrifice child\n"
line, oc->chosen_points is no longer used after select_bad_process().
Link: http://lkml.kernel.org/r/1560853435-15575-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1137 lines
30 KiB
C
1137 lines
30 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/mm/oom_kill.c
|
|
*
|
|
* Copyright (C) 1998,2000 Rik van Riel
|
|
* Thanks go out to Claus Fischer for some serious inspiration and
|
|
* for goading me into coding this file...
|
|
* Copyright (C) 2010 Google, Inc.
|
|
* Rewritten by David Rientjes
|
|
*
|
|
* The routines in this file are used to kill a process when
|
|
* we're seriously out of memory. This gets called from __alloc_pages()
|
|
* in mm/page_alloc.c when we really run out of memory.
|
|
*
|
|
* Since we won't call these routines often (on a well-configured
|
|
* machine) this file will double as a 'coding guide' and a signpost
|
|
* for newbie kernel hackers. It features several pointers to major
|
|
* kernel subsystems and hints as to where to find out what things do.
|
|
*/
|
|
|
|
#include <linux/oom.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/sched/coredump.h>
|
|
#include <linux/sched/task.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/timex.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/cpuset.h>
|
|
#include <linux/export.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/memcontrol.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/security.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/ftrace.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mmu_notifier.h>
|
|
|
|
#include <asm/tlb.h>
|
|
#include "internal.h"
|
|
#include "slab.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include <trace/events/oom.h>
|
|
|
|
int sysctl_panic_on_oom;
|
|
int sysctl_oom_kill_allocating_task;
|
|
int sysctl_oom_dump_tasks = 1;
|
|
|
|
/*
|
|
* Serializes oom killer invocations (out_of_memory()) from all contexts to
|
|
* prevent from over eager oom killing (e.g. when the oom killer is invoked
|
|
* from different domains).
|
|
*
|
|
* oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
|
|
* and mark_oom_victim
|
|
*/
|
|
DEFINE_MUTEX(oom_lock);
|
|
|
|
static inline bool is_memcg_oom(struct oom_control *oc)
|
|
{
|
|
return oc->memcg != NULL;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/**
|
|
* oom_cpuset_eligible() - check task eligiblity for kill
|
|
* @start: task struct of which task to consider
|
|
* @mask: nodemask passed to page allocator for mempolicy ooms
|
|
*
|
|
* Task eligibility is determined by whether or not a candidate task, @tsk,
|
|
* shares the same mempolicy nodes as current if it is bound by such a policy
|
|
* and whether or not it has the same set of allowed cpuset nodes.
|
|
*
|
|
* This function is assuming oom-killer context and 'current' has triggered
|
|
* the oom-killer.
|
|
*/
|
|
static bool oom_cpuset_eligible(struct task_struct *start,
|
|
struct oom_control *oc)
|
|
{
|
|
struct task_struct *tsk;
|
|
bool ret = false;
|
|
const nodemask_t *mask = oc->nodemask;
|
|
|
|
if (is_memcg_oom(oc))
|
|
return true;
|
|
|
|
rcu_read_lock();
|
|
for_each_thread(start, tsk) {
|
|
if (mask) {
|
|
/*
|
|
* If this is a mempolicy constrained oom, tsk's
|
|
* cpuset is irrelevant. Only return true if its
|
|
* mempolicy intersects current, otherwise it may be
|
|
* needlessly killed.
|
|
*/
|
|
ret = mempolicy_nodemask_intersects(tsk, mask);
|
|
} else {
|
|
/*
|
|
* This is not a mempolicy constrained oom, so only
|
|
* check the mems of tsk's cpuset.
|
|
*/
|
|
ret = cpuset_mems_allowed_intersects(current, tsk);
|
|
}
|
|
if (ret)
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
#else
|
|
static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
|
|
{
|
|
return true;
|
|
}
|
|
#endif /* CONFIG_NUMA */
|
|
|
|
/*
|
|
* The process p may have detached its own ->mm while exiting or through
|
|
* use_mm(), but one or more of its subthreads may still have a valid
|
|
* pointer. Return p, or any of its subthreads with a valid ->mm, with
|
|
* task_lock() held.
|
|
*/
|
|
struct task_struct *find_lock_task_mm(struct task_struct *p)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
rcu_read_lock();
|
|
|
|
for_each_thread(p, t) {
|
|
task_lock(t);
|
|
if (likely(t->mm))
|
|
goto found;
|
|
task_unlock(t);
|
|
}
|
|
t = NULL;
|
|
found:
|
|
rcu_read_unlock();
|
|
|
|
return t;
|
|
}
|
|
|
|
/*
|
|
* order == -1 means the oom kill is required by sysrq, otherwise only
|
|
* for display purposes.
|
|
*/
|
|
static inline bool is_sysrq_oom(struct oom_control *oc)
|
|
{
|
|
return oc->order == -1;
|
|
}
|
|
|
|
/* return true if the task is not adequate as candidate victim task. */
|
|
static bool oom_unkillable_task(struct task_struct *p)
|
|
{
|
|
if (is_global_init(p))
|
|
return true;
|
|
if (p->flags & PF_KTHREAD)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Print out unreclaimble slabs info when unreclaimable slabs amount is greater
|
|
* than all user memory (LRU pages)
|
|
*/
|
|
static bool is_dump_unreclaim_slabs(void)
|
|
{
|
|
unsigned long nr_lru;
|
|
|
|
nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
|
|
global_node_page_state(NR_INACTIVE_ANON) +
|
|
global_node_page_state(NR_ACTIVE_FILE) +
|
|
global_node_page_state(NR_INACTIVE_FILE) +
|
|
global_node_page_state(NR_ISOLATED_ANON) +
|
|
global_node_page_state(NR_ISOLATED_FILE) +
|
|
global_node_page_state(NR_UNEVICTABLE);
|
|
|
|
return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
|
|
}
|
|
|
|
/**
|
|
* oom_badness - heuristic function to determine which candidate task to kill
|
|
* @p: task struct of which task we should calculate
|
|
* @totalpages: total present RAM allowed for page allocation
|
|
*
|
|
* The heuristic for determining which task to kill is made to be as simple and
|
|
* predictable as possible. The goal is to return the highest value for the
|
|
* task consuming the most memory to avoid subsequent oom failures.
|
|
*/
|
|
unsigned long oom_badness(struct task_struct *p, unsigned long totalpages)
|
|
{
|
|
long points;
|
|
long adj;
|
|
|
|
if (oom_unkillable_task(p))
|
|
return 0;
|
|
|
|
p = find_lock_task_mm(p);
|
|
if (!p)
|
|
return 0;
|
|
|
|
/*
|
|
* Do not even consider tasks which are explicitly marked oom
|
|
* unkillable or have been already oom reaped or the are in
|
|
* the middle of vfork
|
|
*/
|
|
adj = (long)p->signal->oom_score_adj;
|
|
if (adj == OOM_SCORE_ADJ_MIN ||
|
|
test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
|
|
in_vfork(p)) {
|
|
task_unlock(p);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* The baseline for the badness score is the proportion of RAM that each
|
|
* task's rss, pagetable and swap space use.
|
|
*/
|
|
points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
|
|
mm_pgtables_bytes(p->mm) / PAGE_SIZE;
|
|
task_unlock(p);
|
|
|
|
/* Normalize to oom_score_adj units */
|
|
adj *= totalpages / 1000;
|
|
points += adj;
|
|
|
|
/*
|
|
* Never return 0 for an eligible task regardless of the root bonus and
|
|
* oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
|
|
*/
|
|
return points > 0 ? points : 1;
|
|
}
|
|
|
|
static const char * const oom_constraint_text[] = {
|
|
[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
|
|
[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
|
|
[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
|
|
[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
|
|
};
|
|
|
|
/*
|
|
* Determine the type of allocation constraint.
|
|
*/
|
|
static enum oom_constraint constrained_alloc(struct oom_control *oc)
|
|
{
|
|
struct zone *zone;
|
|
struct zoneref *z;
|
|
enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
|
|
bool cpuset_limited = false;
|
|
int nid;
|
|
|
|
if (is_memcg_oom(oc)) {
|
|
oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
|
|
return CONSTRAINT_MEMCG;
|
|
}
|
|
|
|
/* Default to all available memory */
|
|
oc->totalpages = totalram_pages() + total_swap_pages;
|
|
|
|
if (!IS_ENABLED(CONFIG_NUMA))
|
|
return CONSTRAINT_NONE;
|
|
|
|
if (!oc->zonelist)
|
|
return CONSTRAINT_NONE;
|
|
/*
|
|
* Reach here only when __GFP_NOFAIL is used. So, we should avoid
|
|
* to kill current.We have to random task kill in this case.
|
|
* Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
|
|
*/
|
|
if (oc->gfp_mask & __GFP_THISNODE)
|
|
return CONSTRAINT_NONE;
|
|
|
|
/*
|
|
* This is not a __GFP_THISNODE allocation, so a truncated nodemask in
|
|
* the page allocator means a mempolicy is in effect. Cpuset policy
|
|
* is enforced in get_page_from_freelist().
|
|
*/
|
|
if (oc->nodemask &&
|
|
!nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
|
|
oc->totalpages = total_swap_pages;
|
|
for_each_node_mask(nid, *oc->nodemask)
|
|
oc->totalpages += node_spanned_pages(nid);
|
|
return CONSTRAINT_MEMORY_POLICY;
|
|
}
|
|
|
|
/* Check this allocation failure is caused by cpuset's wall function */
|
|
for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
|
|
high_zoneidx, oc->nodemask)
|
|
if (!cpuset_zone_allowed(zone, oc->gfp_mask))
|
|
cpuset_limited = true;
|
|
|
|
if (cpuset_limited) {
|
|
oc->totalpages = total_swap_pages;
|
|
for_each_node_mask(nid, cpuset_current_mems_allowed)
|
|
oc->totalpages += node_spanned_pages(nid);
|
|
return CONSTRAINT_CPUSET;
|
|
}
|
|
return CONSTRAINT_NONE;
|
|
}
|
|
|
|
static int oom_evaluate_task(struct task_struct *task, void *arg)
|
|
{
|
|
struct oom_control *oc = arg;
|
|
unsigned long points;
|
|
|
|
if (oom_unkillable_task(task))
|
|
goto next;
|
|
|
|
/* p may not have freeable memory in nodemask */
|
|
if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
|
|
goto next;
|
|
|
|
/*
|
|
* This task already has access to memory reserves and is being killed.
|
|
* Don't allow any other task to have access to the reserves unless
|
|
* the task has MMF_OOM_SKIP because chances that it would release
|
|
* any memory is quite low.
|
|
*/
|
|
if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
|
|
if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
|
|
goto next;
|
|
goto abort;
|
|
}
|
|
|
|
/*
|
|
* If task is allocating a lot of memory and has been marked to be
|
|
* killed first if it triggers an oom, then select it.
|
|
*/
|
|
if (oom_task_origin(task)) {
|
|
points = ULONG_MAX;
|
|
goto select;
|
|
}
|
|
|
|
points = oom_badness(task, oc->totalpages);
|
|
if (!points || points < oc->chosen_points)
|
|
goto next;
|
|
|
|
select:
|
|
if (oc->chosen)
|
|
put_task_struct(oc->chosen);
|
|
get_task_struct(task);
|
|
oc->chosen = task;
|
|
oc->chosen_points = points;
|
|
next:
|
|
return 0;
|
|
abort:
|
|
if (oc->chosen)
|
|
put_task_struct(oc->chosen);
|
|
oc->chosen = (void *)-1UL;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Simple selection loop. We choose the process with the highest number of
|
|
* 'points'. In case scan was aborted, oc->chosen is set to -1.
|
|
*/
|
|
static void select_bad_process(struct oom_control *oc)
|
|
{
|
|
if (is_memcg_oom(oc))
|
|
mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
|
|
else {
|
|
struct task_struct *p;
|
|
|
|
rcu_read_lock();
|
|
for_each_process(p)
|
|
if (oom_evaluate_task(p, oc))
|
|
break;
|
|
rcu_read_unlock();
|
|
}
|
|
}
|
|
|
|
static int dump_task(struct task_struct *p, void *arg)
|
|
{
|
|
struct oom_control *oc = arg;
|
|
struct task_struct *task;
|
|
|
|
if (oom_unkillable_task(p))
|
|
return 0;
|
|
|
|
/* p may not have freeable memory in nodemask */
|
|
if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
|
|
return 0;
|
|
|
|
task = find_lock_task_mm(p);
|
|
if (!task) {
|
|
/*
|
|
* This is a kthread or all of p's threads have already
|
|
* detached their mm's. There's no need to report
|
|
* them; they can't be oom killed anyway.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
|
|
task->pid, from_kuid(&init_user_ns, task_uid(task)),
|
|
task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
|
|
mm_pgtables_bytes(task->mm),
|
|
get_mm_counter(task->mm, MM_SWAPENTS),
|
|
task->signal->oom_score_adj, task->comm);
|
|
task_unlock(task);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* dump_tasks - dump current memory state of all system tasks
|
|
* @oc: pointer to struct oom_control
|
|
*
|
|
* Dumps the current memory state of all eligible tasks. Tasks not in the same
|
|
* memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
|
|
* are not shown.
|
|
* State information includes task's pid, uid, tgid, vm size, rss,
|
|
* pgtables_bytes, swapents, oom_score_adj value, and name.
|
|
*/
|
|
static void dump_tasks(struct oom_control *oc)
|
|
{
|
|
pr_info("Tasks state (memory values in pages):\n");
|
|
pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
|
|
|
|
if (is_memcg_oom(oc))
|
|
mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
|
|
else {
|
|
struct task_struct *p;
|
|
|
|
rcu_read_lock();
|
|
for_each_process(p)
|
|
dump_task(p, oc);
|
|
rcu_read_unlock();
|
|
}
|
|
}
|
|
|
|
static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
|
|
{
|
|
/* one line summary of the oom killer context. */
|
|
pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
|
|
oom_constraint_text[oc->constraint],
|
|
nodemask_pr_args(oc->nodemask));
|
|
cpuset_print_current_mems_allowed();
|
|
mem_cgroup_print_oom_context(oc->memcg, victim);
|
|
pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
|
|
from_kuid(&init_user_ns, task_uid(victim)));
|
|
}
|
|
|
|
static void dump_header(struct oom_control *oc, struct task_struct *p)
|
|
{
|
|
pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
|
|
current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
|
|
current->signal->oom_score_adj);
|
|
if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
|
|
pr_warn("COMPACTION is disabled!!!\n");
|
|
|
|
dump_stack();
|
|
if (is_memcg_oom(oc))
|
|
mem_cgroup_print_oom_meminfo(oc->memcg);
|
|
else {
|
|
show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
|
|
if (is_dump_unreclaim_slabs())
|
|
dump_unreclaimable_slab();
|
|
}
|
|
if (sysctl_oom_dump_tasks)
|
|
dump_tasks(oc);
|
|
if (p)
|
|
dump_oom_summary(oc, p);
|
|
}
|
|
|
|
/*
|
|
* Number of OOM victims in flight
|
|
*/
|
|
static atomic_t oom_victims = ATOMIC_INIT(0);
|
|
static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
|
|
|
|
static bool oom_killer_disabled __read_mostly;
|
|
|
|
#define K(x) ((x) << (PAGE_SHIFT-10))
|
|
|
|
/*
|
|
* task->mm can be NULL if the task is the exited group leader. So to
|
|
* determine whether the task is using a particular mm, we examine all the
|
|
* task's threads: if one of those is using this mm then this task was also
|
|
* using it.
|
|
*/
|
|
bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
|
|
{
|
|
struct task_struct *t;
|
|
|
|
for_each_thread(p, t) {
|
|
struct mm_struct *t_mm = READ_ONCE(t->mm);
|
|
if (t_mm)
|
|
return t_mm == mm;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#ifdef CONFIG_MMU
|
|
/*
|
|
* OOM Reaper kernel thread which tries to reap the memory used by the OOM
|
|
* victim (if that is possible) to help the OOM killer to move on.
|
|
*/
|
|
static struct task_struct *oom_reaper_th;
|
|
static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
|
|
static struct task_struct *oom_reaper_list;
|
|
static DEFINE_SPINLOCK(oom_reaper_lock);
|
|
|
|
bool __oom_reap_task_mm(struct mm_struct *mm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
bool ret = true;
|
|
|
|
/*
|
|
* Tell all users of get_user/copy_from_user etc... that the content
|
|
* is no longer stable. No barriers really needed because unmapping
|
|
* should imply barriers already and the reader would hit a page fault
|
|
* if it stumbled over a reaped memory.
|
|
*/
|
|
set_bit(MMF_UNSTABLE, &mm->flags);
|
|
|
|
for (vma = mm->mmap ; vma; vma = vma->vm_next) {
|
|
if (!can_madv_dontneed_vma(vma))
|
|
continue;
|
|
|
|
/*
|
|
* Only anonymous pages have a good chance to be dropped
|
|
* without additional steps which we cannot afford as we
|
|
* are OOM already.
|
|
*
|
|
* We do not even care about fs backed pages because all
|
|
* which are reclaimable have already been reclaimed and
|
|
* we do not want to block exit_mmap by keeping mm ref
|
|
* count elevated without a good reason.
|
|
*/
|
|
if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
|
|
struct mmu_notifier_range range;
|
|
struct mmu_gather tlb;
|
|
|
|
mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
|
|
vma, mm, vma->vm_start,
|
|
vma->vm_end);
|
|
tlb_gather_mmu(&tlb, mm, range.start, range.end);
|
|
if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
|
|
tlb_finish_mmu(&tlb, range.start, range.end);
|
|
ret = false;
|
|
continue;
|
|
}
|
|
unmap_page_range(&tlb, vma, range.start, range.end, NULL);
|
|
mmu_notifier_invalidate_range_end(&range);
|
|
tlb_finish_mmu(&tlb, range.start, range.end);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Reaps the address space of the give task.
|
|
*
|
|
* Returns true on success and false if none or part of the address space
|
|
* has been reclaimed and the caller should retry later.
|
|
*/
|
|
static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
|
|
{
|
|
bool ret = true;
|
|
|
|
if (!down_read_trylock(&mm->mmap_sem)) {
|
|
trace_skip_task_reaping(tsk->pid);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
|
|
* work on the mm anymore. The check for MMF_OOM_SKIP must run
|
|
* under mmap_sem for reading because it serializes against the
|
|
* down_write();up_write() cycle in exit_mmap().
|
|
*/
|
|
if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
|
|
trace_skip_task_reaping(tsk->pid);
|
|
goto out_unlock;
|
|
}
|
|
|
|
trace_start_task_reaping(tsk->pid);
|
|
|
|
/* failed to reap part of the address space. Try again later */
|
|
ret = __oom_reap_task_mm(mm);
|
|
if (!ret)
|
|
goto out_finish;
|
|
|
|
pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
|
|
task_pid_nr(tsk), tsk->comm,
|
|
K(get_mm_counter(mm, MM_ANONPAGES)),
|
|
K(get_mm_counter(mm, MM_FILEPAGES)),
|
|
K(get_mm_counter(mm, MM_SHMEMPAGES)));
|
|
out_finish:
|
|
trace_finish_task_reaping(tsk->pid);
|
|
out_unlock:
|
|
up_read(&mm->mmap_sem);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define MAX_OOM_REAP_RETRIES 10
|
|
static void oom_reap_task(struct task_struct *tsk)
|
|
{
|
|
int attempts = 0;
|
|
struct mm_struct *mm = tsk->signal->oom_mm;
|
|
|
|
/* Retry the down_read_trylock(mmap_sem) a few times */
|
|
while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
|
|
schedule_timeout_idle(HZ/10);
|
|
|
|
if (attempts <= MAX_OOM_REAP_RETRIES ||
|
|
test_bit(MMF_OOM_SKIP, &mm->flags))
|
|
goto done;
|
|
|
|
pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
|
|
task_pid_nr(tsk), tsk->comm);
|
|
debug_show_all_locks();
|
|
|
|
done:
|
|
tsk->oom_reaper_list = NULL;
|
|
|
|
/*
|
|
* Hide this mm from OOM killer because it has been either reaped or
|
|
* somebody can't call up_write(mmap_sem).
|
|
*/
|
|
set_bit(MMF_OOM_SKIP, &mm->flags);
|
|
|
|
/* Drop a reference taken by wake_oom_reaper */
|
|
put_task_struct(tsk);
|
|
}
|
|
|
|
static int oom_reaper(void *unused)
|
|
{
|
|
while (true) {
|
|
struct task_struct *tsk = NULL;
|
|
|
|
wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
|
|
spin_lock(&oom_reaper_lock);
|
|
if (oom_reaper_list != NULL) {
|
|
tsk = oom_reaper_list;
|
|
oom_reaper_list = tsk->oom_reaper_list;
|
|
}
|
|
spin_unlock(&oom_reaper_lock);
|
|
|
|
if (tsk)
|
|
oom_reap_task(tsk);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void wake_oom_reaper(struct task_struct *tsk)
|
|
{
|
|
/* mm is already queued? */
|
|
if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
|
|
return;
|
|
|
|
get_task_struct(tsk);
|
|
|
|
spin_lock(&oom_reaper_lock);
|
|
tsk->oom_reaper_list = oom_reaper_list;
|
|
oom_reaper_list = tsk;
|
|
spin_unlock(&oom_reaper_lock);
|
|
trace_wake_reaper(tsk->pid);
|
|
wake_up(&oom_reaper_wait);
|
|
}
|
|
|
|
static int __init oom_init(void)
|
|
{
|
|
oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
|
|
return 0;
|
|
}
|
|
subsys_initcall(oom_init)
|
|
#else
|
|
static inline void wake_oom_reaper(struct task_struct *tsk)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MMU */
|
|
|
|
/**
|
|
* mark_oom_victim - mark the given task as OOM victim
|
|
* @tsk: task to mark
|
|
*
|
|
* Has to be called with oom_lock held and never after
|
|
* oom has been disabled already.
|
|
*
|
|
* tsk->mm has to be non NULL and caller has to guarantee it is stable (either
|
|
* under task_lock or operate on the current).
|
|
*/
|
|
static void mark_oom_victim(struct task_struct *tsk)
|
|
{
|
|
struct mm_struct *mm = tsk->mm;
|
|
|
|
WARN_ON(oom_killer_disabled);
|
|
/* OOM killer might race with memcg OOM */
|
|
if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
|
|
return;
|
|
|
|
/* oom_mm is bound to the signal struct life time. */
|
|
if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
|
|
mmgrab(tsk->signal->oom_mm);
|
|
set_bit(MMF_OOM_VICTIM, &mm->flags);
|
|
}
|
|
|
|
/*
|
|
* Make sure that the task is woken up from uninterruptible sleep
|
|
* if it is frozen because OOM killer wouldn't be able to free
|
|
* any memory and livelock. freezing_slow_path will tell the freezer
|
|
* that TIF_MEMDIE tasks should be ignored.
|
|
*/
|
|
__thaw_task(tsk);
|
|
atomic_inc(&oom_victims);
|
|
trace_mark_victim(tsk->pid);
|
|
}
|
|
|
|
/**
|
|
* exit_oom_victim - note the exit of an OOM victim
|
|
*/
|
|
void exit_oom_victim(void)
|
|
{
|
|
clear_thread_flag(TIF_MEMDIE);
|
|
|
|
if (!atomic_dec_return(&oom_victims))
|
|
wake_up_all(&oom_victims_wait);
|
|
}
|
|
|
|
/**
|
|
* oom_killer_enable - enable OOM killer
|
|
*/
|
|
void oom_killer_enable(void)
|
|
{
|
|
oom_killer_disabled = false;
|
|
pr_info("OOM killer enabled.\n");
|
|
}
|
|
|
|
/**
|
|
* oom_killer_disable - disable OOM killer
|
|
* @timeout: maximum timeout to wait for oom victims in jiffies
|
|
*
|
|
* Forces all page allocations to fail rather than trigger OOM killer.
|
|
* Will block and wait until all OOM victims are killed or the given
|
|
* timeout expires.
|
|
*
|
|
* The function cannot be called when there are runnable user tasks because
|
|
* the userspace would see unexpected allocation failures as a result. Any
|
|
* new usage of this function should be consulted with MM people.
|
|
*
|
|
* Returns true if successful and false if the OOM killer cannot be
|
|
* disabled.
|
|
*/
|
|
bool oom_killer_disable(signed long timeout)
|
|
{
|
|
signed long ret;
|
|
|
|
/*
|
|
* Make sure to not race with an ongoing OOM killer. Check that the
|
|
* current is not killed (possibly due to sharing the victim's memory).
|
|
*/
|
|
if (mutex_lock_killable(&oom_lock))
|
|
return false;
|
|
oom_killer_disabled = true;
|
|
mutex_unlock(&oom_lock);
|
|
|
|
ret = wait_event_interruptible_timeout(oom_victims_wait,
|
|
!atomic_read(&oom_victims), timeout);
|
|
if (ret <= 0) {
|
|
oom_killer_enable();
|
|
return false;
|
|
}
|
|
pr_info("OOM killer disabled.\n");
|
|
|
|
return true;
|
|
}
|
|
|
|
static inline bool __task_will_free_mem(struct task_struct *task)
|
|
{
|
|
struct signal_struct *sig = task->signal;
|
|
|
|
/*
|
|
* A coredumping process may sleep for an extended period in exit_mm(),
|
|
* so the oom killer cannot assume that the process will promptly exit
|
|
* and release memory.
|
|
*/
|
|
if (sig->flags & SIGNAL_GROUP_COREDUMP)
|
|
return false;
|
|
|
|
if (sig->flags & SIGNAL_GROUP_EXIT)
|
|
return true;
|
|
|
|
if (thread_group_empty(task) && (task->flags & PF_EXITING))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Checks whether the given task is dying or exiting and likely to
|
|
* release its address space. This means that all threads and processes
|
|
* sharing the same mm have to be killed or exiting.
|
|
* Caller has to make sure that task->mm is stable (hold task_lock or
|
|
* it operates on the current).
|
|
*/
|
|
static bool task_will_free_mem(struct task_struct *task)
|
|
{
|
|
struct mm_struct *mm = task->mm;
|
|
struct task_struct *p;
|
|
bool ret = true;
|
|
|
|
/*
|
|
* Skip tasks without mm because it might have passed its exit_mm and
|
|
* exit_oom_victim. oom_reaper could have rescued that but do not rely
|
|
* on that for now. We can consider find_lock_task_mm in future.
|
|
*/
|
|
if (!mm)
|
|
return false;
|
|
|
|
if (!__task_will_free_mem(task))
|
|
return false;
|
|
|
|
/*
|
|
* This task has already been drained by the oom reaper so there are
|
|
* only small chances it will free some more
|
|
*/
|
|
if (test_bit(MMF_OOM_SKIP, &mm->flags))
|
|
return false;
|
|
|
|
if (atomic_read(&mm->mm_users) <= 1)
|
|
return true;
|
|
|
|
/*
|
|
* Make sure that all tasks which share the mm with the given tasks
|
|
* are dying as well to make sure that a) nobody pins its mm and
|
|
* b) the task is also reapable by the oom reaper.
|
|
*/
|
|
rcu_read_lock();
|
|
for_each_process(p) {
|
|
if (!process_shares_mm(p, mm))
|
|
continue;
|
|
if (same_thread_group(task, p))
|
|
continue;
|
|
ret = __task_will_free_mem(p);
|
|
if (!ret)
|
|
break;
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __oom_kill_process(struct task_struct *victim, const char *message)
|
|
{
|
|
struct task_struct *p;
|
|
struct mm_struct *mm;
|
|
bool can_oom_reap = true;
|
|
|
|
p = find_lock_task_mm(victim);
|
|
if (!p) {
|
|
put_task_struct(victim);
|
|
return;
|
|
} else if (victim != p) {
|
|
get_task_struct(p);
|
|
put_task_struct(victim);
|
|
victim = p;
|
|
}
|
|
|
|
/* Get a reference to safely compare mm after task_unlock(victim) */
|
|
mm = victim->mm;
|
|
mmgrab(mm);
|
|
|
|
/* Raise event before sending signal: task reaper must see this */
|
|
count_vm_event(OOM_KILL);
|
|
memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
|
|
|
|
/*
|
|
* We should send SIGKILL before granting access to memory reserves
|
|
* in order to prevent the OOM victim from depleting the memory
|
|
* reserves from the user space under its control.
|
|
*/
|
|
do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
|
|
mark_oom_victim(victim);
|
|
pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
|
|
message, task_pid_nr(victim), victim->comm,
|
|
K(victim->mm->total_vm),
|
|
K(get_mm_counter(victim->mm, MM_ANONPAGES)),
|
|
K(get_mm_counter(victim->mm, MM_FILEPAGES)),
|
|
K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
|
|
task_unlock(victim);
|
|
|
|
/*
|
|
* Kill all user processes sharing victim->mm in other thread groups, if
|
|
* any. They don't get access to memory reserves, though, to avoid
|
|
* depletion of all memory. This prevents mm->mmap_sem livelock when an
|
|
* oom killed thread cannot exit because it requires the semaphore and
|
|
* its contended by another thread trying to allocate memory itself.
|
|
* That thread will now get access to memory reserves since it has a
|
|
* pending fatal signal.
|
|
*/
|
|
rcu_read_lock();
|
|
for_each_process(p) {
|
|
if (!process_shares_mm(p, mm))
|
|
continue;
|
|
if (same_thread_group(p, victim))
|
|
continue;
|
|
if (is_global_init(p)) {
|
|
can_oom_reap = false;
|
|
set_bit(MMF_OOM_SKIP, &mm->flags);
|
|
pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
|
|
task_pid_nr(victim), victim->comm,
|
|
task_pid_nr(p), p->comm);
|
|
continue;
|
|
}
|
|
/*
|
|
* No use_mm() user needs to read from the userspace so we are
|
|
* ok to reap it.
|
|
*/
|
|
if (unlikely(p->flags & PF_KTHREAD))
|
|
continue;
|
|
do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
|
|
}
|
|
rcu_read_unlock();
|
|
|
|
if (can_oom_reap)
|
|
wake_oom_reaper(victim);
|
|
|
|
mmdrop(mm);
|
|
put_task_struct(victim);
|
|
}
|
|
#undef K
|
|
|
|
/*
|
|
* Kill provided task unless it's secured by setting
|
|
* oom_score_adj to OOM_SCORE_ADJ_MIN.
|
|
*/
|
|
static int oom_kill_memcg_member(struct task_struct *task, void *message)
|
|
{
|
|
if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
|
|
!is_global_init(task)) {
|
|
get_task_struct(task);
|
|
__oom_kill_process(task, message);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void oom_kill_process(struct oom_control *oc, const char *message)
|
|
{
|
|
struct task_struct *victim = oc->chosen;
|
|
struct mem_cgroup *oom_group;
|
|
static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
|
|
DEFAULT_RATELIMIT_BURST);
|
|
|
|
/*
|
|
* If the task is already exiting, don't alarm the sysadmin or kill
|
|
* its children or threads, just give it access to memory reserves
|
|
* so it can die quickly
|
|
*/
|
|
task_lock(victim);
|
|
if (task_will_free_mem(victim)) {
|
|
mark_oom_victim(victim);
|
|
wake_oom_reaper(victim);
|
|
task_unlock(victim);
|
|
put_task_struct(victim);
|
|
return;
|
|
}
|
|
task_unlock(victim);
|
|
|
|
if (__ratelimit(&oom_rs))
|
|
dump_header(oc, victim);
|
|
|
|
/*
|
|
* Do we need to kill the entire memory cgroup?
|
|
* Or even one of the ancestor memory cgroups?
|
|
* Check this out before killing the victim task.
|
|
*/
|
|
oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
|
|
|
|
__oom_kill_process(victim, message);
|
|
|
|
/*
|
|
* If necessary, kill all tasks in the selected memory cgroup.
|
|
*/
|
|
if (oom_group) {
|
|
mem_cgroup_print_oom_group(oom_group);
|
|
mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
|
|
(void*)message);
|
|
mem_cgroup_put(oom_group);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determines whether the kernel must panic because of the panic_on_oom sysctl.
|
|
*/
|
|
static void check_panic_on_oom(struct oom_control *oc)
|
|
{
|
|
if (likely(!sysctl_panic_on_oom))
|
|
return;
|
|
if (sysctl_panic_on_oom != 2) {
|
|
/*
|
|
* panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
|
|
* does not panic for cpuset, mempolicy, or memcg allocation
|
|
* failures.
|
|
*/
|
|
if (oc->constraint != CONSTRAINT_NONE)
|
|
return;
|
|
}
|
|
/* Do not panic for oom kills triggered by sysrq */
|
|
if (is_sysrq_oom(oc))
|
|
return;
|
|
dump_header(oc, NULL);
|
|
panic("Out of memory: %s panic_on_oom is enabled\n",
|
|
sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
|
|
}
|
|
|
|
static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
|
|
|
|
int register_oom_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_register(&oom_notify_list, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_oom_notifier);
|
|
|
|
int unregister_oom_notifier(struct notifier_block *nb)
|
|
{
|
|
return blocking_notifier_chain_unregister(&oom_notify_list, nb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_oom_notifier);
|
|
|
|
/**
|
|
* out_of_memory - kill the "best" process when we run out of memory
|
|
* @oc: pointer to struct oom_control
|
|
*
|
|
* If we run out of memory, we have the choice between either
|
|
* killing a random task (bad), letting the system crash (worse)
|
|
* OR try to be smart about which process to kill. Note that we
|
|
* don't have to be perfect here, we just have to be good.
|
|
*/
|
|
bool out_of_memory(struct oom_control *oc)
|
|
{
|
|
unsigned long freed = 0;
|
|
|
|
if (oom_killer_disabled)
|
|
return false;
|
|
|
|
if (!is_memcg_oom(oc)) {
|
|
blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
|
|
if (freed > 0)
|
|
/* Got some memory back in the last second. */
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* If current has a pending SIGKILL or is exiting, then automatically
|
|
* select it. The goal is to allow it to allocate so that it may
|
|
* quickly exit and free its memory.
|
|
*/
|
|
if (task_will_free_mem(current)) {
|
|
mark_oom_victim(current);
|
|
wake_oom_reaper(current);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* The OOM killer does not compensate for IO-less reclaim.
|
|
* pagefault_out_of_memory lost its gfp context so we have to
|
|
* make sure exclude 0 mask - all other users should have at least
|
|
* ___GFP_DIRECT_RECLAIM to get here.
|
|
*/
|
|
if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS))
|
|
return true;
|
|
|
|
/*
|
|
* Check if there were limitations on the allocation (only relevant for
|
|
* NUMA and memcg) that may require different handling.
|
|
*/
|
|
oc->constraint = constrained_alloc(oc);
|
|
if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
|
|
oc->nodemask = NULL;
|
|
check_panic_on_oom(oc);
|
|
|
|
if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
|
|
current->mm && !oom_unkillable_task(current) &&
|
|
oom_cpuset_eligible(current, oc) &&
|
|
current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
|
|
get_task_struct(current);
|
|
oc->chosen = current;
|
|
oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
|
|
return true;
|
|
}
|
|
|
|
select_bad_process(oc);
|
|
/* Found nothing?!?! */
|
|
if (!oc->chosen) {
|
|
dump_header(oc, NULL);
|
|
pr_warn("Out of memory and no killable processes...\n");
|
|
/*
|
|
* If we got here due to an actual allocation at the
|
|
* system level, we cannot survive this and will enter
|
|
* an endless loop in the allocator. Bail out now.
|
|
*/
|
|
if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
|
|
panic("System is deadlocked on memory\n");
|
|
}
|
|
if (oc->chosen && oc->chosen != (void *)-1UL)
|
|
oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
|
|
"Memory cgroup out of memory");
|
|
return !!oc->chosen;
|
|
}
|
|
|
|
/*
|
|
* The pagefault handler calls here because it is out of memory, so kill a
|
|
* memory-hogging task. If oom_lock is held by somebody else, a parallel oom
|
|
* killing is already in progress so do nothing.
|
|
*/
|
|
void pagefault_out_of_memory(void)
|
|
{
|
|
struct oom_control oc = {
|
|
.zonelist = NULL,
|
|
.nodemask = NULL,
|
|
.memcg = NULL,
|
|
.gfp_mask = 0,
|
|
.order = 0,
|
|
};
|
|
|
|
if (mem_cgroup_oom_synchronize(true))
|
|
return;
|
|
|
|
if (!mutex_trylock(&oom_lock))
|
|
return;
|
|
out_of_memory(&oc);
|
|
mutex_unlock(&oom_lock);
|
|
}
|